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Abstract

We establish a derived geometric Satake equivalence for the quaternionic general
linear group GLn(H). By applying the real–symmetric correspondence for affine
Grassmannians, we obtain a derived geometric Satake equivalence for the symmetric
variety GL2n/Sp2n. We explain how these equivalences fit into the general framework
of a geometric Langlands correspondence for real groups and the relative Langlands
duality conjecture. As an application, we compute the stalks of the IC-complexes for
spherical orbit closures in the quaternionic affine Grassmannian and the loop space of
GL2n/Sp2n. We show that the stalks are given by the Kostka–Foulkes polynomials for
GLn but with all degrees doubled.
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1. Introduction

1.1 Real–symmetric correspondence

Let GR be a real form of a connected complex reductive group G. Let X =G/K be the associ-
ated symmetric variety under Cartan’s bijection, where K is the complexification of a maximal
compact subgroup KR ⊂GR.

A fundamental feature of the representation theory of the real group GR is that many results
of an analytic nature have equivalent purely algebraic formulations in terms of the corresponding
symmetric variety X. We will call this broad phenomenon the real–symmetric correspondence.
It allows one to use algebraic tools on the symmetric side to study questions on the real side
and, conversely, to use analytic tools on the real side to study questions on the symmetric
side. Famous examples include Harish-Chandra’s reformulation of admissible representations of
real groups in terms of (g, K)-modules, the Kostant–Sekiguchi correspondence between real and
symmetric nilpotent orbits, and the Matsuki correspondence between GR- and K-orbits on the
flag manifold of G.

In [CN18], the first and third authors established a real–symmetric correspondence relating
the dg derived category of spherical constructible sheaves on the real affine Grassmannian GrGR

of GR and the dg derived category of spherical constructible sheaves on the loop space LX of
X. We are interested in applying this real–symmetric correspondence to study questions in the
real and relative geometric Langlands programs.

In the present paper, we consider the question of a geometric Satake equivalence for real
groups and symmetric varieties. We focus on the case where the real group is the quaternionic
group GR =GLn(H) with associated symmetric variety X =GL2n/Sp2n. We prove the derived
geometric Satake equivalence for GLn(H) relating the dg constructible derived category of the
quaternionic affine Grassmannian with the dg coherent derived category of a quotient stack
associated to the Gaitsgory–Nadler dual group ǦX of X (which is ǦX =GLn in this case). Via
the real–symmetric correspondence, we obtain a derived geometric Satake equivalence for the
symmetric variety GL2n/Sp2n. As an application, we compute the stalks of the IC-complexes for

1616

https://doi.org/10.1112/S0010437X25007146 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007146


Quaternionic Satake equivalence

spherical orbit closures in the quaternionic affine Grassmannian and the loop space of GL2n/Sp2n.
We show that the stalks are given by the Kostka–Foulkes polynomials for GLn but with all
degrees doubled.

We explain how these equivalences fit into the general framework of a geometric Langlands
correspondence for real groups, due to Ben-Zvi and the third author, and of the relative
Langlands duality conjecture, due to Ben-Zvi, Sakellaridis, and Venkatesh.

From the point of view of real groups, the quaternionic group GLn(H) offers in some
sense the simplest possible geometry: just as complex Grassmannians are simpler than real
Grassmannians (Schubert cells are 2d versus d real-dimensional), quaternionic Grassmannians
are simpler still than complex Grassmannians (Schubert cells are 4d versus 2d real-dimensional).
On the other hand, the geometry of the symmetric variety GL2n/Sp2n is more complicated
than that of GL2n. The real–symmetric correspondence allows us to use the simpler quater-
nionic geometry of GLn(H) to answer questions about the more complicated geometry of
GL2n/Sp2n.

We now describe the paper in more detail. We work throughout over the complex numbers,
except where we specifically consider real forms. All topological sheaves are with respect to the
classical topology with complex coefficients.

1.2 Reminder on derived Satake for GL2n

Let LGL2n and L+GL2n be the Laurent loop group and Taylor arc group of GL2n. The affine
Grassmannian Gr2n =LGL2n/L

+GL2n for GL2n is the ind-variety classifying C[[t]]-lattices in
C((t))n. The arc group L+GL2n acts naturally on Gr2n, and we denote by Db(L+GL2n\Gr2n)
the monoidal dg-category of L+GL2n-equivariant constructible complexes on Gr2n with monoidal
structure given by convolution.

Let gl2n be the Lie algebra of GL2n. Write Sym(gl2n[−2]) for the symmetric algebra of
gl2n[−2] viewed as a dg-algebra with trivial differential. The group GL2n acts on Sym(gl2n[−2])
via the adjoint action, and we denote by DGL2n

perf (Sym(gl2n[−2])) the monoidal dg-category of
perfect GL2n-equivariant dg-modules over Sym(gl2n[−2])) with monoidal structure given by the
(derived) tensor product of dg-modules.

