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Profound loss of adipose and other tissues is a hallmark of cancer cachexia, a debilitating
condition associated with increased morbidity and mortality. Fat loss cannot be attributable to
reduced appetite alone as it precedes the onset of anorexia and is much more severe in
experimental models of cachexia than in food restriction. Morphological examination has
shown marked remodelling of adipose tissue in cancer cachexia. It is characterised by the tissue
containing shrunken adipocytes with a major reduction in cell size and increased fibrosis in the
tissue matrix. The ultrastructure of ‘slimmed’ adipocytes has revealed severe delipidation and
modifications in cell membrane conformation. Although the molecular mechanisms remain to
be established, evidence suggests that altered adipocyte metabolism may lead to adipose atro-
phy in cancer cachexia. Increased lipolysis appears to be a key factor underlying fat loss, while
inhibition of adipocyte development and lipid deposition may also contribute. Both tumour and
host-derived factors are implicated in adipose atrophy. Zinc-0:2-glycoprotein (ZAG), which is
overexpressed by certain malignant tumours, has been identified as a novel adipokine. ZAG
transcripts and protein expression in adipose tissue are up regulated in cancer cachexia but
reduced with adipose tissue expansion in obesity. Studies in vitro demonstrate that recombinant
ZAG stimulates lipolysis. ZAG may therefore act locally, as well as systemically, to promote
lipid mobilisation in cancer cachexia. Further elucidation of ZAG function in adipose tissue
may lead to novel targets for preventing adipose atrophy in malignancy.

Adipose atrophy: Cancer cachexia: Zinc-o2-glycoprotein

Cancer cachexia

Cachexia is derived from the Greek words ‘kakos’ and
‘hexis’, meaning ‘bad condition’. It is a complex metabolic
syndrome that comprises weight loss with reductions in
skeletal muscle and adipose tissue mass, anorexia and
weakness'". It usually occurs in chronic diseases such as
cancer, chronic obstructive pulmonary disease, chronic
heart failure and end-stage renal failure'”. Cachexia not
only markedly impairs the quality of life but is associated
with increased morbidity and mortality.

Most patients with cancer develop cachexia at some
point during the course of their disease and approximately
half all patients with cancer have weight loss at diag-
nosis®. Clinically, cachexia should be suspected if invol-
untary weight loss of >5% premorbid weight occurs
within a 6-month period'”. The frequency of weight loss

varies with the type of malignancy, being more common
and severe in patients with cancers of the gastrointestinal
tract, prostate and lung®. Cachexia has a detrimental
effect on cancer treatment as a result of, for example, poor
responses to chemotherapy®. Weight loss is also a prog-
nostic indicator of decreased survival in patients with
cancer®®. It is considered that <20% of all cancer deaths
are directly attributable to cachexia®”.

Evidence is accumulating that cancer cachexia arises
from multiple metabolic alterations, such as reduced
appetite, increased energy expenditure and tissue break-
down. The main tissues that are affected during the
development of cachexia are skeletal muscle and white
adipose tissue. The mechanisms of muscle wasting have
been the focus of intensive research, with the demon-
stration of reduced protein synthesis and enhanced proteo-
lysis in experimental models of cachexia and in patients
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Fig. 1. Light microscopy of Sirius Red-stained sections of epididymal adipose tissue from control (A),
pair-fed (B) and MAC16 tumour-bearing (C) mice at day 18 after tumour inoculation. (Adapted from

Bing et al. 20069.)

with cancer cachexia®®. Although profound loss of adi-
pose tissue is a hallmark of cancer cachexia, much less is
known of the underlying cellular and molecular mechan-
isms. A better understanding of fat depletion in malignancy
is crucial for the development of effective treatments for
the syndrome. The present article reviews studies on the
mechanisms and potential mediators of adipose atrophy in
cancer cachexia.

Adipose tissue in metabolic health

It is well documented that adipose tissue plays an impor-
tant metabolic role by storing TAG in periods when energy
input exceeds expendlture and releasing NEFA durlng
energy deprivation'®. As the largest energy reserve in the
body, adipose tissue has a major impact on energy flux,
plasma lipid levels and glucose uptake. There is compel-
ling evidence that alterations in adipose tissue mass and
metabolism have a major impact on whole-body energy
homeostasis''”’. It has been shown that too little fat in
lipodystrophy, as with too much fat in obesity, is a major
risk for insulin resistance, dyslipidaemia and vascular
diseases'"’

