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Here, we show that the thrust force of oscillating airfoils calculated within the linearised
potential flow approach by means of the vortex impulse theory coincides with the one
resulting from the integration of the unsteady pressure distribution around the solid
obtained by Garrick (1936) when the vertical component of the wake velocity is calculated
self-consistently and the analysis retains the contribution of the flux of horizontal
momentum induced by the starting vortex. The limitations of the self-consistent linearised
potential flow approach for predicting the thrust force of airfoils oscillating periodically
with small amplitudes but large values of the reduced frequency are also discussed, as
well as the reasons behind the ability of other results in the literature to approximate
measurements better than Garrick’s theory. In fact, for those cases in which the airfoil
oscillates periodically, the flux of horizontal momentum induced by the starting vortex is
negligible and the vortices in the wake are convected parallel to the free-stream velocity,
we have deduced an equation for the mean thrust coefficient which differs from previously
published results and is in agreement with experimental and numerical results. In addition,
for those cases in which the airfoil is suddenly set into motion, we have also deduced an
equation that retains the effect of the starting vortex and correctly quantifies the transient
thrust force.
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1. Introduction

The quantification of the forces exerted over oscillating airfoils within the potential
flow and slender-body limits traces back to the classical works of Wagner (1925), who
calculated the unsteady lift force over an airfoil experiencing a sudden change in the angle
of attack, of Theodorsen (1935), who considered the analogous case for airfoils performing
periodic pitching and heaving motions, of Garrick (1936), who calculated thrust by adding
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to the suction force at the leading edge of the airfoil the projection in the flight direction of
the lift force calculated by Theodorsen, and to the also seminal contribution of von Karmén
& Sears (1938), who obtained the same results previously deduced by Wagner (1925) and
Theodorsen (1935) but making use of a momentum balance i.e. using the vortex impulse
theory. The results of these classical studies, which were originally developed in the field
of aeroelasticity, have recently been extended to quantify the unsteady forces experienced
by flying or swimming animals at high values of the Reynolds number (Wu 1961; Smits
2019).

Experiments, see Mackowski & Williamson (2015) and references therein, as well as
the numerical simulations of Young & Lai (2004), reveal that the classical theory due
to Garrick (1936) overestimates both thrust and the propulsion efficiency for sufficiently
large oscillation frequencies and amplitudes because: (i) the real wake is non-planar
(Young & Lai 2004; Godoy-Diana, Aider & Wesfreid 2008; Mackowski & Williamson
2015), a fact which contrasts with the approximations made in the linearised theory,
(i1) the viscous drag, which plays an essential role in determining the optimal Strouhal
number which maximises the propulsion efficiency (Floryan, Buren & Smits 2018), is
neglected in the potential flow approach, (iii) the vortices ejected from the leading edge
of the airfoil at large amplitudes of the heaving and pitching motions (Young & Lai 2004,
2007), which tend to reduce thrust, are not captured by the linearised theory and (iv) the
three-dimensional effects associated with the finite span of the body (Zurman-Nasution,
Ganapathisubramani & Weymouth 2020) were not considered by Garrick in his original
contribution.

In spite of these drawbacks, a series of recent studies emphasise that the linearised
theory due to Garrick is capable of approximating the time-varying value of the thrust
force for sufficiently small values of the oscillation amplitudes and reduced frequencies if
the effects of static drag are taken into consideration in the modelling (Young & Lai 2004,
2007; Mackowski & Williamson 2015; Saadat et al. 2017; Floryan et al. 2018). Moreover,
Floryan et al. (2017) find that Garrick’s result already provides the correct scaling for the
thrust force even for large amplitudes of the oscillations.

In an attempt to improve the predictions of Garrick’s theory for values of the oscillation
frequencies larger than the inverse of the characteristic residence time, a series of very
recent contributions (Fernandez-Feria 2016, 2017; Alaminos-Quesada & Fernandez-Feria
2020; Sanchez-Laulhe, Fernandez-Feria & Ollero 2023), extends the linearised vortex
impulse theory by von Kdrmdn & Sears (1938) with the purpose of calculating the
aerodynamic thrust. Newton’s laws dictate that the aerodynamic force calculated using the
vortex impulse theory, which results from a momentum balance, must coincide with the
one obtained by integrating the pressure distribution around the airfoil (Eldredge 2019)
and, hence, the linearised theories by Garrick (1936) and Fernandez-Feria (2016, 2017)
should provide identical results. However, for values of the reduced frequency of order
unity or larger, the predictions by Fernandez-Feria (2016, 2017) are in better agreement
with the experimental and numerical results reported by Young & Lai (2004, 2007) and
Mackowski & Williamson (2015) than the ones deduced using Garrick’s theory. Motivated
by the better agreement with experimental data, it is explicitly stated in Fernandez-
Feria (2016, 2017) and Alaminos-Quesada & Fernandez-Feria (2020) that the vortex
impulse formulation of Ferndndez-Feria corrects the theory due to Garrick, and it is one
of the purposes of the present study to find the origin of the differences between the
results in Garrick (1936) and in Fernandez-Feria (2016). Indeed, since the predictions in
Fernandez-Feria (2016) do not reproduce Garrick’s results, one of the two theories is not
self-consistent because, otherwise, the force calculated by the direct integration of the
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pressure distribution around the airfoil would be different from the value obtained through
a momentum balance.

It will be shown next that the linearised theories due to Garrick (1936) and the
one deduced using the vortex impulse theory, which we develop here by extending the
momentum balance in von Kdrman & Sears (1938), provide identical results for the
aerodynamic force if: (i) the flux of momentum induced by the starting vortex emitted
initially from the trailing edge of the airfoil is taken into account and (ii) the vertical
velocities of the vortices in the wake are calculated in a self-consistent manner. Indeed, in
order to recover Garrick’s result using the vortex impulse formulation, it proves essential
that the vertical velocity of the vortices in the wake are calculated self-consistently within
the linearised approach, namely, as a result of the vertical velocities induced by the vortex
sheet extending along the airfoil and the wake. In contrast, the theory by Fernandez-Feria
(2016, 2017) does not include the flux of momentum induced by the starting vortex and,
in addition, Fernandez-Feria (2016, 2017), Alaminos-Quesada & Fernandez-Feria (2020)
and Sanchez-Laulhe ef al. (2023) do not calculate the vertical velocities of the vortices
in the wake in a self-consistent manner but, instead, impose their values: indeed, the
assumption in equation (25) in Fernandez-Feria (2016) implies that the vertical velocity
of the vortices in the wake is zero. However, we show here that there is no need to impose
the value of the vertical velocities of the vortices in the wake because the linearised
potential flow theory already permits us to calculate these velocities in a self-consistent
manner: in fact, only if this is done does the vortex impulse theory recover the results
originally deduced by Garrick, consistently with the fact that the force calculated through
a momentum balance must coincide with the value obtained by direct integration of the
pressure distribution around the airfoil. One of the main conclusions of this study is that
the correct equation for the thrust force within the linearised potential flow approach is the
one due to Garrick (1936) or the equation deduced here using the vortex impulse theory
in a self-consistent manner, a conclusion that contradicts the assertions in Fernandez-
Feria (2016, 2017) and Alaminos-Quesada & Fernandez-Feria (2020). Then, the ability
of Ferndndez-Feria’s results to predict experimental measurements does not mean that
Garrick’s theory is incorrect: we show here that the success of Fernandez-Feria’s results
rests on the fact that the assumption made in Fernandez-Feria (2016, 2017) and Alaminos-
Quesada & Fernandez-Feria (2020) of neglecting the contribution of the starting vortex
and of imposing the vertical velocities of the wake vortices to be equal to zero, reflects
the realistic nonlinear dynamics of the wake for sufficiently large values of the oscillation
frequency. Clearly, these nonlinear effects cannot be accounted for by any self-consistent
linear theory. For those cases in which the airfoil oscillates periodically, the flux of
horizontal momentum induced by the starting vortex is negligible and the vortices in the
wake are convected parallel to the free-stream velocity, we also deduce here an equation
for the so-called mean thrust coefficient. This equation differs from previously published
results and is in agreement with experimental and numerical results.

However, the results in this contribution are not only limited to the study of the thrust
force of periodically oscillating airfoils: our results also permit us to calculate the thrust
force in transient manoeuvres, like those taking place when an airfoil is impulsively set into
motion. In fact, we derive the analytical expression for the thrust force corresponding to
the so-called Wagner problem (Wagner 1925) in two different ways, namely, by the direct
integration of the pressure distribution around the airfoil and by also using the vortex
impulse theory. We validate all the analytical results obtained by means of the numerical
code detailed in the Supplementary Material.

This contribution is structured as follows: §2 is devoted to showing that, within the
linearised potential flow approximation, the thrust force calculated by means of the vortex
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Figure 1. Sketch of the canonical flow considered in this study.

impulse theory is identical to the classical result due to Garrick once the flux of horizontal
momentum induced by the starting vortex is retained in the analysis and the vertical
component of the wake velocity is calculated self-consistently. This conclusion will be
illustrated by the numerical examples included in § 3, where we also establish the limits
under which Garrick’s theory can be used to predict experimental measurements. For those
cases in which the airfoil oscillates periodically, the flux of horizontal momentum induced
by the starting vortex is negligible and the wake vortices are convected parallel to the free-
stream velocity, we deduce in § 4 an analytical equation for the mean thrust coefficient
which has been validated using the results of numerical simulations carried out using the
vortex-lattice method. The main results are summarised in § 5.