One of the versions of the derived Satake equivalence in [BF08] says that there is an
equivalence of monoidal dg-categories

Ψ :Db(L+GL2n\Gr2n)�DGL2n

perf (Sym(gl2n[−2]))
extending the geometric Satake equivalence Perv(Gr2n)�Rep(GL2n), where Perv(Gr2n)⊂
Db(L+GL2n\Gr2n) is the subcategory of L+GL2n-equivariant perverse sheaves on Gr2n and
Rep(GL2n)⊂DGL2n

perf (Sym(gl2n[−2])) is the subcategory of representations of GL2n.
1

1.3 Derived Satake for the quaternionic group GLn(H)

Let GLn(H)⊂GL2n be the real form given by the rank n quaternionic group. Let LGLn(H) and
L+GLn(H) be the real Laurent loop group and Taylor arc group for GLn(H). By the real affine
Grassmannian for the quaternionic group GLn(H), we will mean the ind semi-analytic variety
Grn,H =LGLn(H)/L+GLn(H) classifying H[[t]]-lattices in H((t))n.2

1The embedding Rep(GL2n)⊂DGL2n
perf Sym(gl2n[−2]) is given by V �→ Sym(gl2n[−2])⊗C V.

2By definition, a H[[t]]-lattice Λ in H((t))n is a finitely generated right H[[t]]-submodule of H((t))n such that
Λ⊗H[[t]] H((t)) =H((t))n.
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The real arc group L+GLn(H) acts naturally on Grn,H, and we denote by
Db(L+GLn(H)\Grn,H) the monoidal dg-category of L+GLn(H)-equivariant constructible com-
plexes on Grn,H with monoidal structure given by convolution. The L+GLn(H)-orbits on Grn,H
are all even real-dimensional (in fact, 4d real-dimensional; see § 4.4), and hence middle perver-
sity makes sense. We denote by Perv(Grn,H) the category of L+GLn(H)-equivariant perverse
sheaves on Grn,H. In [Nad05], the third author established a real geometric Satake equivalence,
giving an equivalence of monoidal abelian categories Perv(Grn,H)�Rep(GLn) in the case at
hand.

The first main result of this paper is the following equivalence of monoidal dg derived
categories, to be called derived Satake for GLn(H).

Theorem 1.1 (See Theorem 5.5). There is an equivalence of monoidal dg-categories

ΨH :Db(L+GLn(H)\Grn,H)�DGLn

perf (Sym(gln[−4]))
extending the real geometric Satake equivalence Perv(Grn,H)�Rep(GLn).

A key ingredient in the proof of Theorem 1.1 (as in the proof of the abelian quaternionic
geometric Satake) is a nearby cycles functor

R :Db(L+GL2n\Gr2n)→Db(L+GLn(H)\Grn,H) (1.1)

associated to a real form of the Beilinson–Drinfeld Grassmannian with generic fibers isomorphic
to the complex affine Grassimannian Gr2n and special fiber isomorphic to the quaternionic affine
Grassimannian Grn,H (see § 4.5). Note that, unlike in the complex algebraic setting, the nearby
cycles functor R is not t-exact: it maps perverse sheaves to direct sums of shifts of perverse
sheaves (see Proposition 4.5). As a corollary of the proof, we obtain the following spectral
description of the nearby cycles functor.

Consider the graded scheme

g̃l2n =

{(
A[0] B[−2]
C[2] D[0]

)∣∣∣∣A, B, C, D ∈ gln
}
.

We have the natural embedding of (even graded) schemes

τ : gln[4]→ g̃l2n[2], τ(C[4]) =

(
0 Idn

C[4] 0

)
, (1.2)

where Idn is the rank n identity matrix. Note that the map τ is GLn adjoint-equivariant, where
GLn acts on g̃l2n[2] via the diagonal embedding GLn→GL2n. Hence pullback along τ provides
a functor

τ∗ :DGLn

perf (Sym(g̃l2n[−2]))→DGLn

perf (Sym(gln[−4])).

Here we view the rings of functions on gln[4] and g̃l2n[2] as the dg symmetric algebras

Sym(gl2n[−4]) and Sym(g̃l2n[−2]) with trivial differential. Introduce the functor

Φ :DGL2n

perf (Sym(gl2n[−2]))−→DGLn

perf (Sym(g̃l2n[−2])) τ∗−→DGLn

perf (Sym(gln[−4]))
where the first functor is the sheared forgetful functor associated to the Gm-action on gl2n[−2]
via the co-character 2ρL :Gm→GL2n (see (5.17)). Here L is the complexification of the Levi
subgroup of the minimal parabolic subgroup of GLn(H).
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Theorem 1.2 (See Theorem 5.7). The following square is naturally commutative

Db(L+GL2n\Gr2n)
R

Ψ �

Db(L+GLn(H)\Grn,H)

ΨH �

DGL2n
perf (Sym(gl2n[−2]))

Φ
DGLn

perf (Sym(gln[−4]))

where Ψ and ΨH are the complex and quaternionic derived Satake equivalences, respectively.