In addition to its primary role as a fuel reservoir, white
adipose tissue has been affirmed as a major endocrine
organ, since the tissue synthesises and secretes an array
of hormones and proteins, termed adipokines'?. Adipose
tissue has extensive cross talk with other organs including
the brain, liver and skeletal muscle through these adipo-
kines. Over the last decade a growing number of adipo-
kines have been identified, such as leptin, adiponectin,
TNFo., visfatin and chemerin, which act locally in an
autocrine and/or paracrine manner and/or as endocrine
signals to modulate appetite, nutrient metabolism, insulin
senm?vuy, inflammation and adipose tissue develop-
ment

Adipose atrophy in cachexia

Extensive loss of adipose tissue is a prominent feature of
cancer cachexia. Although it is not clear whether there
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are site differences in fat loss, a study using computed
tomography scanning has revealed that patients with can-
cer cachexia who have gastrointestinal carcinoma have a
smaller visceral adipose tissue area than control sub-
jects"®. In a follow-up study of patients with cancer the
analysis of body composition (by dual-energy X-ray
absorptiometry) has shown that in progressive cancer
cachexia the loss of body fat is more rapid than that of
lean mass and occurs preferentially from the trunk fol-
lowed by leg and arm adipose tissue''”. A recent study
using retrospective computed tomography scan images of
patients with advanced colo-rectal cancer has shown that
the most rapid loss of adipose tissues (<41%) occurs
within 3 months of death®”. Marked falls of <85% body
fat have been observed in patients with lung cancer, which
may lead to hyperlipidaemia and insulin resistance as well
as complicating anti-tumour therapies®'*?. With the cur-
rent escalation in obesity, the paradox of higher BMI as a
long-term risk factor but having better survival has been
observed in several wasting diseases, including chronic
obstructive pulmonary disease, chronic heart failure, end-
stage renal failure and cancer( ¥ A recent study has
reported that obesity estimated by an elevated BMI appears
to have a 2protectlve effect against prostate cancer-specific
mortality’

Fat loss cannot be explained by reduced appetite alone,
as it often precedes the onset of anorexia and is much more
severe in animal models of cachexia than in food restric-
tion®. This pattern is also observed at the tissue level, as
morphological examination has shown marked changes in
adipose tissue plasticity in mice with cancer cachexia
compared with ad libitum-fed and pair-fed controls®.
Adipose tissue from tumour-bearing mice contains shrunk-
en adipocytes of various sizes with a dilated interstitial
space. Further morphometric analysis has revealed that the
adipocyte size is dramatically reduced. In the tissue matrix
increased fibrosis is evident with strong collagen-fibril
staining (Fig. 1). Moreover, the ultrastructural features of
‘slimmed’ adipocytes are characterised by severe deli-
pidation and alterations in cell membrane conformation,
with irregular cytoplamic projections and increased
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mitochondria that are electron dense. Taken together, these
changes illustrate adipose remodelling in cancer cachexia.
A recent study of adipose tissue from patients with cancer
has also shown tissue atrophy in subjects with cachexia but
not in those without cachexia (C Bing and NA Stephens,
unpublished results).

Mechanisms of adipose atrophy

Although the molecular basis of adipose atrophy is poorly
understood, evidence suggests that fat loss may arise from
an enhanced catabolic response and disrupted anabolic
processes. Increased lipolysis appears to be a key
factor®”*® . In patients with cancer cachexia there is an
increase in glycerol and fatty acid turnover compared with
patients with cancer without cachexia®®. It has also been
shown that whole-body lipolysis, measured by the rate
of appearance of glycerol, is higher in patients with cancer
who are losing weight than in healthy subjects®”. Studies
have demonstrated that lipolytic activity (fasting plasma
glycerol or fatty acids) is increased in patients with
cancer cachexia®®>?. Increased expression and activity
of hormone-sensitive lipase, a rate-limiting enzyme of the
lipolytic pathway, is thought to promote lipolysis.
Hormone-sensitive lipase mRNA and protein levels have
been shown to be increased in adipose tissue of patients
with cancer cachexia®3". It is therefore proposed that
inhibition of hormone-sensitive lipase may prevent or
reverse cachexia-associated fat loss. Furthermore, in mature
adipocytes isolated from subcutaneous fat of patients with
gastrointestinal adenocarcinoma the lipolytic effects of
catecholamines and natriuretic peptide are increased by
>2-fold in patients with cachexia, although the basal lipo-
lysis is unchanged®®. However, gene expression of adipose
TAG lipase is not affected in patients with cachexia®®. It is
also postulated that the fatty acids liberated by lipolysis
may serve as substrates for oxidation®®, which might be
mediated by the adipocyte-specific gene cell death-inducing
DNA fragmentation factor-o-like effector A. Cell death-
inducing DNA fragmentation factor-o-like effector A
mRNA levels are increased in patients with cancer cachexia
and its overexpression in vitro stimulates adipocyte fatty
acid oxidation while decreasing glucose oxidation through
inactivation of the pyruvate dehydrogenase complex(32).