2. Calculation of thrust through a momentum balance

The canonical flow to be studied in what follows, which employs the same notation and
sign conventions as those used in Bisplinghoff, Ashley & Halfman (1996) except for the
fact that, here, the origin of the Cartesian coordinate system is located at the leading edge
of the airfoil, is illustrated figure 1: an airfoil of chord ¢ extending along 0 < x < ¢, with
x and z denoting the Cartesian horizontal and vertical coordinates with associated unit
vectors e1 and e, forms a time-dependent angle of attack «(¢) with an incident uniform
stream of density p and velocity v = Use1. The origin of times is set at t =0 and,
hence, within the classical linearised potential flow approach, the horizontal position of
the starting vortex is x = ¢ 4+ Uxot (Wagner 1925; Theodorsen 1935; von Kadrmén & Sears
1938; Glauert 1983; Ashley & Landahl 1985). Moreover, the vertical position of the point

located at a distance x = x, < ¢ from the leading edge of the airfoil is z,(x., t) = —h(t)
and, hence, for the case of a symmetrical airfoil with zero thickness considered, here,
Za(x, 1) = —h(t) —a(t) (x —x) , (2.1)

with the subscripts a and w referring from now on to quantities corresponding to either the
airfoil or the wake. Notice that, in this contribution, positive lift £(¢) corresponds to a force
in the positive z-direction, positive thrust —d(¢) is positive in the negative x-direction,
whereas positive h(t) corresponds to motion in the negative z-direction and, similarly,
positive torque m(¢) is in the counterclockwise direction, while positive «(¢) gives
clockwise rotation. The aerodynamic force f(t) = €(t)ez + d(t)e; and torque over such
an airfoil, which possesses the two degrees of freedom «(¢) and k(¢), are calculated for the
common case in which the Reynolds number verifies the condition Re = pUqoc/p > 1,
with w indicating the dynamic viscosity; moreover, we will consider that the relative
density variations are negligible and that o (t) < 1, z4,w/c K 1, h/c <K 1, with the vertical
positions of the points on the airfoil z,(x, t) defined in (2.1) and z,(x, t) referring
to the vertical position of the points in the wake. Therefore, under these conditions,
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the thin boundary layer of thickness 8 such that §/c o« Re~!/? « 1 does not separate and,

hence, the classical, linearised potential flow theory summarised in e.g. Ashley & Landahl
(1985), is applicable.

Indeed, outside the thin boundary layer and the wake, the velocity field is irrotational,
namely, v = V¢, with ¢ = Usox + ¢ and ¢’ indicating the perturbed velocity potential
associated with the perturbed velocity field v/ =V¢' =u'e; + w'ey verifying the
condition |V¢'|/ Us < 1 except, as will become clear in what follows, at the leading edge,
x — 0 and, for the case of an airfoil which is suddenly set into motion, at x — ¢ 4+ Ut i.e.
where the starting vortex is located. Then, by virtue of the continuity equation V - v =0,
the perturbed potential satisfies the Laplace equation

V2¢ =0, (2.2)

which must be solved subject to the boundary condition at infinity ¢’ — 0 and to the
linearised impenetrability condition, which can be expressed as

DF 0oF , .

and with z,(x, t) given in (2.1).
The standard linearisation of (2.3) yields (Ashley & Landahl 1985)

0z 0z
W (6, 7= 05, 1) = =5 + Upg—

, (2.4)

with z = 0% indicating the upper and lower sides of the airfoil and the wake and wy
referring to the vertical component of the velocity on the airfoil or at the wake. In
view of the linearised impenetrability boundary condition at 0 < x < ¢ given by (2.1)
and (2.4), we seek antisymmetric solutions of the Laplace equation (2.2) in the form
of a vortex sheet extending along the airfoil and the wake, whose circulation density is
the one satisfying the condition expressed by (2.1) and (2.4). Notice that, making use
of the notation ¢'* =¢'(x, z=0%,1), I'(x,1) = FfeUxer + Vo) -db= (@t —¢p7) =
20" (x,t) and y(x,t) =u'" —u'~ =93I"/dx, in this contribution

X

F'(x>0,1)=2¢ (x>0, z):/

—0oQ

v (x0, t)dX()=/0 ¥ (xo, t)dxo (2.5)

refers to the clockwise circulation along any closed loop encircling the leading edge
of the airfoil and connecting the points (x >0,z=07) and (x >0, z=0"), whereas
y(x, t) indicates the circulation density. In (2.5) we have taken into account that, since
the origin of the vortex sheet is the leading edge of the airfoil, which is located at x =0,
y(x <0, t) =0, and hence the circulation for x < 0 is also zero because I'(x <0, t) =
ffoo ¥ (xo, t) dxo = 0. In the following, I ,,(x, t) and y, ., (x, t) will indicate the values
of the circulation and of the circulation density on the airfoil, which extends along
0 < x < cor at the wake, which extends along x > c.

The equation governing the pressure jump at z=0, namely, Ap(x,z=0,1)=
P (x,z=0",1)—p'(x,z=0",t)=p'~(x,1) — p'T(x, 1), with p’ = p — p indicating
the perturbed pressure, can be deduced from the linearised Bernoulli equation
particularised at z = 0F

3¢/i a¢/i

=0F: p—— +pU,
¢ Py TPV

+pF=0. (2.6)
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Hence, the subtraction of the two equations in (2.6) yields

or or 0 x ,
p—+pUscT—=p— /deo + pUsy =G(x, 1) with

ot dx ot \Jo

GO<x<c, 1)=Apg(x,1) (2.7)

with Ap, the pressure jump at the airfoil and, since Ap =0 for x <0 and x > ¢, we
conclude that G(x <0,¢) =G(x >c,t) =0 in (2.7), a fact implying that the material
derivatives of both I" and y are zero at z=0 for x <0 and x > ¢, namely (Ashley &
Landahl 1985),

PE_ (P o2 Ly =0, v —0 & 0
- ()= - =0, — - = or x<0, x>c.
Dr  ax\ Dr g oY ar | ®x

(2.8)

Taking into account that I" =0 for x — —o0 and also for instants # < 0 and that the
circulation at the origin of the wake is prescribed by the circulation around the airfoil,
namely,

C
y(x=c,t)=Iyx=c, t)=Fe(t)=/ Ya(x, 1) dx, (2.9)
0
with I, (¢) the circulation around the airfoil, we deduce from (2.8) and (2.9) that
C
I'x<0,0)=0, I'k>c+Uxt,t)=0, I'yx=c+Usx(—1ty),1) =/ va(x, tg)dx,
0

and yy(x =c+Ux(t — 1)), 1) =yuw(x =c, t), (2.10)

with y,, (x — ¢, f9) given by (2.8) and (2.10) — see also equations (13)—(27) in Ashley &
Landahl (1985)

d c
T (/ Ya(x, 1) dX> (10) + UsoYu (c, 1) =0, (2.11)
0
where y,, (x — ¢, ty) = yw(c, tp) from which we conclude that
1 d ¢
Yw(xXo =c¢ + Uso(t —10), 1) = yw(x =c, to) = ——— — Ya(x, 1) dx | (fo)

__ 1 (t0) (2.12)
T Uy dt ’

with the circulation around the airfoil I, (¢) defined in (2.9). Equations (2.7) and (2.12)
indicate that the unsteady lift force and the torque

c

Z(t):/c Apg(x,t)dx and m(t):/ X Apg(x, t)dx, (2.13)
0 0

as well as the density of circulation along the wake, y,(x, ), can be expressed as a
function of y, (x, t).

Finally, the density of circulation at the airfoil, y,(x, t), is deduced by imposing that
the perturbed vertical velocity induced by the vortex sheet extending along z =0, 0 < x <
¢ + Ut satisfies the linearised impenetrability condition given by (2.1) and (2.4), namely
(Ashley & Landahl 1985),
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dh do
wh(x, z=0%, 1) = —— — Usoat(t) — 5 &%)

dr
1 [e 1 1 fetUset 1
=_/ Ya(x0, 1) de+_/ Yw (X0, 1) dxo. (2.14)
21 X0 — X 27 ), X0 — X
Introducing the change of variables
xo=c+ Ux (t — ty) = dxg = —Uxodty, (2.15)

and taking into account that the second integral at the right-hand side of (2.14) can be
expressed solely in terms of y, by means of (2.12), the equation for y, (x, t) reads

dr,
1 c 1 1 / _¢
w;(x,Z:Oi’z)=_/ de o dio dio
e U 2 Jo c+Us (t—1)) —x
C
with  I,(¢) :f Ya(x, 1) dx. (2.16)
0

In order to solve the integral equation (2.16) notice first that, since I"(x — —o00,¢) =0
then, by virtue of (2.8), I'(x <0, 1) =0 and hence, ¢'(z = 0%, x <0)=0. Consequently,
the local solution of the Laplace equation (2.2) at the leading edge of the airfoil is the one
corresponding to the flow around a wedge of angle 27, namely,

1/2 B
¢’ = UsocAo(t) ( ) cos <§> , 2.17)
with Ag(¢) a dimensionless time-dependent constant, r/c < 1 the radial distance to the
leading edge — which is located at z =0, x = 0 in the linearised theory —and 0 < 8 < 27
indicating the polar angle measured in counterclockwise manner from the horizontal axis.
Taking into account: (i) that the Kutta condition ensures that y,(x =c, t) is finite in
order to avoid that the flow turns around the trailing edge of the airfoil and (ii) that

Ya(x/c K1, 1) is given by
_8 / U —-1/2
i (ﬂ —0, - «1, t) =z/(z =0t T«1, z) =—2A40(0) (f)
C c 2 c

or
= Va(%c <1, z) = UnoAo(0) (%)71/2 : (2.18)

where use of (2.17) has been made, it can be concluded that the integral equation (2.16)
can be solved using Glauert’s method, which relies on expressing the unknown function
¥4 (x, t) as the infinite series (Glauert 1983)

1 (—
— Ao() %0 Z An(1) sin(nf),
n=1
(2.19)
where we have introduced the change of variables
x 1—cosé
—_—=— (2.20)

c 2

and, therefore, 6 =0 at x =0 and 6 = 7 at x = c. Notice that the expansion (2.19) implies
that y,(x =c, t) =0 and, hence, the density of circulation at x = ¢ does not satisfy the
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physical condition y, (x = ¢, t) =y, (x =c, t). However, the continuity of the circulation
density at the trailing edge could be enforced following the procedure detailed in Alben
(2010) and Eldredge (2019) and references therein by analytically removing the logarithmic
singularity at x = ¢ in (2.16). This more elaborate method provides a faster convergence to
the solution which, however, can also be found using the more classical procedure followed
here by simply retaining a larger number of terms in (2.19), see Alben (2010).