Later, in § 1.6, we will discuss how Theorem 1.2 fits into the general framework of duality for
Hamiltonian spaces.

1.4 Derived Satake for the symmetric variety GL2n/Sp2n

Let L Sp2n be the Laurent loop group of the symmetric subgroup Sp2n ⊂GL2n. There is a
natural action of L Sp2n on Gr2n, and we denote by Db(L Sp2n\Gr2n) the dg-category of L Sp2n-
equivariant constructible complexes on Gr2n.

In [CN18, Theorem 8.1] it is shown that there is an equivalence of dg-categories

Db(L Sp2n\Gr2n)�Db(L+GLn(H)\Grn,H). (1.3)

In [CN18, Theorem 9.1] it is shown that the equivalence is compatible with the natural monoidal
actions of Db(L+GL2n\Gr2n), where the action on the right-hand side is through the nearby
cycles functor (1.1). One can view the above equivalence as an example of the real–symmetric
correspondence for the affine Grassmannian Gr2n. Combining this with Theorem 1.1, we obtain
a derived Satake equivalence for GL2n/Sp2n.

Theorem 1.3. There is an equivalence of dg-categories

ΨX :Db(L Sp2n\Gr2n)�DGLn

perf (Sym(gln[−4]))

compatible with the monoidal actions of Db(L+GL2n\Gr2n)�DGLn

perf (Sym(gl2n[−2])).
Remark 1.4. In general, the L Sp2n-orbits on Gr2n are neither finite-dimensional nor finite-
codimensional. Thus there is not a naive approach to sheaves on L Sp2n\Gr2n with traditional
methods. To overcome this, we use the observation in [CN18] that the based loop group ΩSp(n)
of the compact real form Sp(n) of Sp2n acts freely on Gr2n and the quotient ΩSp(n)\Gr2n is
a semi-analytic space of ind-finite type, i.e. an inductive limit of real analytic schemes of finite
type. We define Db(L Sp2n\Gr2n) to be the category of sheaves on ΩSp(n)\Gr2n constructible
with respect to the stratification coming from the descent of the L Sp2n-orbits stratification on
Gr2n; see [CN18] Definition 1.3] and also Remark 1.10.

1.5 Geometric Langlands correspondence for real groups

We discuss here how one might interpret our results in terms of geometric Langlands for real
groups [BZN15]. Our results specifically relate to the curve P1 with its standard real structure
with real points RP1 (whereas connections to Langlands parameters have been explored [BZN13]
for P1 with its antipodal real structure with no real points).

For complex reductive groups, it is known that the derived Satake equivalence implies the
geometric Langlands correspondence over the projective line P1 via a Radon transform. To state

1619

https://doi.org/10.1112/S0010437X25007146 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007146


T.-H. Chen et al.

a version of this in the setting at hand, let BunGL2n
(P1) be the moduli stack of GL2n-bundles

over P1, and let LocGL2n
(S2) be the moduli stack of Betti GL2n-local systems on the 2-sphere

S2. Let D!(BunGL2n
(P1)) be the dg-category of constructible complexes on BunGL2n

(P1) that are
extensions by zero off of a finite-type substack, and let Coh(LocGL2n

(S2)) be the dg-category of
coherent complexes on LocGL2n

(S2) with bounded cohomology.
In this setting, the geometric Langlands correspondence for P1 constructed in [Laf09] takes

the form of an equivalence

D!(BunGL2n(P1))
∼

Coh(LocGL2n(S2)). (1.4)

Moreover, it fits into a commutative diagram of equivalences

D!(BunGL2n(P1))
�

�

Coh(LocGL2n(S2))

�

Db(L+GL2n\Gr2n)
�

DGL2n
perf (Sym(gl2n[−2]))

(1.5)

where the left vertical equivalence

D!(BunGL2n
(P1))�Db(L+GL2n\Gr2n) (1.6)

is given by the Radon transform (see [Laf09, Proposition 2.1]) and the right vertical equivalence
is given by the the Koszul duality equivalence

Coh(gl2n[−1]/GL2n)�DGL2n

perf (Sym(gl2n[−2])) (1.7)

under the isomorphisms LocGL2n
(S2)� pt/GL2n ×gl2n/GL2n

pt/GL2n � gl2n[−1]/GL2n.
As a special case of the affine Matsuki correspondence established in [CN18], we have a real

group version of the equivalence (1.6) taking the form

D!(BunGLn(H)(RP
1))�Db(L Sp2n\Gr2n). (1.8)

Here BunGLn(H)(RP
1) is the real form of BunGL2n

(P1) classifying GLn(H)-bundles on the real

projective line RP1. Combining this with the derived Satake equivalence for GL2n/Sp2n in
Theorem 1.3, we obtain the following geometric Langlands correspondence for GLn(H).