In addition to increased lipolysis, fat loss may be at-
tributable to a decrease in lipid deposition. Circulating in-
sulin, the hormone that promotes fat deposition and glucose
transport in adipose tissue, is reduced in the tumour-
bearing state®*~>. A fall in lipoprotein lipase activity in
white fat has been reported in tumour-bearing mice®.
This outcome may lead to reduced cleavage of TAG
from plasma lipoproteins into glycerol and NEFA for
storage, resulting in an increased net flux of lipid into the
circulation. There is also evidence that fat diminution in
cachexia could be the result of impairment in the formation
and development of adipose tissue. A recent study has
shown that the expression of the genes encoding several
key adipogenic transcription factors, including CCAAT/
enhancer-binding protein-o and -B, PPARY and sterol regu-
latory element-binding protein-1c, is markedly reduced in
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white fat of mice with cancer cachexia®”. mRNA levels
of sterol regulatory element-binding protein-l1c targets,
genes encoding lipogenic enzymes fatty acid synthase,
acetyl-CoA carboxylase, stearoyl-CoA desaturase 1 and
glycerol-3-phosphate acyl transferase, also fall mark-
edly®®>". Finally, glucose, which serves as a substrate for
lipid synthesis, is transported into the adipocyte via the
insulin-responsive facilitative glucose transporter GLUT-4.
However, there is a decrease in GLUT-4 mRNA in white
fat of mice with cancer cachexia(%), which could be a
downstream effect of inhibited CCAAT/enhancer binding
protein a since its deficiency is associated with abnormal
subcellular localisation of GLUT-4%.

Potential mediators of adipose atrophy

Several factors produced by tumours and host tissues in the
presence of a tumour burden are suggested to be able to
mediate fat loss in cachexia. These factors include pro-
inflammatory cytokines such as TNFa, IL-1f3 and IL-6 and
the lipid-mobilising factor zinc-oi2-glycoprotein (ZAG;
also known as AZGP1), each of which can be derived from
the tumour and also from the host tissues. Their potential
involvement in cachexia-associated fat depletion will be
discussed.

Cytokines

TNFa, also termed cachectin, was first identified as the
cachexia-inducing factor in chronic diseases such as cancer
and persistent infection®”. Recent data have shown that
TNFo infusion can induce systemic lipolysis in human

. (40) . . . .
subjects"™”. Treatment with TNFa in vitro increases gly-
cerol release from rodent and human adipocytes, probably
by inhibiting lipoprotein lipase activity®" and down regu-
lating the expression of perilipin, which then enables
hormone-sensitive lipase to access the surface of lipid
droplets*?. TNFo-induced adipocyte lipolysis is the out-
come of activation of the TNFo receptor 1-dependent
pathway“***, which involves the stimulation of extra-
cellular signal-regulated kinase 1 and 2, mitogen-activated
protein kinase, c-Jun N-terminal kinase and protein kinase
A“349 TNFo also has an inhibitory effect on adi}l)ocyte
differentiation via the Wnt-signalling pathway“’*®. In
addition, both TNFo and IL-1 are able to inhibit glucose
transport in murine and human adipocytes™®” and conse-
quently decrease the availability of substrates for lipogen-
esis. Some studies suggest that TNFo also increases lipid
deployment, probably via up-regulation of uncoupling
protein (UCP) 2 and UCP3 expression in skeletal mus-
cle®%V | offering a mechanism to remove NEFA resulting
from lipolysis. Although these studies indicate a role for
TNFo in reducing fat mass, its importance in cancer-
related adipose atrophy is still debatable. It is largely a
result of the observations that circulating TNFo levels
are unchanged or undetectable(52’53), as well as elev-
ated(54’55), in patients with cancer cachexia.

IL-6 has been shown to moderately increase lipolysis in
human adipose tissue in vitro®®. Treatment with CNTO-
328, a monoclonal antibody to IL-6, is able to reverse
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tumour-induced cachexia in nude mice®”. Recent work
has shown that IL-6 is necessary for the onset of adipose
and skeletal muscle wasting in the Apc(Min/+) mouse®.
Despite serum IL-6 levels being elevated in patients with
cancer® %9 it is still unclear whether circulating IL-6
correlates with the extent of cachexia®***°". Since TNFa.
and IL-6 are also produced by adizg)ose tissue, although
probably mostly from non-fat cells, their autocrine and/
or paracrine effects may be important in cachexia. How-
ever, studies in mice with cancer cachexia have shown that
TNFo and IL-6 mRNA levels in white fat are unaffected
by the tumour burden®®®®. In a recent study of patients
with gastrointestinal cancer no alterations were found in
gene expression of TNFo and IL-6 and their protein
release by adipose tissue under cachectic states®. In
addition, there is no apparent infiltration of macrophages
and lymthocytes in adipose tissue of mice with
cachexia®® and patients with cancer cachexia®®.