Then, the substitution of the expansion (2.19) into the integral equation (2.16) provides
us with the values of the time-dependent coefficients A;(¢) as a function of «(¢) and
h(t), as detailed in the Supplementary Material, see also Wagner (1925), Theodorsen
(1935), von Karman & Sears (1938), Wu (1961) and references therein. Once the values of
A;(t) are known, Ap,, £(¢) and m(¢) can be determined by means of (2.7) and (2.13), as
illustrated, for instance, in the Supplementary Material. Now that £(¢) is known, the value
of the drag force can be obtained by adding to the projection in the flight direction of the
lift force the resulting suction force at the leading edge of the airfoil, yielding

, Aj@)
d@t) =a@®)t@) — pUsm =4 ; (2.21)
see Garrick (1936), Wu (1961) and references therein, as well as the next subsection.
Hence, the thrust force obtained by the direct integration of the pressure distribution
around the airfoil is given by
, AYD
T(t)=—d(t) =—a@®)t@) + pUsm =y (2.22)
where we have made use of (2.21) and the subscript G indicates Garrick. Let us point
out here that the expression of Ag(¢) in (2.22) for the case of periodic oscillations of the
airfoil was provided by Garrick (1936) using the results of Theodorsen (1935), whereas
the corresponding value for arbitrary heaving or pitching motions is deduced elsewhere;
see, for instance, the Supplementary Material.

2.1. Forces calculated through a momentum balance

So far we have calculated the unsteady lift and thrust forces on the airfoil as a result of the
integration of the pressure distribution around the solid. It is now our purpose to calculate
the aerodynamic force f through a momentum balance using the control volume £2.(¢)
limited by a fixed surface X', of dimensionless radius R /c — oo which encircles both the
solid and the wake, by the surface X, ,, bounding both the solid and the wake and by X,
which is a circle of radius € — 0 centred where the starting vortex is located, namely, at
x = ¢ + Ust. The momentum balance applied at the control volume £2.(¢) defined above
yields

d
— pvdw +/ pv (v —1,) -ncdo =/ (P — Poo) (—n) do, (2.23)
dr Jo.0 92, 92

with n, the unit normal pointing outwards the control volume, v = V¢ and v, indicating
the velocity of the surfaces bounding the control volume, namely, v, = Uxe1 at X and
(v—v;)-n.=0 at X, ,. Since there is no relative momentum flux across the surfaces
X, w» and taking into account that the pressure force at the airfoil is

f= (P — poo) e do, (2.24)
Za(t)
1012 A6-8
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(2.23) can be written, making use of Gauss’ theorem, as

pon, do -I-/

e

d
f=——

: PV (Vo — User) - epdo + / (p = poo) (—er) do,
1z, Uz z.

(2.25)

where we have taken into account that v = V¢ = V¢’ + Uy €1 and e, refers to the unit
vector in polar coordinates, see figure 1. Moreover, in (2.25) we have made use of the
fact that the integrals evaluated at X', tend to zero because of the Bernoulli equation
pog /ot + p|Vo|? /24 p =K and because XY, encircles both the airfoil and the wake
and, hence, the circulation around X', is zero, which implies that the perturbed velocity
field decays faster than Usc/R at infinity, which ensures that both the flux of momentum
and the integral of |V¢|? along Y, tend to zero. Then, the aerodynamic force can be
written, in the linearised approach, as

d c d c+Ucot
=— I'yndx + — I'ynd
f dr /0 plgndx + ar [ plyndx

+f pVo (Vo —Uxer) - erdo +/ (P — Poo) (—er) do, (2.26)
e Xe

with n the unit vector pointing outwards the side z=0" of X, and X, see figure 1,
and where we have taken into account that the unit normal pointing outwards the side
z=0" of ¥, and X, is —n, this being the reason why the integrand in the first two
integrals in (2.26) is I = ¢'* — ¢’~; in addition, in (2.26) we have made use of the fact
that, by virtue of (2.17) and of the paragraph preceding this equation, where it is shown
that I'(x <0, t) =0, the value of the integral extending along a small region near the
leading edge tends to zero. Finally, since I"'(x > ¢ 4+ Uxot, t) =0, see (2.10), the leading-
order equation for the perturbed potential at X, corresponds to the one characterising the
flow around a wedge of angle —m < 8 < 7, namely,

¢ = UsocC sin(§> (2)1/2

,_C (B N\ —1/2 C B r\—1/2
= V¢ = EUOO s1n(§) (Z) er + EUOO COS(E) <E) eg, (2.27)

with e, = cos Be; + sin Bez, eg = — sin Bey + cos Bey, r/c indicating the dimensionless
distance to the starting vortex located at x = ¢ 4+ Ut and C is a dimensionless constant
which does not depend on time because, by virtue of (2.8), the value of the perturbed
potential remains constant at X,; hence, C is fixed at t =07, right after the airfoil is
set in motion, see Appendix A, where C is calculated. Notice that the last integral in
(2.26) is zero because, by virtue of (2.27), |V¢| is constant at ¥, and hence, by virtue
of the Bernoulli equation, p is also constant at X,. Finally, the third integral in (2.26),
corresponding to the momentum flux across X, is calculated using (2.27), which yields
the following expression for the aerodynamic force:

d c d c+Usot CZ
f=— / plyndx + — / plyndx — pU2 mc——ey. (2.28)
dr Jo dr J. 4

Taking now into account that «(f) < 1 and h(t)/c <« 1, the linearisation of the normal
vector n in equation (2.28) yields
8 Za,w(xa t)

5 x (2.29)
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Introducing the results of (2.28) and (2.29) into the definitions of £(¢) and d(¢), namely,
ty=er-f, dt)=er- f, (2.30)
provides us with the following equations for the lift and drag forces:

d c+Uxot d c+Uxot 9z C 2
=1 fo plundy, dO=—= fO Pl dx—,oUgocn<5> .

(2.31)
Using the Leibniz rule for differentiation, we obtain the following equation for £(¢):

c al—va c+Uxot al—vw
L1t) = pUsolw(c+Ust)+ | p 57 dx + p— dx
0 c

¢ ar c+Uxot oI
:onon(c+Uoot)+f P 8: dx—UOO/ p_wdx
0 c

d re
ZPE/ I(x, 1) dx + pUscla(x =c, 1), (2.32)
0

where we have made use of (2.8) and of the fact that I,(x = ¢, t) = I',(x = ¢, t). Equation
(2.32) reveals that the expression for the lift force calculated through a momentum balance
coincides with the one obtained by direct integration of the pressure distribution around
the airfoil, see (2.7) and (2.13).

Next, we recover a similar equation for the drag force to that deduced by Fernandez-Feria
(2016) once d(¢) in (2.31) is integrated by parts

c+Usxot 9

d(f)=—/>a A 5(

2 c\?
—pUscm 3

d [ d [etUst c\’
=p—/ Za(x,t)ya(x,t)dx-i-p—/ Zw(x,t)yw(x,t)dx—onzom =,
dr Jo dr J,

C+Uoot
Fa,wza,w) dx + p& / Za,wVa,w(X, 1) dx
0

2
(2.33)

where we have taken into account that I'(x =0) = I"'(x =c¢ 4+ Usot) =0 and also that
Zq and z,, are bounded. Notice that the last term in (2.33), which was not included in
Fernandez-Feria (2016), represents the contribution to the thrust force of the momentum
flux which is being ejected horizontally by the starting vortex.

In this contribution, however, the thrust force, —d(t), will be calculated using the
Leibniz rule for differentiation and, hence, we deduce from (2.31) that

c\? 9z et Ut 92z
2 ,
d(l):—onoCJT (5) —pFonoa—;)(x:C'i‘Uoot)—/(; pFawaBtwdx
c+Usot 9 or P c
+/ Up e 2200 gy 220 [ A d, (2.34)
0 ox  0x ax Jo

where we have made use of the Bernoulli equation (2.7). Taking now into account that

3Zaw 4w 9 ( Bza,w> 3%2a,u
aw” | La,w

= — _— 2.35
0x 0x ox 0x 9x2 ( )
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and also that I',(x =0) =0, (2.34) reads

C 2 c+Uxot 822 82Z 9z c
d(t) = —pU? - - Lol U aw S ) dx — a/Ad
()=—-p oonT(z) pfO a,w( Sy vl K, A Padx

C 2 c+Usot ow’
= —pUler (5) +ane) - p/ Faw— = dx
0

0x

) C 2 c+Uxot
=—pUscr| =) +a®)l@)—p / — (Fayw w, ) dx
2 0 0x ’

c+Uxot
/
+p/ Va,w wa’w dx
0

5 C 2 c+Uqot
=a()t(t) — p Usem (E) +P/ Va,wWy y dx
0

C 2 c c+Uxot
=a()l(t) — p U en <E> +p / Yaw, dx + p / Yww,, dx, (2.36)
0 c
where we have made use of (2.1) and of (2.4) and have taken into account that I, w/, (x —
0) - 0 and I'yw),(x = ¢ + Usot) — 0 because I,(x =0) =, (x =c + Usot) =0 and
w, ,, are bounded. In (2.36), the first term is the projection in the flight direction of the
lift force whereas the second one is the contribution to the thrust force of the flux of
horizontal momentum induced by the starting vortex. The third and fourth terms are the
result of the Kutta equation, which expresses that the force in the direction perpendicular
to the velocity V of a vortex with circulation I" is pV I" and, hence, the integral term in
(2.36) is nothing but the contribution to the horizontal force of all vortices with circulation
dI'(x, t) = Ya,w(x, t)dx on which the vertical velocity is wg’w(x, t).
Consequently, the thrust force calculated using the vortex impulse theory reads

5 C 2 c+Uxot
Tyi(t) =—d(t) = —a()l(t) + pUscm (5) —/0/0 Va,wW,y,,, dx

C 2 c c+Uxot
= —a()l(r) + pUZcm <5> —p / Yaw, dx — p / Yww,, dx, (2.37)
0 c

where we have made use of (2.36) and the subscript V I indicates vortex impulse. Notice
that, by analogy with the vortex force resulting from the volume integral of p(V x v) x v
see e.g. Saffman (1993), the third term at the right-hand side of (2.37) represents the vortex
thrust force associated with the vortices in the airfoil whereas the fourth term represents
the vortex thrust force associated with the vortices in the wake.