Let LocGLn
(S4) be the moduli stack of Betti GLn-local systems on the 4-sphere S4. Note

that the presentation S4 =D4 ∪S3 D4 (where D4 is the four-dimensional disk in R4) gives an
isomorphism of dg-stacks:

LocGLn
(S4)� pt/GLn ×gln[−2]/GLn

pt/GLn � gln[−3]/GLn.

From the Koszul duality Coh(gln[−3]/GLn)�DGLn

perf (Sym(gln[−4])), we obtain

Coh(LocGLn
(S4))�Coh(gln[−3]/GLn)�DGLn

perf (Sym(gln[−4])). (1.9)

Theorem 1.5. There is an equivalence

D!(BunGLn(H)(RP
1))�Coh(LocGLn

(S4))
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that fits into a commutative diagram of equivalences as follows.

D!(BunGLn(H)(RP
1))

�

�

Coh(LocGLn(S4))

�

Db(L Sp2n \Gr2n)
�

DGLn
perf (Sym(gln[−4]))

(1.10)

Here the left and right vertical equivalence are the affine Matsuki correspondence (1.8) and
Koszul duality (1.9), respectively, and the bottom equivalence is the derived Satake equivalence
for GL2n/Sp2n.

Remark 1.6. On the one hand, the appearance of the 4-sphere S4 in the above version of geo-
metric Langlands for GLn(H) is perhaps not so surprising owing to the identification HP1 � S4.
Moreover, the twistor fibration CP3→HP1 � S4 arises naturally in the proof of Theorem 1.1
(see § 4.1). On the other hand, the appearance of connections on S4 is quite mysterious (at
least to the authors). From the perspective of geometric Langlands for real groups, we expect
the spectral side to be expressible in terms of GL2n-connections on a disk with a partial oper
structure along the boundary. This should reflect the usual Satake GL2n-Hecke operators in the
bulk and the real Satake GLn-Hecke operators along the boundary.

Remark 1.7. More generally, the real–symmetric correspondence (1.3) and affine Matsuki corre-
spondence (1.8) hold for any real group GR. It follows that a derived Satake equivalence for real
groups or symmetric varieties will imply a version of geometric Langlands correspondence over
RP1 for real groups and vice versa.

1.6 Relative Langlands duality conjectures

A far-reaching program of Ben-Zvi, Sakellaridis, and Venkatesh proposes relative Langlands
duality conjectures between periods and L-functions (see e.g. [BZSV24]). A fundamental con-
jecture in the program predicts that given a complex reductive group G, with dual group Ǧ,
and a homogeneous spherical G-variety X, there exists a (graded) Hamiltonian Ǧ-variety M̌
together with a moment map μ : M̌ → ǧ∗ equipped with a commuting Gm-action of weight 2,
and an equivalence

Db(LX/L+G)�Coh(M̌/Ǧ) (1.11)

where Coh(M̌/Ǧ) is the dg-category of Ǧ-equivariant perfect dg-modules over the ring of func-
tions on M̌ viewed as a dg-algebra with trivial differential and grading given by the above
Gm-action. Moreover, this equivalence should be compatible with the derived Satake equivalence
Db(L+G\GrG)�DǦ

perf(Sym(ǧ[−2]))�Coh(ǧ∗[2]/Ǧ), in the sense that the right convolution

action of Db(L+G\GrG) on Db(LX/L+G) should correspond to the tensor product action of
Coh(ǧ∗[2]/Ǧ) on Coh(M̌/Ǧ) through the moment map μ.

We now explain how the derived Satake equivalence for the symmetric varietyX =GL2n/Sp2n
fits into the general setting of relative Langlands duality. On the one hand, by [CN24, Proposition
8.1], there are an isomorphism of stacks

LX/L+GL2n
∼=L Sp2n\LGL2n/L

+GL2n
∼=L Sp2n\Gr2n

and hence equivalences of categories

Db(LX/L+GL2n)�Db(L Sp2n\Gr2n) (1.12)
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where Db(LX/L+GL2n) is the dg-category of L+GL2n-equivariant constuctible complexes on
the loop space LX of X.

On the other hand, it is expected that the Hamiltonian Ǧ-space M̌ associated to the
symmetric variety X =GL2n/Sp2n (note that symmetric varieties are spherical) is given by
M̌ = T ∗(GL2n/GLn �U, ψ), the partial Whittaker reduction of T ∗GL2n with respect to the
generic homomorphism ψ of the Shalika subgroup GLn �U of GL2n:

GLn �U =

{(
A 0
0 A

)(
Idn 0
C Idn

)∣∣∣∣A∈GLn, C ∈ gln
}
, ψ

((
A 0
0 A

)(
Idn 0
C Idn

))
=−tr(C)

(1.13)
(see the list of examples of relative duality in [Wan]).