ZAG, a lipid-mobilising factor

ZAG is a 41 kDa soluble protein first isolated from human
plasma® and subsequently identified in secretory epi-
thelial cells, including those of liver, breast, prostate and
the gastrointestinal tract®®. The crystal structure of ZAG
reveals that it belongs to the class I MHC family. There is
a non-peptidic ligand in the ZAG counterpart of the MHC
peptide-binding groove, which may relate to its signalling
function®”. ZAG is overexpressed by several types of
malignant tumour, such as breast, prostate and bladder
cancers®"*%” and ZAG levels are elevated in serum and
seminal fluid of patients with prostate cancer®”’®. The
biological functions of ZAG were largely unknown until a
lipid-mobilising factor, purified from the urine of patients
with cancer cachexia, was shown to be identical to ZAG
in electrophoretic mobility, immunoreactivity and amino
acid sequence'’”. ZAG has also been purified from a
murine adenocarcinoma (MACI16) that induces profound
cachexia”?. Amino acid sequence analysis has revealed
that murine and human ZAG display an overall homology
of 59%"?, but share up to 100% identity in specific re-
gions thought to be important in lipid metabolism®”.
Treatment with purified ZAG can cause weight loss
in genetically-obese ob/ob mice"’” and normal mice’*",
and body composition analysis indicates that ZAG-induced
weight loss is a result of selective reduction in body fat but
not lean mass. ZAG has been shown in vitro to stimulate
glycerol release from isolated murine adipocytes in a dose-
dependent manner'’>’. The lipolytic effect of ZAG has
been postulated to be mediated by B3-adrenoceptors and
the activation of the intracellular cAMP pathway. ZAG has
been shown to be able to produce a comparable increase
in cAMP levels to that obtained with isoprenaline and
ZAG-induced lipolysis can be attenuated by the specific
B3-adrenoceptor antagonist SR59230 in adipocytes #7779,
In addition to lipid mobilisation there is also evidence
that ZAG promotes lipid utilisation in brown adipose tissue
and skeletal muscle. ZAG administration in vivo in mice
leads to an up-regulation of UCPl mRNA and protein
expression in brown adipose tissue and of skeletal muscle
UCP2 and UCP3 mRNA7?. ZAG induces expression of

rg/10.1017/50029665109990267 Published online by Cambridge University Press

UCPI protein and O, uzptake in vitro in primary cultures of
brown adipose tissue”’>’”. Hence, by up regulating UCP
in brown adipose tissue and muscle, ZAG may provide a
mechanism for the disposal of excess fatty acids liberated
from enhanced lipolysis, which could lead to increased
energy expenditure during cachexia.

Adipose-derived ZAG in cancer cachexia

The secretory function of adipose tissue and the potent fat-
mobilising effect of ZAG have led to the postulation that
this protein could also be produced by adipose tissue,
thereby modulating adipocyte metabolism'’®. Work from
the authors’ group has demonstrated that the ZAG gene and
protein are expressed by the major white fat depots (epi-
didymal, perirenal, subcutaneous, mammary gland) and the
interscapular brown fat of mice”®. Further detection using
immunocytochemistry has shown the presence of ZAG
protein in the cytoplasm of adipocytes in adipose tissue'’®.
In human subjects ZAG mRNA and protein have been
shown to be expressed in both visceral and subcutaneous
fat depots(78). Futhermore, ZAG mRNA and protein are
detected in differentiated human Simpson-Golabi-Behmel
syndrome adipocytes. Most importantly, ZAG, which
contains a secretory signal sequence®”, has been shown to
be secreted into the culture medium by differentiated
Simpson-Golabi-Behmel syndrome adipocytes’®. Sub-
sequent quantification of ZAG secretion levels in the cul-
ture medium has revealed its concentration to be in the
range of ng/ml per 24h, close to that of adiponectin®”.
Taken together, these findings indicate that ZAG is indeed
a novel adipokine produced abundantly by adipocytes and
the protein may have a major action locally in the regu-
lation of fat mass.