In order to compare the result in (2.37) with the analogous equation derived in
Fernandez-Feria (2016), it is shown in Appendix B that the result in (2.37) can be expressed
as

C\* pmac? . )
Ty1(t) = —a()L(t) + pUgsen (5) +5 4 (—=h — Usoa (1) + xc6r)
14+2Usot /¢
C . X c.
+P§/1‘ |:—h—Uooot+xcot+Eot (\/ﬁ_x)—w;}(x,t)] yuw(x,t)dy,
(2.38)
1012 A6-11
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with dots denoting time derivatives, d/d¢, and

C
X — —

C
X = C 2, xe=§+xc, (239)

2

with x, in (2.1) indicating the horizontal position of the pitching axis. The equation for the
thrust force corresponding to the permanent response of airfoils oscillating periodically
deduced in Fernandez-Feria (2016) and Sanchez-Laulhe et al. (2023) is similar to (2.38)
once it is noticed that hrp(t) = —h(t) — with the subscript F F indicating from now on
Fernandez-Feria — and once the upper limit of the integral is set to co, but contains crucial
differences from our result. Indeed, two of the terms in (2.38) are missing in (29) and
(31) of Fernandez-Feria (2016), namely, the term ,oUgocn(C /2)2, which represents the
contribution to the thrust force of the starting vortex, and also the term

c+Usot
—p / Yww,, dx, (2.40)
c

which represents the vortex thrust force associated with the vortices in the wake.

Let us also explain here that the reason why the term (2.40) is missing in Fernandez-
Feria (2016, 2017), Alaminos-Quesada & Fernandez-Feria (2020) and Sanchez-Laulhe
et al. (2023) is a consequence of an assumption made in Fernandez-Feria (2016).
Indeed, (25) in Fernandez-Feria (2016) expresses that z,,(x, 1) = 2y (x — Uxot), with this
assumption implying, by virtue of (2.4), that w), = 9z,,/9f + Uxx9zy/dx = 0. However,
there is no need to assume any functional dependence for z,,(x, t) because the vertical
velocity wy, ,,(z=0, x, 1) is the one induced by the vortex sheet extending along the airfoil
and the wake, namely,

1 c+Uxot 1
wl oy (z=0, x, t)z—/ Yawlo.0) 4 (2.41)
’ 21 Jo X0 — X

which is clearly different from zero for x > ¢ i.e. w),(z=0, x,1) #0, as will be also
illustrated in § 3.

It will be shown next that, if the vertical velocities of the wake vortices, w;,(x, t), are
calculated self-consistently, namely, making use of (2.41), the thrust force calculated using
the vortex impulse theory is identical to the one calculated by direct integration of the
pressure distribution around the airfoil i.e. Tg(¢) = Ty (¢), see (2.22) and (2.37), for any
type of motion of the airfoil, which could be impulsive, oscillatory, etc.

Indeed, introducing equation (2.41) into (2.37), the equation for the thrust force (2.37)
reads

C 2 c+Uxot c+Uxot t
Ty1(t) = —a()e(t) + pUskcr (=) — ﬁ/ Vaow (X, t)dx/ Yawlo. 1) 4
2 21 Jo 0 X0 — X

(2.42)
The comparison between (2.22) and (2.42) reveals that these two equations would
provide us with an identical result if

c\? Akt
pUgocn (5) +Ty= ,oUgon c%,
c+Usot c+Usot t
with T, =—2" / Vo (x, 0)dx / Yawl0.0) 4 o (2.43)
27 0 0 X0 — X
1012 A6-12
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In order to prove this is so, we first introduce the following changes of variables:

X 1 —cos@ X0 1 —cos by no sin 90
= , = =dx = (t)— d9 and dxop=a(t) dby,
a(t) 2 a(t) 2
(2.44)
with
a(t) =c+ Uxt. (2.45)

Now notice that: (i) I'(x =0)=TI"(x =a(t)) =0, (ii) by virtue of (2.17) and taking
into account that I'(x/c < 1,1)=2¢'(x/c < 1,z=07,¢) and also that, in polar
coordinates, the point (z =07, x/c > 0) on the airfoil corresponds to (r/c =x/c, B =0),
the value of the circulation in close proximity to the leading edge is I'(x/c < 1,¢) =
2A0(t)Usor/xc, (iii) if the airfoil is suddenly set into motion at t =07, I'(x ~a(t)) =
2C U/ (a(t) — x)c, see (2.27), then the circulation density along the airfoil and the wake
can be expressed, in terms of the variable 6 € [0, 7] defined in (2.44), as

Vai}uoie) — Bo(t)\/(i—i- BO( )\/7 Z B, (1) sin (n6)

0s 6

1+
=Bo(t)ﬁ By =?

+ Z B, (t) sin (n6) . (2.46)

n=1

né

Making use of (2.44)—(2.46), the perturbed vertical velocity given by (2.41) can be
expressed as

/
W, 4 (X, 1)

21 Jo cosBy—cos@

X (B()(l‘)(l + cos 6py) + B(/)(t)(l — cos 6p) +ZB,,(I)

n=1

= _U%" (Bo(t) —By— Y Bu(0) COS(n9)> )

n=1

cos[(n — 1)6p] — cos[(n + 1)001>
2

(2.47)
where we have made use of the well-known result (Glauert 1983)
T 6p) db in(n6
I(n) = / costnbp) dbo _  sin(e6) (2.48)
o cosfy—cos6 sin 6
Finally, introducing the results of (2.44)—(2.47) into (2.43) yields
T 1 c+Uxot c+Uxot 1
2w - 5 / ya,w(x,t)dx/ de
poUsal(t) 2w Uz a(t) 0 X0 — X
1 [ >
=1 /0 Bo— By — Y By cos(nb)
n=1
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B, ) B, )
X 7+B()+BO + 7+Bo—Bo cos 0

o0

B, .1 — By

+y W Cos(m@):| o
m=2

_T (Bo — By) x i+B + B _h E+B — B
_4 0 0 2 0 0 ) ) 0 0

> Bn+1 - anl
_E B,——— "
4
n=2

b4 ,oU2 ma(t)
=7 (83 - BY) =T, = PRt (B3 - BY). (2.49)

The comparison between (2.46) and (2.17) and (2.27) at both the leading edge and at
the position where the starting vortex is located, namely, x/c < 1 and (a(?) — x)/c K 1,
indicates that

x\—1/2 x \ 2 c \'?
Ao<r>(;) =Bo(t)<m) =>Bo(t)=Ao(l)<m) ,

3 —12 _ -1/2 1/2
c ((a(t)c x)) _ 5 ((a(;)(t) x)) = B)=C (%) . (2.50)

The substitution of the results in (2.50) into (2.49) yields

pU2 e
T, = =2 (Ag(z) _ cz) , (2.51)

from which we conclude that (2.43) is satisfied, a fact meaning that the thrust force
calculated using the vortex impulse theory through either of (2.37), (2.38), (2.42), is
identical to the one calculated by direct integration of the pressures around the airfoil,
see (2.22), i.e.

Tyi(t) =TG(1). (2.52)

The result in (2.52), which simply expresses that the force calculated by means of the
integration of pressures around the airfoil is identical to the one obtained through a
momentum balance, permits us to conclude that the correct equations for the thrust
force within the linearised potential flow approach are (2.22) or either of (2.37), (2.38),
(2.42). Hence, for the particular case in which the airfoil oscillates periodically, the
correct equations for the thrust force within the linearised approach and in the limit
tUx/c — oo are either the one deduced by Garrick (1936), or either of (2.37), (2.38),
(2.42) deduced using a momentum balance, once the upper limits of the integrals are
set to oo. This conclusion contradicts the assertions in Fernandez-Feria (2016, 2017) and
Alaminos-Quesada & Fernandez-Feria (2020), where it is stated that the formulation in
Fernandez-Feria (2016) corrects the theory due to Garrick.

3. Numerical evidence showing the relevance of the starting vortex and of the vertical
velocities of the vortices in the wake to predicting thrust

This section illustrates, through several numerical results, the main conclusion drawn from
§ 2, namely, that the thrust force calculated using the vortex impulse theory is identical to
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the force calculated by direct integration of the pressure distribution around the airfoil.
The numerical examples to be shown below have also been selected with the purpose of
illustrating that, when the force is evaluated using the vortex impulse theory within the
linearised potential flow approach, it is essential to retain the two terms that were missing
in (29)—(31) of Fernandez-Feria (2016), namely, the term which represents the contribution
of the starting vortex to thrust and the term (2.40), which represents the vortex thrust force
associated with the vortices in the wake, see (2.38). In this section, we will also consider
the case in which the airfoil is suddenly set into motion and, moreover, we will discuss the
limits of applicability of the linearised potential flow theory.