By Lemma 3.2, there is an isomorphism M̌ �GL2n ×GLn gln such that the induced
isomorphism M̌/GL2n � gln/GLn fits into a commutative diagram as follows.

M̌/GL2n
�

μ

gln/GLn

τ

gl∗2n/ǦL2n
�

gl2n/GL2n

Here μ is the moment map, τ is the embedding in (1.2) (disregarding the cohomological grad-
ing), and we identify gl∗2n/GL2n � gl2n/GL2n via the trace form. Thus, in view of (1.12), the
equivalence of Theorem 1.3 gives an instance of (1.11) of the form3

Db(LX/L+GL2n)�Coh(M̌/GL2n).

Remark 1.8. Our work suggests an interesting relationship between real groups and periods of
automorphic forms associated to the corresponding symmetric varieties, and we plan to investi-
gate this relationship in more detail. The case of the quaternionic group GLn(H) is related to
the so-called symplectic periods and Jacquet–Shalika periods [JR92, JS90].

1.7 IC-stalks and Kostka–Foulkes polynomials

As an application of the proof of Theorem 1.1, we determine the stalk cohomology of the IC-
complexes for the L+GLn(H)-orbit closures in the quaternionic affine Grassmannian Grn,H and
the L Sp2n-orbit closures in the complex affine Grassmannian Gr2n.

The L+GLn-orbits (respectively, L+GLn(H) and L Sp2n-orbits) on Grn (respectively, Grn,H
and Gr2n) are in bijection with the set of dominant coweights Λ+

n of GLn; see § 4.4. For any
λ∈Λ+

n we denote by Grλn (respectively, Grλn,H and Grλ2n,X) the corresponding orbit and by

IC(Grλn) (respectively, IC(Grλn,H) and IC(Grλ2n,X)) the intersection cohomology complex on the

orbit closure. We will write H i(F) for the ith cohomology sheaf of a complex F and H i
x (F) for

its stalk at a point x.
For any pair of dominant coweights λ, μ∈Λ+

n , we denote by Kλ,μ(q) the associated Kostka–
Foulkes polynomial with variable q. Denote by ρn the half-sum of positive roots of GLn.

A well-known result of Lusztig [Lus81] says that we have H i−2〈λ,ρn〉(IC(Grλn)) = 0 for 2 � i and

∑
i

dimH 2i−2〈λ,ρn〉
x (IC(Grλn))q

i = q〈λ−μ,ρn〉Kλ,μ(q
−1) for x∈Grμn.

3Here we have not been precise about cohomological degrees on the right-hand side.
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We have the following real and symmetric analogue.

Theorem 1.9 (See Corollary 4.14 and Theorem 4.22). Let λ, μ∈Λ+
n . For any x∈Grμn,H and

y ∈Grμ2n,X , the following hold:

(1) H i−4〈λ,ρn〉(IC(Grλn,H)) =H i−4〈λ,ρn〉(IC(Grλ2n,X)) = 0 for 4 � i;

(2)
∑
i
dimH

4i−4〈λ,ρn〉
x (IC(Grλn,H))q

i =
∑
i
dimH

4i−4〈λ,ρn〉
y (IC(Grλ2n,X))q

i = q〈λ−μ,ρn〉Kλ,μ(q
−1).

In other words, the theorem says that the IC-complex for the L+GLn(H) and LK-orbit

closures Grλn,H and Grλ2n,X have the same stalk cohomology as the Grλn ones for GLn, but with
all degrees doubled.

Remark 1.10. To define the IC-stalk H i
y IC(Grλ2n,X) at y ∈Grμ2n,X , we use the observation that

Grμ2n,X has finite codimension in Grλ2n,X and hence the IC-stalk makes sense. This can be made

precise using the observation in [CN18] that the image L Sp2n\Grλ2n,X of the L Sp2n-orbits Grλ2n,X
in the quotient ΩSp(n)\Gr2n is finite-dimensional with even real dimension and the collection
{L Sp2n\Grλ2n,X}λ∈Λ+

n
forms a nice stratification of ΩSp(n)\Gr2n. This allows us to define the

IC-complex IC(Grλ2n,X) of Grλ2n,X (and hence the IC-stalks) as the IC-complex for the orbit

closure ΩSp(n)\Grλ2n,X of ΩSp(n)\Grλ2n,X inside ΩSp(n)\Gr2n.

Remark 1.11. We first prove Theorem 1.9 in the real case using the nice geometry of the
quaternionic Grassmannian Grn,H and then deduce the symmetric case via the real–symmetric
correspondence. At the moment, we do not know a direct argument in the symmetric case.

1.8 Outline of the proof

We briefly explain the proof of Theorem 1.1. Similar to the proof of the derived Satake for com-
plex reductive groups [BF08], the desired equivalence follows from the following two statements:
(1) the de-equivariantized extension algebra Ext∗Db(L+Gn,H\Grn,H)

(IC0, IC0 �O(Gn)) is isomor-

phic to the dg symmetric algebra Sym(gln[−4]) (see Proposition 4.21) and (2) the dg algebra
RHomDb(L+Gn,H\Grn,H)(IC0, IC0 �O(Gn)) is formal (see Proposition 5.3).