Adipose-derived ZAG appears to be inversely associated
with body fat mass. ZAG mRNA and protein levels are
markedly increased in adipose tissue of mice with cancer
cachexia and, furthermore, the increase in ZAG protein
content is related to the extent of weight loss in these
animals”®. In contrast, as a reference adipokine, leptin
mRNA and circulating le;)tin levels are strikingly repressed
in tumour-bearing mice“®*>"® (Fig. 2). Very recently, it
has been shown that ZAG mRNA and protein expression
are also up regulated in adipose tissue in patients with
cancer cachexia (T Mracek, NA Stephens, X Xiao and C
Bing, unpublished results). Contrarily, studies of obese
subjects have shown that ZAG gene expression is down
regulated in subcutaneous adipose tissue of obese
women®" and men®”. Furthermore, recent work has
demonstrated that ZAG mRNA levels are negatively cor-
related with total fat mass in human subjects with a wide
range of BMI®?,

Although the role of ZAG in adipose tissue remains to
be established, its effect on fat loss has been further sup-
ported by a recent study that shows that ZAG-knock-out
mice are vulnerable to weight gain when fed a high-fat diet
and this outcome appears to be the result of decreased
lipolytic response to several stimuli, such as isoprenaline,
CL316243, foskolin and isobutylmethylxanthine, in adipo-
cytes®. Recent work has demonstrated that recombinant
ZAG stimulates lipolysis in human adipocytes (T Mracek,
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Fig. 2. mRNA levels of zinc-a2-glycoprotein (A), leptin (B), CCAAT/enhancer-binding
protein o (C) and sterol regulatory element-binding protein-1c (D) in epididymal adi-
pose tissue of control ([J), pair-fed (PF; @) and MAC16 tumour-bearing () mice,
quantified by real-time PCR and normalised to B-actin. Values presented as fold
changes relative to controls are means with their standard errors represented by ver-
tical bars for eight mice per group. Mean values were significantly different from those
for the control group: *P<0-05, **P<0-01. Mean values were significantly different from
those for the PF group: 1P<0-05, t1P<0-01. (Adapted from Bing et al. 20062°.)
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Fig. 3. A schematic diagram of lipid catabolism in cancer cachexia. Certain tumour
and host tissue-produced factors, such as TNFo and zinc-o2-glycoprotein (ZAG), may
act systemically and/or as autocrine and/or paracrine signals to stimulate adipocyte
lipid metabolism. TNFa-induced lipolysis acts through a TNFo receptor 1 (TNFR-1)
dependent pathway, which inhibits perilipin allowing hormone-sensitive lipase (HSL) to
access the surface of lipid droplets. ZAG-stimulated lipolysis may be mediated by 3-
adrenoceptors (B3AR) and the activation of the intracellular cAMP pathway. NEFA
generated by enhanced lipolysis in cachexia may serve as substrates for lipid utilisation
through uncoupling proteins (UCP) in brown adipose tissue (BAT) and skeletal
muscle.T, Increased; |, decreased.
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P Trayhurn and C Bing, unpublished results). Further
studies are required to unravel the nature of the action of
ZAG in human cancer cachexia. Overall, current data point
to ZAG, as well as TNFa, as a potential candidate for
mediating lipid catabolism in cancer cachexia (Fig. 3).
Other factors may also be involved in fat loss in malig-
nancy, e.g. macrophage inhibitory cytokine-1, which
causes cachexia and a reduction in fat mass via its central
effects on appetite®®. Interestingly, recent work has found
that macrophage inhibitory cytokine-1 is also produced by
adipocytes and this factor may have autocrine and/or
paracrine effects in adipose tissue®.

Conclusion

Cancer cachexia, manifested by progressive weight loss, is
a metabolic disorder associated with increased morbidity
and mortality. Extensive loss of adipose tissue is a promi-
nent feature of cachexia. The marked alterations in adipose
morphology indicate tissue atrophy and this outcome can-
not be attributable to reduced appetite alone. Evidence
suggests that altered adipocyte metabolism may have an
important role. Increased lipolysis appears to be a key
factor, while impairment in lipid deposition and adipocyte
development may also contribute. Adipose atrophy could
be mediated by the tumour and/or host-derived factors.
TNFa, as a potential mediator, has been linked with
increased lipolysis. ZAG, a potent lipid-mobilising factor,
has been identified as a novel adipokine and its expression
in adipose tissue is up regulated in cancer cachexia. ZAG
may therefore act locally, as well as systemically, to pro-
mote lipid breakdown. Further elucidation of the function
of ZAG in adipose tissue may lead to novel targets for
preventing adipose atrophy in malignancy.
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