With all these purposes in mind, it proves convenient to define first the dimensionless
thrust forces resulting from all contributions to thrust in (2.22) and (2.37), (2.38), (2.42)
except the one expressing the projection in the flight direction of the normal force to the
airfoil, namely,

zfan+aman:nAag

At
¢ pU2c 4

) 3.

and
T 1 HL(t
Atyy = v1()+;t() ()
pUSc

1 C\2 c c+Usot
= x| pU2cn(=) —p | yaw,dx—p yow, dx
pUZC Y o0 2 0 aq . w %
0

1 C 2 c+Usot c+Unot .t
= 5 X pUOZOCT[ (-) — i/‘ ya’w(X, t)dx / M dxo .
pUsc 2 2 Jo 0 X0 — X

(3.2)

The values of Afg(t) and of Aty (t) defined in (3.1)—(3.2), where the dimensionless
time, 7, is defined as

2 Unot
7= (3.3)
C

have been calculated in the examples depicted below using the numerical code, based on
the vortex-lattice method, detailed in the Supplementary Material.

We first consider the case in which an oscillating airfoil performs a purely plunging
motion with a frequency w and with a vertical velocity given by

w,(0<x <, 1) . . . 5t
T =—Vsin(wt)=—Vsin(kr) with V= =0’ 3.4)
with k in (3.4) indicating the so-called reduced frequency, defined as
wc
=3 U (3.5)

Since w; 0<x<c,t=0") =0, C=0 in (3.2) and, hence, the contribution of the
starting vortex to thrust is also zero for the case considered in (3.4), see also Appendix A.

The results in figures 2 and 3, corresponding to the plunging motion defined in (3.4),
illustrate the relevance of the term (2.40), representing the vortex thrust force of the
vortices in the wake. Indeed, notice first that, as expected from (2.52), the results depicted
in figure 2 confirm that the value of the thrust forces, calculated by either the integration
of the pressure distribution around the airfoil or using the vortex impulse theory, are very

1012 A6-15


https://doi.org/10.1017/jfm.2025.10177

https://doi.org/10.1017/jfm.2025.10177 Published online by Cambridge University Press

J.M. Gordillo

b
T

0 5 10 15 20 0 5 10 15 20
T T

Figure 2. Dimensionless thrust forces At (7) (blue line) and Aty (t) (red line) respectively defined in (3.1)
and (3.2), corresponding to the plunging motion prescribed by (3.4), for two different values of the reduced
frequency: (a) k =2 and (b) k = 4. Notice that both results coincide at every instant of time, as expected from
the result in (2.52).

ATTTTRY
A ALt
zi / , T

Figure 3. Dimensionless thrust forces Atg () (blue line) and Aty r () (black line) respectively defined in (3.1)
and (3.6), corresponding to the plunging motion prescribed by (3.4), for two different values of the reduced
frequency: (a) k =2 and (b) k = 4. Notice that the differences between the values of Atg(7) and of Atpr ()
increase with the value of the reduced frequency k. Moreover, the results in the figure show that the mean thrust
corresponding to Atpp is smaller than the mean thrust corresponding to Atg, and also that the differences
between the values of the mean thrust become more pronounced for the larger value of the reduced frequency.
The results depicted in figures 2 and 3 will be discussed in more detail in § 4, where an equation for the mean
thrust coefficient is deduced.

close to each other, with the tiny differences between the two results attributable to the
effect of the numerical discretisation in the evaluation of the integrals in the definition of
Aty (1), see (3.2). Next, figure 3 compares the values of A¢g(7) depicted in figure 2 with
the values of the dimensionless thrust force defined as

2 C 2 C"onot
x | pUscm (5) —p/ yow,, dx [, (3.6)
c

At T)=Aty;(7) —
FF(T) vi(T) pUZLc
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Figure 4. Vertical velocities induced by the vortex sheet extending along the airfoil and the wake calculated
using (2.41). The results depicted in the figure correspond to the plunging motion defined in (3.4) for three
different values of the reduced frequency: k =8 (black curve), k =2 (red curve) and k =0.5 (blue curve).
Notice that the amplitudes of the vertical velocities in the wake for the cases k = 2 and k = 8 are clearly larger
than the amplitude of the vertical airfoil velocity, V = 5x/180.

with Aty (7) given in (3.2) and which represents the dimensionless thrust force calculated
using the vortex impulse theory under the assumptions made in Fernandez-Feria (2016),
namely, once the contributions of the starting vortex — which is zero for the particular case
of the plunging motion considered in (3.4) — and of the contribution of the vortex thrust
force of the vortices in the wake, see (2.40), are set to zero. The results depicted in figure 3
reveal that the values of Arg(t) and of Atrr(t) are not identical to each other and, in
fact, the differences between At;(t) and Atpr(t) become more visible as the value of
the reduced frequency k is increased; notice that the differences between the values of
the mean thrust depicted in figures 2 and 3 will be discussed in more depth in § 4. Using
the results depicted in figure 2 and also those in (3.2) and (3.6), we can infer that the
values of At (t) and of Atpp(t) would be identical if w), (x > ¢, t) = 0. However, this
is not the case, as can be appreciated in figure 4, which shows that, in fact, the amplitudes
of the vertical velocities in the wake increase with the value of k, despite the value of
V in (3.4) remaining unchanged. Notice also that figure 3 illustrates one of the main
results deduced by Fernandez-Feria: the mean thrust predicted in Fernandez-Feria (2016)
is similar to the mean thrust predicted by Garrick’s theory for low-to-moderate values of
the reduced frequency, but it is smaller than the mean thrust predicted by Garrick (1936)
for k 2 O(1). In view of the definitions in (3.1), (3.2) and (3.6) and of the conclusions in
§ 2, the reason for the differences depicted in figure 3 is that the results in Fernandez-Feria
(2016) were obtained neglecting the vertical velocities of the wake vortices i.e. assuming
that w;, (x, ) =0, which implies that the term (2.40) is also zero. However, the values
of w), (x, t) calculated within the linearised potential flow theory by means of (2.41) are
different from zero, as shown in figure 4 and, hence, the contribution to thrust of the vortex
force in (2.40), cannot be neglected.

Next, we consider the case in which an oscillating airfoil performs a purely plunging
motion with a frequency w and with a vertical velocity given by

'0<x<c,t . 5
W OSxSEn _ yooskr with V= . 3.7)

Uso 180
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Figure 5. (a) Dimensionless thrust forces Azg(t) (blue line) and Ary;(7) (black line) defined, respectively,
in (3.1) and (3.2), corresponding to the plunging motion of the airfoil prescribed by (3.7) for a value of the
reduced frequency k = 2. Notice that both results coincide at every instant of time, as expected from the result
expressed by (2.52). The red curve corresponds to the results of (3.9), which does not retain the effect of the
starting vortex. (b) After a short transient, the forces corresponding to the plunging motions defined in (3.4) —
in blue — and (3.7) — in black — for a value of the reduced frequency k = 2 converge to the same result with just
a phase shift.

It is deduced in Appendix A that

w! (x =3c/4,t=0") ho  ao (3c
C = a = — - - ) 38
U oty to g (3.8)

with quantities with the subscript 0 indicating their corresponding values at = 0" and,
hence, the contribution of the starting vortex to the thrust force cannot be neglected if
w/ (x =3c/4,1=07) #0. The results depicted in figure 5(a) confirm this is the case:
indeed, the blue and black curves representing the values of Azg(7) (blue) and of Aty (7)
(black) defined in (3.1) and (3.2), are very close to each other. However, the red curve,
which represents the numerical values of

nC?

Atyrp = Aty (t) — R (3.9)
namely, of the thrust force calculated using the vortex impulse theory once the contribution
of the starting vortex is set to zero, is well below the black and blue curves. Due to the
fact that the value of the thrust force calculated using the vortex impulse theory must be
identical to the value obtained by direct integration of the pressure distribution around the
airfoil, the result depicted in figure 5(a) illustrates that the contribution of the starting vor-
tex cannot be neglected for those cases in which w/,(x = 3c/4, t = 0T) # 0. Moreover, the
results in figure 5(b) illustrate that, as expected, the thrust forces of the plunging motions
corresponding to (3.4) and (3.7) converge to the same values with just a phase shift.

Finally, we analyse the case of an airfoil that is suddenly set into motion, for which

w, (0<x<e, 1) ho ao
ZavT =T — 4+ — (x - H(), 3.10
U ag + U + U (x —x¢) () (3.10)

with H (¢) indicating the Heaviside function. The lift force corresponding to (3.10) was
calculated by Wagner (1925) as, see also the Supplementary Material,
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3
wé(x:Zc,tzOJr)

Uso

¢ (1), (3.11)

EWagner (T) = ,OUgoC?T -

with ¢ (t) the so-called Wagner function, which is approximated here using the well-
known equation given by Jones (1938)

¢(1) =1—0.165 ¢ 00557 _0.335 7037, (3.12)

whereas the corresponding expression for the thrust force is deduced in the Supplementary
Material and reads

TG, Wagner (f) = ,OUgoC?T

3 2
wé(x:f,t:OJr)

c .
0 PO+ pdo | - GI3)

Notice that a special case of (3.13) is given on page 705 of Donovan & Lawrence (1957).
Hence, for the case of the so-called Wagner problem, characterised by the linearised
impenetrability boundary condition given by (3.10), we find that

T, Wagner () +apt Wagner ()

AtG, Wagner (T) =

pUZc
3¢ 2
wél(x: -, t:0+>
4 B(T) + 2 (3.14)
=TT .

Consistently with the results obtained in § 2 notice that, since the Wagner function verifies
¢(r =0)=1/2, see (3.12) and the Supplementary Material for further details, the value
of the thrust force given by (3.13) at T =0, T, wagner (t = 0), coincides with the value of
Ty (r =0) calculated using (2.38).

The numerical results in figure 6, corresponding to the impulsive motion of the airfoil
given by

/

WaOSXSED ey with ag= 2.

Ux 180
provides further support to (3.14) and also illustrates the relevance of the starting vortex
in either of (2.37), (2.38), (2.42) to predict thrust when the airfoil is impulsively set into
motion.