We deduce (1) from a fully-faithfulness property of the equivariant cohomology functor. In
[BF08], this was proved using a general result of Ginzburg [Gin91], whose proof uses Hodge theory
and hence does not apply directly to the real analytic setting. We observe that in the situation of
the quaternionic affine Grassmannian, the stalks of the IC-complexes satisfy a parity vanishing
property and, as observed in [AR15], one can use parity considerations in place of Hodge theory.
To prove the parity vanishing result of the IC-stalks, we show that fibers of certain convolution
Grassmannians (which are basically quaternionic Springer fibers) admit pavings by quaternionic
affine spaces.

The proof of (2) in [BF08] also relies on Hodge theory (or theory of weights) and hence must be
modified in the real setting. We observe that the nearby cycles functor (1.1) induces a surjective
homomorphism from the dg-algebra RHomDb(L+G2n\Gr2n)(IC0, IC0 �O(G2n)) associated to the
complex affine Grassimannian Gr2n to the dg-algebra RHomDb(L+Gn,H\Grn,H)(IC0, IC0 �O(Gn)).
Since the former dg-algebra is formal, thanks to [BF08], the desired claim follows from a general
criterion of formality; see Lemma 5.4.

Remark 1.12. We expect that the proof strategy outlined above is applicable to general real
groups: the parity vanishing, fully-faithfulness, and formality results should hold in general.
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1.9 Organization

We briefly summarize the main goals of each section. In § 2, we recall some notation and results
on constructible sheaves on a semi-analytic stack. In § 3, we study the spectral side of the
quaternionic Satake equivalence, including results on quaternionic groups, symplectic groups,
regular centralizers group schemes, and Whittaker reduction. In § 4, we study the constructible
side of the equivalence, including the study of nearby cycles functors, parity vanishing results,
fully-faithfulness of the equivariant cohomology functor, and the computation of the IC-stalks
and the de-equivariantized extension algebra. Finally, in § 5, we prove the formality result and
deduce the derived Satake equivalence for quaternionic groups, including a version involving
nilpotent singular supports (Theorem 5.5), and also the spectral description of the nearby cycles
functor (Theorem 5.7).

2. Constructible sheaves on a semi-analytic stack

We will work with C-linear dg-categories (see e.g. [GR17, Chapter 1, § 10] for a concise summary
of the theory of dg-categories). Unless specified otherwise, all dg-categories will be assumed to
be cocomplete, i.e. containing all small colimits, and all functors between dg-categories will be
assumed to be continuous, i.e. preserving all small colimits.

We collect some facts about constructible sheaves on a semi-analytic stack. Recall that a
subset Y of a real analytic manifold M is said to be semi-analytic if any point y ∈ Y has a open
neighbourhood U such that the intersection Y ∩U is a finite union of sets of the form

{y ∈U | f1(y) = · · ·= fr(y) = 0, g1(y)> 0, . . . , gl(y)> 0},
where the fi and gj are real analytic functions on U . A map f : Y → Y ′ between two semi-analytic
sets is said to be semi-analytic if it is continuous and its graph is a semi-analytic set.

Let Grpd be the ∞-category of spaces or, equivalently, ∞-groupoids. Let RSp be the site
of semi-analytic sets where the coverings are étale (i.e. locally bi-analytic) maps {Si→ S}i∈I
such that the map

⊔
Si→ S is surjective. A semi-analytic pre-stack is a functor Y : RSp→Grpd,

and a semi-analytic stack is a pre-stack that is a sheaf. We will view any semi-analytic set as a
semi-analytic stack via the Yoneda embedding.

For any semi-analytic set Y , we define D(Y ) = Ind(Db(Y )) to be the ind-completion of the
bounded dg-category Db(Y ) of C-constructible sheaves on Y . For any semi-analytic stack Y

we define D(Y) := limID(Y ), where the index category is that of semi-analytic sets equipped
with a semi-analytic map to Y and the transition functors are given by !-pullback. Since we
are in the constructible context, !-pullback admits a left adjoint, given by !-pushforward, and it
follows that D(Y) = colimID(Y ). In particular, D(Y) is compactly generated. We let D(Y)c be
the full subcategory of compact objects and Db(Y)⊂D(Y) the full subcategory of objects that
pull back to an object of Db(Y ) for any Y mapping to Y. Note that we have the natural inclusion
D(Y)c ⊂Db(Y), but the inclusion is in general not an equality. For example, the constant sheaf
CY ∈Db(Y) for the classifying stack Y=B(GL1(C)) is not compact.

Let f : Y→ Y′ be a map between semi-analytic stacks. We have the usual six-functor formalism
f∗, f !, f∗, f!, ⊗, Hom.