However, the ability of the prediction in (3.14) to reproduce experimental measurements
is limited to those circumstances in which the starting hypotheses of the linearised
potential flow theory are not violated. Indeed, notice that the dynamics of the starting
vortex generated when the airfoil is suddenly set into motion is described by the self-
similar solution found by Kaden (1931), see also Pullin (1978). The width of this
self-similar region grows in time as (Uooagqcl/ 21)%/3, with aéq indicating the equivalent
angle of attack defined in (A4) of Appendix A. Hence, it is to be expected that, in
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Figure 6. (a) Dimensionless thrust forces corresponding to the impulsive motion of the airfoil prescribed by
(3.15). Here, Aty (t) (black line) and AtG wagner (7) (blue line) have been calculated using (3.2) and (3.14),
respectively. The red curve corresponds to the results of (3.9), which do not retain the effect of the starting
vortex.

a real experiment, the wake region surrounding the starting vortex experiences large
deformations, causing a clear deviation from the linearised approximation, which assumes
that the wake is located at z =0. The deviations from the linearised approximation will
take place for instants of time ¢ 2 ¢*, with t* estimated from (Uooozgqcl/ 21%)2/3 ~ ¢ and,
hence, t* ~c/ (Uooagq) >c/Uy if aéq <« 1. The nonlinear rolling up of the starting
vortex described above will certainly modify the thrust force predicted here for large
times ¢ 2 t*; clearly, the validity of our results pertaining to the thrust produced by the
starting vortex, which have been deduced within linearised potential flow theory, should
be checked against detailed numerical calculations at finite but high Reynolds numbers.
However, this additional task exceeds the limits of the present contribution.

Similarly, for the cases of airfoils oscillating periodically which are not suddenly set
into motion and, hence, the effect of the starting vortex is negligible, the capability of
the linearised potential flow results to predict the mean thrust forces is also limited to
those cases in which the effect of nonlinearities can be neglected. However, there are a
number of experimental conditions that trigger the development of nonlinearities, limiting
the applicability of Garrick’s results. First, notice that the linearised approach will only be
valid to predict experiments and numerical simulations if Hy/c < 1, with Hy denoting the
characteristic amplitude of the oscillations, but this necessary condition is not sufficient.
Indeed, it has been shown by Ramesh er al. (2014), see also Eldredge (2019) that, in order
to prevent flow separation and, hence, the associated ejection of vortices from the leading
edge, it is necessary that the value of the adverse pressure gradient at x = 0, which can be
quantified through the value of Ag in the expansion (2.19), is such that Ag(z) < o*, with
a*~ 0(0.1) indicating a value which can be viewed as a critical angle of attack for flow
separation. The value of a* depends on the type of airfoil and needs to be calculated
either experimentally or by means of full numerical simulations. For the case of an
oscillating airfoil, the characteristic value of A can be estimated as the effective angle of
attack resulting from the ratio between the characteristic vertical and horizontal velocities,
namely, Ag ~ w Hy/Us. Hence, in order to prevent flow separation at the leading edge, it
is necessary that k Hy/c < o, with k the reduced frequency defined in (3.5). In addition,
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even in the case that Hy/c < 1, the self-induced velocities of the vortices ejected from
the trailing edge can cause large distortions in the wake for sufficiently large values of the
reduced frequency: in fact, the vertical velocities in the wake are appreciably larger than
the vertical velocities of the airfoil for large values of the reduced frequency, see figure 4.
Indeed, the circulation around the airfoil can be estimated as I, ~ UsocAg ~ cHyw, with
Ag estimated above and, moreover, the vertical velocity induced by the vortices ejected
during a period of oscillation on the new vortices leaving the trailing edge of the airfoil can
be estimated, making use of (2.12), as wé ~1/Uxdle/dt ~ cHow? / Uso. Hence, in order
to prevent large deformations of the wake near the trailing edge of the airfoil, it is necessary
that w(,/Us < O(1), namely, that (w Ho/Uso)?(Hop/c)™' < O(1) or, equivalently, that
K2(Ho/c) S O(1).

The emergence of nonlinearities for values of the reduced frequency such that
k%(Hy /¢) 2 O(1) is evidenced, for instance, when the wake is non-planar, as is clearly
depicted in the experiments by Godoy-Diana et al. (2008) or in the full numerical
simulations by Young & Lai (2004) and Martin-Alcdntara et al. (2015). In these references,
the vortices in the wake are arranged in such a way that the vertical component of their self-
induced velocities is negligible, as is evidenced by the fact that the wake vortices in these
references are convected horizontally. We hypothesise that it is under these circumstances
that the predictions in Fernandez-Feria (2016, 2017) agree better with experiments than
Garrick’s theory. The reason for this is that, when the vortices are convected horizontally,
w}, ~ 0 and, hence, the projection of p(V X v) x v on the flight direction is negligible,
making the contribution of the vortex force term (2.40) also negligible in the real nonlinear
flow. Clearly, these nonlinear effects cannot be accounted for by the theory developed
by Garrick (1936) or by the self-consistent vortex impulse results presented here, which
predict that the vertical velocities of the wake vortices is different from zero, as can be
appreciated in figure 4.

Then, the capability of the results in Fernandez-Feria (2016, 2017) to predict both
experiments and numerical results for values of the reduced frequency of order unity or
larger, for which the wake experiences large deformations, seems to be justified by the fact
that the results in Fernandez-Feria (2016, 2017) correspond to a linearised model which
takes into account realistic nonlinear effects.

The discussion above permits us to conclude that, if the conditions of a particular
experiment in which the airfoil oscillates periodically are such that the effects of
nonlinearities are negligible and, hence, the starting hypotheses of the linearised potential
flow approach are valid, the thrust force should be calculated using the self-consistent
results expressed by (2.22) or by either of (2.37), (2.38), (2.42). This explains why the
experimental measurements of the mean thrust in Mackowski & Williamson (2015) can
be reasonably well predicted by Garrick’s theory, which should be then used for small
values of the reduced frequency once viscous effects are taken into consideration, see
e.g. Figure 3(a) in Fernandez-Feria (2017). However, when nonlinearities are triggered
and the vortices in the wake are arranged in such a way that their vertical self-induced
velocities are negligible, namely, w;U ~ (, the linearised model in Fernandez-Feria (2016,
2017) and Alaminos-Quesada & Fernandez-Feria (2020) should be used instead, once
the modifications to the equation for the mean thrust coefficient pointed out in §4 are
taken into account, because the contribution to thrust of the vortex force term (2.40)
is not calculated self-consistently within the linearised potential flow approach in these
contributions but, instead, it is assumed to be zero. The value of the thrust force deduced
by Fernandez-Feria (2016, 2017), once the modifications in the mean thrust coefficient
deduced in § 4 are taken into account, happens to be a better approximation to the real value
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than the one obtained by means of the self-consistent linearised theory because, when the
vortices in the wake are arranged in such a way that they are convected horizontally, the
projection on the flight direction of p(V X v) x v in the wake is zero, which implies that
the contribution to the total vortex force of the vortices in the wake is also zero in the real,
nonlinear case.

4. Mean thrust coefficient for the case of airfoils oscillating periodically when the
wake vortices are convected downstream at the free-stream velocity

For those common cases in which the airfoil starts accelerating smoothly, namely, C =0
in (2.37), and the wake vortices are convected in a direction parallel to the free-stream
velocity as a consequence of the development of nonlinearities, which implies that w/, =0,
the thrust force is (see (2.37))

TVI(I)=—Ol(f)f(I)—/0/O VaW, dx, 4.1)

which is identical to the one used in Fernandez-Feria (2016), as has been discussed in the
derivation of (2.38).

In this section, our purpose will be to deduce an equation for the thrust force averaged
in time when the airfoil oscillates periodically with a frequency w, the wake vortices are
convected with the incident velocity and the contribution of the starting vortex to thrust
is set to zero. For that purpose, we first make use of the fact that, since w/,(x, 1) = —h —
Usot —a(x — x,.) and

c
a .
/ Va(x,t)dx=ra(x=0a t):Fe(t), E(Faw‘;)=yaw;—olra, (42)
0
then

c

c
_p/ Yaw), dx = —p |:—(h+Uoooz—|—dz(c—xe))Fe(t)—i—dz/ Fadxj|
0 0

=p (h+a@) (c = xo) Fe(n—p% (afo I dx)

d Cc
+a(t) (,OUoo () + P3; / r, dx) , 4.3)
0
where we have made use of the fact that I (x =0, ) =0 and of the identity

. C d C d C
—oz/o Fadx:—a (a/o Fadx)—{—aa/o I, dx. “4.4)

The substitution of (4.3) into (4.1) yields that

. d ¢
Ty1(0) = p (h +&(0) (¢ =x0)) () = po. (a /0 I, dx) , .5)

where we have made use of the expression for the lift force £(¢) in (2.32). Consequently,
the mean thrust force can be calculated as

o w 1427 /w w +2r/w
TVI(Z):E/ Tyi(1) dt:pg/ (h(t) +&(1) (c — x¢)) Te(t) dt
t t

w t+27/w
=,0U00E/ wps (1) I (1) dt, (4.6)
t
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where we have taken into account that, since the thrust is a periodic function of time,
1427 /w d c
/ — |« f I,dx ) dt =0, 4.7
t dr 0

(h(t) + () (c — xe))
Uso

and

Wps (1) = (4.8)

denotes minus the dimensionless velocity of the trailing edge of the airfoil and,
consequently,

)
—W (x 3 t)—Mzwbs(t)+—4. (4.9)

Uso \c &4 Uso Uso

The result in (4.6) expresses that, for those cases in which the airfoil oscillates
periodically, the contribution of the starting vortex to thrust is negligible and the vortices
in the wake are arranged in such a way that they are convected with a velocity parallel
to the free-stream velocity, the mean thrust is proportional to the mean of the product of
minus the vertical velocity of the trailing edge and the circulation around the airfoil. From
now on, since we are considering the case of airfoils oscillating periodically, any generic
time-dependent function s(¢) will be expressed as the real part of

s(t) = s* e'*7, (4.10)

where the constant s* is a complex number, k = wc/(2 Uyo) is the reduced frequency and
T = 2tUo/c refers to the dimensionless time.

Using the results in e.g. Ashley & Landahl (1985) or in section V of the Supplementary
Material, the analytical expression for the time-periodic circulation around the airfoil,
namely, I,(t) = tUxc(Ao(t) + A1(7)/2)/2, is given by the real part of
mUxc G* 4,

— e s

2 ik
where we have made use of the notation in (4.10). In (4.11), see Ashley & Landahl (1985)
or section V of the Supplementary Material,

w * —ik w —ik

Gr=— 2] «x 2 =22 « 2e ™ 4

Uxo floo (H—X); : X dx Uxo Ko(ik) + K1 (ik)
/-

where K, in (4.12) indicates the modified Bessel function of the second kind of order n.
Now, using the results in (4.9), (4.10) and the fact that d/df = (2U/c)d/dt

—wh \" _ ik h .
3/4 1 . 0 X,
( U ) = wj, +ape'? (l — 3> . wp, =2ik |:<?) + ape'? (1 — ?e>1| ,

(4.13)

()=

4.11)

with k(1) = hoR(e'*7), a(t) =agR(e!®e*T), hg, ap real numbers indicating the
amplitudes of the heaving and the pitching motions and ¢ the phase shift. The substitution
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Figure 7. The figure shows the functions G (k) (blue line) and F (k) (red line) defined in (4.15), as well as
the function D (k) (black line) defined in (4.17).

of (4.12) and (4.13) into (4.11) yields

e—ik
. ik (ik) '
I = 71U~ R * ip l—l— ikt
v(t) =mUsc (wbs +ape ( D) )) x Ko(ik) + K1 (ik) ¢

=nUxcR ((sz + age'? (1 - %)) x (Gr(k) —i Fr(k)) e"’”) . (414

where
ik
(ik)
Ko(ik) + Ky (ik)
The functions F (k) and G (k) in (4.15) are related with the analogous functions F (k)
and G (k) defined in Fernandez-Feria (2016) in the following way:

=Gr(k)—i Fr(k). (4.15)

12 T
Rk ==(3) Fro. Gito=—(3) Gr. (4.16)
For our subsequent purposes, it proves convenient to define here the function
Fr(k)

Dk)=F(k)—Gr(k)—k 4.17)

where F (k) is the real part of the well-known Theodorsen function C (k), defined as

K (ik) .
Ck) = - — =F(k)+iGk), (4.18)
Ko(ik) 4+ K1 (ik)

see, e.2. Ashley & Landahl (1985) or section V of the Supplementary Material. The
different functions G (k), Fr(k) and D(k) defined in (4.15) and (4.17) are plotted in

figure 7.
Now, making use of the fact that: (i) all time-dependent functions are of the form given
in (4.10) and (ii) the real part of a complex number s* is (s* 4 s*¢) /2, with the superscript
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¢ affecting the complex variable s* indicating the complex conjugate of s*, the substitution
of (4.8), (4.9) and (4.14) into (4.6) yields

2
— pnU;ic
Ty = 400

X [wbswbsc (Gr (k) +iFr(k)) +ao whe™'? (1 + ) (Grk) +1Fr(k))}

,OT[UOZOC * *c l¢
t—y X [wbswbY (Gr(k) —iFr(k)) + ao w, ( ) (Gr(k)— sz(k))]

2
=2pn U2 ck*G (k) x [(ﬂ) + cos ¢ ap (@) <§ _aﬂ
c c 4

+ pU%ck Gr(k) x [g ag (1—a) (— —a) +ag (@> sinqb]
C

—pnUSck Fr(k) x |ap| — ) cos¢ + 2a0 sin ¢ + — (1 —a) 4.19)
c

and, hence, the expression of the mean thrust coefficient when the contributions to thrust
of both the starting vortex and of the vortices in the wake are set to zero, is

= 47k*> G (k)

x| {\—=) +a{—)|-—¢a Cos¢+—(1—a) ——a
[\ ¢ c 4
+27‘L’kao(@)
c

X | Gr(k)sing — Fr(k) cos ¢ — g Fr) sin¢:| —nkFr(k)ag (1—a),
) (4.20)

where we have made use of the equation x, = (1 + a)c/2 relating the position of the
pitching axis x, with a. The equation for the mean thrust coefficient given by (4.20),
which does not take into account neither the vortex force term (2.40) nor the contribution
of the starting vortex, differs from the mean thrust coefficient deduced by Garrick (1936);
see also (B4) in Fernandez-Feria (2016), reproduced here for clarity purposes

2 2
Crg (k) = 4nk* (F* (k) + G*(k)) <%> +raj(F* + G?) (1 + k2 (% _a> )

+na(2)|:(a—%)<F—E)k2 ( 1)kG F:|+7rao<hc)[4k(F2+G2)sm]

+ mag (hc ) |:4k2 (; a) (F2+G2) cos ¢ — 2k* (G sin ¢ + Fcos¢>)i|

C

+7ag <h°> [Zk (G cos ¢ — F sin ¢) + k2 cos ¢] , 421)
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where the functions F (k) and G (k) are defined in (4.18). But (4.20) also differs from
the analogous expression for the mean thrust coefficient given in (37) of Fernandez-Feria
(2016), which was also deduced starting from (4.1) and was later on used by Fernandez-
Feria (2017) in (A4)-(A6). Indeed, taking into account the result in (4.16) and once it
is noticed that the dimensionless amplitude of the heaving motion in Fernandez-Feria
(2016, 2017), hF, is related to }% in (4.20)as hpp = —2(’%), the mean thrust coefficient
deduced by Fernandez-Feria (2016, 2017) can be written as

Cr.rr(k)=Cr(k) — 2 D(k) x <ag +2kag (%) sin ¢> , 4.22)

with D(k) the function defined in (4.17) and plotted in figure 7 and where Cr (k) is
given in (4.20). Notice that the equation for the mean thrust deduced in Fernandez-Feria
(2016), which has been written using our variables in (4.22), depends on the real part
of Theodorsen’s function F(k) through the term D (k) — see (4.17) and (4.18), whereas
the mean thrust coefficient deduced here in (4.20) only depends on the functions F (k)
and G (k) defined in (4.15), which are related to the circulation around the airfoil, see
(4.14). Notice also that, for the case of airfoils in purely heaving motion (ag = 0), (4.20)
and (4.22) predict the same value for the mean thrust coefficient, a fact implying that our
(4.20) is also in good agreement with experiments and numerical simulations for large
values of the reduced frequency, as can be inferred from the results depicted in figure 5(a)
of Fernandez-Feria (2016); however, (4.20) and (4.22) differ whenever ag # 0.

Figure 8 compares the value of the mean thrust coefficient deduced by Garrick (1936),
which has been reproduced here using our notation in (4.21), with the one given in (4.20).
The predictions of (4.20) and (4.21), corresponding to the cases of purely heaving and
combined heaving and pitching motions, have been validated in figure 8 by means of
the numerical results obtained using the method detailed in the Supplementary Material;
notice that the numerical results are fairly close to those calculated through (4.20) and
(4.21). In addition, as expected, the results in figure 8 reveal that the mean thrust coefficient
calculated using (4.20), which corresponds to the case in which the contribution to thrust
of the starting vortex is zero and the vortices in the wake are convected parallel to the free-
stream velocity and, hence, the vortex force term in (2.40) is zero, is smaller than the mean
thrust coefficient predicted by Garrick’s analysis, where the contribution of the vortices in
the wake to the thrust force is different from zero. The results depicted in figure 8 and the
accompanying discussion complete the analysis of the results shown in figures 2 and 3.

Next, in order to show the differences between (4.20) and (4.22) in a more clear way,
figure 9(a) compares the predictions of these two equations for the purely pitching motion
of the airfoil (}% = 0) with ag = 27 /180 already considered by Mackowski & Williamson
(2015), whereas figure 9(b) compares the values of the mean thrust coefficients given in
(4.20) and (4.22) for a case of combined pitching and heaving motions corresponding to
ap= hTO = 67/180 and ¢ = /2. The results in figure 9(a), which incorporate the constant
drag coefficient C7og = —0.037 — see Mackowski & Williamson (2015), Fernandez-Feria
(2017) for details — do not show appreciable differences between (4.20) and (4.22), a
fact implying that our (4.20) is also in good agreement with the experiments reported by
Mackowski & Williamson (2015) — see figure 3(a) in Fernandez-Feria (2017). However,
the results depicted in figure 9(b) reveal that the relative differences between the mean
thrust coefficients predicted by (4.20) and (4.22) can be as high as 100%25 for k ~ 1. In
order to decipher which of the two equations is correct, we have carried out numerical
simulations using the vortex-lattice method described and provided in the Supplementary
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Figure 8. (@) Comparison between the values of Cr (k) and of Cr¢ (k) for an airfoil in purely heaving motion
with ho/c = 6m/180, ap = 0. In red, the result of (4.20) and in dashed green the corresponding value obtained
numerically using the vortex-lattice method detailed in the supplementary material; in blue, the result of
(4.21) and in dashed yellow the corresponding result obtained using the vortex-lattice method detailed in the
supplementary material. (b) The same as in (a) but for a combined heaving and pitching motion of the airfoil
with 20 = ay = 67/180 and ¢ = 7/2.
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Figure 9. (a) Comparison between the values of Crg + Cr (k) for ho/c =0, ap =27 /180 and Cro = —0.0373,
see Mackowski & Williamson (2015) and Fernandez-feria (2017), with the thrust coefficient calculated using
either (4.20) (red line) or (4.22) (black line). For this particular case, the mean thrust forces predicted by
(4.20) and (4.22) are very similar to each other and, therefore, the result in (4.20) is also in good agreement
with experiments, as can be inferred from the comparison between the theoretical and experimental results
depicted in figure 3(a) of Fernandez-feria (2017). (b) Comparison between the values of the thrust coefficient
calculated using either (4.20) (red line) or (4.22) (black dashed line) for ho/c = ap = 671 /180 and ¢ = 7 /2. The
result obtained using the vortex-lattice numerical code described and provided in the supplementary material,
represented using a green dashed line, is practically superimposed to our prediction (in red) given in (4.20).