For a semi-analytic stack Y, with projection map p : Y→ pt, and F∈D(Y ), we will write
H∗(Y,F) := p∗(F) for the cohomology of F. If Y is isomorphic to the quotient stack Y�G\Y ,
where Y is a semi-analytic set acted on real analytically by a Lie group G, we will write
H∗
G(Y, F) := (pBG)∗(F) for the equivariant cohomology of F, where pBG : Y=G\Y →BG is the

projection map. When it is clear from the context we will abbreviate H∗(Y, F) and H∗
G(Y, F) by

H∗(F) and H∗
G(F).
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For an ind semi-analytic stack Y= colimIYi we define D(Y) = limID(Yi), where the limit is
taken with respect to the !-pull-back along the closed embedding ιi,i′ : Yi→ Yi′ , i, i

′ ∈ I.

3. Spectral side

3.1 Quaternionic group

For any positive integer n, we denote by Gn =GLn(C) the complex Lie group of n× n invertible
matrices and gn = gln(C) its Lie algebra of n× n matrices. We write Bn, Nn, and Tn for the
subgroups of Gn consisting of upper triangular matrices, upper triangular unipotent matrices,
and diagonal matrices, respectively, and write bn, nn, and tn for their Lie algebras. We denote
by Wn the Weyl group of Gn acting on tn by the permutation action. We let cn = tn//Wn. We
will identify cn with the space of degree n monic polynomials in such a way that under the above
identification, the Chevalley map χn : gn→ gn//Gn � cn becomes the map sending a matrix to its
characteristic polynomial. We will fix the coordinates (c1, . . . , cn) on cn given by the coefficients
of a degree n monic polynomial listed in increasing degree. We will identify gn � g∗n using the
trace paring gn × gn→C, (A, B) �→ tr(AB).

Let H= {a+ ib+ jc+ kd} denote the quaternions. Consider the quaternionic vector space
Hn where H acts via right multiplication. Let Gn,H be the Lie group of H-linear invertible endo-
morphisms of Hn, which can be identified with the space GLn(H) of n× n invertible quaternionic
matrices, and let gn,H be the Lie algebra ofH-linear endomorphisms ofHn, which can be identified
with the space gln(H) of n× n quaternionic matrices.

Using the identification C2n �Hn sending (z, w)→ q= z + jw for z, w ∈Cn, one can realize
Gn,H as a real form of Gn. Specifically, the endomorphism of Hn sending q→ qj corresponds to
the endomorphism of C2n sending

(z, w)→ (−w̄, z̄), (3.1)

and we can identify gn,H and Gn,H as the subsets of gn and Gn consisting of C-linear endo-
morphisms of C2n that commute with the map (3.1). Equivalently, consider the 2n× 2n matrix

Sn =

(
0 −Idn
Idn 0

)
where Idn is the n× n identity matrix. Then the endomorphism η of g2n (respectively, G2n)
sending X ∈ g2n (respectively, X ∈G2n) to

η(X) = SnXS
−1
n

defines a real form of g2n (respectively, G2n), that is, an anti-holomorphic conjugation on g2n
(respectively, G2n), and gn,H and Gn,H are the η-fixed points in g2n and G2n. Concretely, gn,H
(respectively, Gn,H) consists of 2n× 2n matrices (respectively, invertible matrices) of the form

(
A B

−B A

)
where A, B ∈ gn.

We denote by tn,H ⊂ gn,H (respectively, Tn,H ⊂Gn,H) the Cartan subalgebra (respectively,
Cartan subgroup) consisting of matrices (respectively, invertible matrices)(

A 0

0 A

)
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where A∈ tn.
We denote by Pn,H =Mn,HAn,HNn,H the standard minimal parabolic subgroup of Gn,H con-

sisting of invertible upper triangular quaternionic matrices and pn,H =mn,H ⊕ an,H ⊕ nn,H its Lie
algebra.

3.2 Symplectic group

According to the Cartan classification of real forms, the conjugation η corresponds to a holo-
morphic involution θ on G2n (respectively, C-linear involution of g2n) characterized by the
property that η ◦ θ= θ ◦ η is a compact real form, that is, the fixed-point subgroup (respectively,
subalgebra) of ηc := η ◦ θ,

Gc = (G2n)
ηc (respectively, gc = (g2n)

ηc),

is compact. In our case, we will take θ to be

θ(X) = Sn(X
t)−1S−1

n (respectively, θ(X) =−Sn(Xt)S−1
n ),

where X ∈G2n (respectively, X ∈ g2n), and we have

ηc(X) = (X
t
)−1 (respectively, θ(X) =−Xt

),

and the corresponding compact subgroup Gc = (G2n)
ηc is the group of 2n× 2n unitary matrices.