Material. The numerical results, represented using green dashed lines in figure 9(b), are
very close to those predicted by our (4.20), a fact indicating that the equation that should
be used to predict the mean thrust coefficient when the airfoil oscillates periodically, the
contribution of the starting vortex is zero and the vortices in the wake are convected with
the free-stream velocity and, hence, the vortex force term (2.40) is negligible, is (4.20),
which differs from the one deduced by Fernandez-Feria (2016).
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However, for those cases in which the experiments or the numerical simulations do not
violate the starting hypotheses of the potential flow linearised theory, the mean thrust
coefficient should be calculated using the original, self-consistent, results of Garrick,
reproduced in (4.21) using our variables. Notice, finally, that, if a particular experiment
or numerical simulation is such that the contribution to the thrust of the wake vortices
cannot be neglected but the development of nonlinearities makes the contribution of the
starting vortex to thrust negligible, then, the expression that should be used to predict mean
thrust coefficient would be

2
Croath = Croth "o (4.23)
with the value of C given in Appendix A and with Crg (k) given in (4.21). It could also
happen that a particular experiment or numerical simulation is such that the contribution
to thrust of the wake vortices is negligible because these vortices are convected with the
incident velocity, but the contribution of the starting vortex to thrust cannot be neglected.
In this latter case, the mean thrust coefficient would be given by

2
Crak) =Cr(k) + % (4.24)

with the values of Cr (k) and C given, respectively, by (4.20) and (A4). Clearly, the most
appropriate equation to predict the mean thrust coefficient through (4.20), (4.21), (4.23)
or (4.24), will depend on the type of nonlinearities developing both in the wake and
in the starting vortex and also on the Reynolds number. Consequently, the predictions
deduced here using the linearised potential flow theory should be checked against detailed
numerical calculations carried out at finite but high Reynolds numbers; as it was pointed
out above, this additional task exceeds the limits of the present contribution.

5. Conclusions

Here, we have deduced equations for the value of the time-varying thrust as a function
of the vorticity distribution along the airfoil and the wake. Moreover, we have shown that
these equations reproduce the classical expression for the thrust deduced by Garrick (1936)
once the vertical component of the wake velocity is calculated as a result of the velocities
induced by the vortex sheet extending along the airfoil and the wake and the contribution of
the flux of horizontal momentum induced by the starting vortex, which cannot be neglected
in those cases in which the airfoil is suddenly set into motion, is taken into account. We
have also discussed the conditions under which Garrick’s theory is valid and, hence, can
be safely used to predict experimental or numerical results. The reasons behind the ability
of other results in the literature to approximate the experimental measurements better
than Garrick’s theory have also been discussed and we have deduced the equation for the
transient thrust force experienced by airfoils suddenly set into motion. Moreover, for those
cases in which the airfoil oscillates periodically, the flux of horizontal momentum induced
by the starting vortex is negligible and the vortices in the wake are convected downstream
at the free-stream velocity, we have deduced an equation for the mean thrust coefficient
which differs from the analogous equation in Fernandez-Feria (2016). Our equation for
the mean thrust, which has been validated by comparing the theoretical predictions with
the numerical results obtained using the vortex-lattice method, is also in good agreement
with previously reported experimental data and with nonlinear numerical simulations. We
have verified all the analytical results derived in this study using the vortex-lattice method
detailed in the Supplementary Material.
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Appendix A

The value of C in (2.27) results from the solution of the integral equation (2.16)
particularised at t =07. This solution must satisfy both the Kutta condition and the
Bjerness—Kelvin theorem i.e. ¥, (x — ¢, t =07") is finite at the trailing edge of the airfoil
and I,(x — ¢, t=0%)=0. Notice first that, for purely heaving motions of the airfoil
i.e. &g =0, with the subscript 0 denoting here the value of a variable particularised at
the instant t = 0%, the non-circulatory solution of (2.16) implies that the flow must be
symmetric with respect to x = ¢/2. This solution is analogous to the one corresponding to
a potential flow around a plate of length a(¢) = ¢ 4+ Ut at angle of incidence of /2 and,
consequently,

ho 1 =22
Yan(x,t=0") =Ux (Oto + —) , (A1)
UOO X X
a5 (1= a)

where the subscript # indicates heaving motion and a(t) = ¢ + Uxot. Indeed, notice that
the circulation density in (Al) expresses that infinite velocities are attained at both
the leading edge and at the starting vortex, as is dictated by (2.17) and (2.27), but
not at the trailing edge, x = c. For the case in which ¢ 7# 0, notice that ¢o(x — x.) =
ao(x —3c/4) + ap(3c/4 — x.) and, hence, since the second term corresponds to a uniform
vertical velocity along the airfoil, like in a purely heaving motion, we make use of the result
in (A1) to conclude that the solution of (2.16) at t = 0™ corresponding to arbitrary heaving
and pitching motions is

h v (3 -2
Va(xvt=0+)=Uoo (x0—|-_0_|_& _C_xe a(t)
Usx Ux \ 4 (] X

w( —m) (A2)

4 G0 sin 0 apc 14 cosé
apcsinf — — ——

0 2 sind
In (A2) we have made use of Glauert’s method, see (2.19) and (2.20), in order to find that
the non-circulatory solution of the integral equation (2.16) corresponding to w/, (x, t =

0%) = —dp(x — 3c/4) with y,(x, c) =01is

xoc 1 0
Goc sin g — 2E 1T OO (A3)
2 sin 6
Hence, (2.27) and (A2) indicate that
ho &0 (3c eq W3/4.0
C=-— —t — | — — =— =—, A4
(060 + Use + U (4 xe)) o U (A4)

with w} /4 the value of the perturbed vertical velocity at x = 3/4c. The result in (A4)
reveals that the contribution to the thrust force of the flux of horizontal momentum induced
by the starting vortex cannot be neglected when the airfoil is suddenly set into motion.

1012 A6-29


https://doi.org/10.1017/jfm.2025.10177
https://doi.org/10.1017/jfm.2025.10177

https://doi.org/10.1017/jfm.2025.10177 Published online by Cambridge University Press

J.M. Gordillo

Let us finally point out that we show in the Supplementary Material that the value of the
lift force calculated at t =07 using the density of circulation given by (A2) recovers the
value of the circulatory lift calculated by Wagner at this instant of time.

Appendix B

It is the purpose in this appendix to express the vortex thrust force of the vortices on the
airfoil, given by the third term in (2.37), namely,

c
—,0/ w! ¥, dx, (B1)
0
as a function of y,, (x, t). First, notice that the substitution of (2.1) into (2.4) yields

/ + : . C C
W, 2=0%, 1) = % U= = —fy — Unott — & (x———a—), (B2)
X 2 2
with dots denoting time derivatives and where we have taken into account that x, = c¢/2 +
a(c/2) =c/2 + x.. Moreover, we make use of the idea in von Kdrmén & Sears (1938) of
expressing the density of circulation at the airfoil as

Va(x,t)ZVO(xat)‘FVl(x’t)a (B3)

with yg(x, t) the circulation density satisfying the impenetrability condition expressed
by (B2) along 0 < x < ¢ if the wake had no effect and y;(x, ¢) is the circulation density
induced in the airfoil by the vortices in the wake, namely, it is a circulation density such
that the vertical velocity field induced by y;(x, t) plus the vertical velocity field induced
by the vortices in the wake is zero along 0 < x < c¢. The value of yy(x, t), which was
also called quasi-steady vorticity distribution by von Karmédn & Sears (1938), can be
straightforwardly calculated using Glauert’s method to give

. 1
Yo 1) =2 [(h + Usoet — xo@) tan(y/2) + ée/2siny]  with x/c = w
(B4)
whereas, following the result in equations (13) and (14) in von Karmén & Sears (1938),
y1(x, t) is related with y,, (x, t) through the equation

1 142Ut /¢ X _g
/ xyl(x,t)dx=f Yuw (X, 1) (\/XZ—I—X> dx with x=—5=.
—1 1 —
(BS)

The substitution of (B2) and (B3) into (B1) yields

c , c . . c c
—p/ wa)/adX=—p/ (V0+V1)[_h_Uooa_(X(x_E_aE)] dx. (B6)
0 0

Finally, making use of the Bjerness—Kelvin theorem, which expresses that the total
circulation around the airfoil and the wake must be zero and, consequently, implies that

c c+Uxot
/ (Yo+y1) dx=— / Ywdx, (B7)
0
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we find, after substitution of (B4) and (B5) into (B6) that, for t > 0,

c 2

oI C
o [ wlar =T
0 4

¢ [1H2Ustfc[ | v
+p§/l [_h_UOO“JF"c“JF(Q)“(\/Xzi—I—X)} yu(x, 1) dx, (B8)

where we have taken into account that x. = a(c/2). Notice that, right at t =07, yp(x, t =
07) is given by y,(x, t =07) in (A1) instead of by (B4), but the result in (B8) in the limit
t — 07 is still valid because

c 2 .
pa/ (= 5) vale 1 =0" ax = 2222 (ch - U+ x06) . (BY)
0 2 4

Finally, notice that the results in this appendix also reveal that the reason why the thrust
vortex force in (B1) depends on the circulation density y,,, see (B8), is because the density
of circulation on the airfoil, y,,, depends on the vertical velocities induced by the vortices
in the wake through the circulation density y; in (B3). The indirect dependence on y,, of
the vortex thrust force of the vortices on the airfoil in (B1) should not be confused with
the vortex thrust force of the vortices in the wake expressed by (2.40), a term which is
missing in Fernandez-Feria (2016, 2017), Alaminos-Quesada & Fernandez-Feria (2020)
and Sanchez-Laulhe et al. (2023), see (2.38) and the discussion below.
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