The θ-fixed-point subgroup K = (G2n)
θ =Sp2n is the symplectic group of rank n, and the

intersection
Kc := Sp2n ∩Gc =Sp(n)

is the compact symplectic group. The Lie algebras k and kc consist of matrices(
A B
C −At

)
,

where A, B, C ∈ gn satisfy B =Bt and C =Ct for k and the additional conditions A=−Āt and
C =−B for kc.

Recall the Cartan decompostion of the Lie algebra g2n = k⊕ p where p is the (−1)-eigenspace
of θ. The Cartan decompostion induces a decomposition t2n = t⊕ s where t= t2n ∩ k is a Cartan
subalgebra of k consisting of diagonal matrices of the form

diag(h1, . . . , hn,−h1, . . . ,−hn)
and s= t2n ∩ p⊂ p is a maximal abelian subspace of p consisting of diagonal matrices of the
form

diag(s1, . . . , sn, s1, . . . , sn).

We denote by W the Weyl group of K and Ws =NK(s)/ZK(s) the little Weyl group. We have
W�Wn � {±1}n and Ws �Wn. We let c= t//W. Then the natural inclusion t→ t2n gives rise
to an embedding

c= t//W−→ t2n//W2n = c2n (3.2)

whose image consists of monic polynomials of degree 2n with vanishing odd terms.
Finally, we denote by X =G2n/K and Xc =Gc/Kc the symmetric space and compact

symmetric space associated to K and Kc.

3.3 Notation related to root structure

Let Λn =Hom(C×, Tn) be the coweight lattice of Tn and let Λ+
n be the set of dominant coweights

with respect to Bn. Let 2ρn be the sum of the positive roots of Gn and let 〈λ, 2ρn〉 ∈Z be the
natural paring for a coweight λ∈Λn.
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Let S ⊂ T be the maximal split torus corresponding to the maximal abelian subspace s⊂ p,
let ΛS =Hom(C×, S) be the set of real coweights, and let Λ+

S =ΛS ∩Λ+
2n be the set of dominant

real coweights. There is a natural identification S � Tn sending diag(s1, . . . sn, s1, . . . , sn) to
diag(s1, . . . , sn) and hence natural identifications ΛS �Λn and Λ+

S �Λ+
n .

3.4 Regular centralizers

3.4.1. Recall the group scheme of centralizers In→ gn whose fiber over x∈ gn is the cen-
tralizer (Gn)

x = {g ∈Gn |Adg(x) = x} of x in Gn. Let gregn ⊂ gn be the open subset of regular
elements in gn. It is shown in [Ngô06, § 3] that the base-change In|greg

n
→ gregn is a smooth group

scheme over gregn which descends to a smooth group scheme Jn→ cn over cn, known as the group
scheme of regular centralizers.

3.4.2. Consider the embedding

τ : gn→ g2n, τ(C) =

(
0 Idn
C 0

)
. (3.3)

Note that the map τ is Gn-equivariant, where Gn acts on g2n via diagonal embedding δ :Gn→
G2n. Thus it induces an embedding on the invariant quotients (denoted again by τ),

τ : cn = gn//Gn→ g2n//G2n � c2n, τ(c1, . . . , cn) = (0, c1, 0, c2, . . . , 0, cn), (3.4)

whose image consists of monic polynomials of degree 2n with vanishing odd terms. Note that
the image of τ is equal to the image of the map c= t//W→ c2n = t2n//W2n in (3.2), and hence
there is a natural identification

c� cn (3.5)

such that τ : cn � c→ c2n.
Recall the group scheme of centralizers In (respectively, I2n) over gn (respectively, g2n) and

the group scheme of regular centralizers Jn (respectively, J2n) over cn (respectively, c2n).

Lemma 3.1. There is a natural closed embedding of group schemes, Jn→ J2n, that fits into a
commutative diagram

Jn J2n

cn c2n

(3.6)

where the bottom arrow is the map in (3.4).

Proof. We first claim that τ(gregn ) = greg2n ∩ τ(gn). Let x= τ(C) =
(
0 Idn
C 0

)
. If x is in greg2n , then

the centralizer (G2n)
x of x in G2n is abelian. By direct calculation, the inclusion Gn→G2n takes

the centralizer (Gn)
C of C in Gn into the centralizer (G2n)

x, and hence (Gn)
C is also abelian.

Hence the characterization of regular elements for gn implies that C ∈ gregn . On the other hand,
if C ∈ gregn , then without loss of generality we can assume that C is a companion matrix, and an
easy computation shows that x is in greg2n (see (3.8)). The claim follows.
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Let Iregn = In|greg
n

and Ireg2n = I2n|greg
2n
. Then the claim implies that we have a commutative

diagram as follows.

In Ireg
2n

greg
n

τ
greg

2n

reg

(3.7)

Since J2n � Ireg2n //G2n is the descent of Ireg2n along the map greg2n → c2n, the restriction J2n|cn is
the descent of Ireg2n |greg

n
along the map gregn → cn:

J2n|cn � (Ireg2n //G2n)|cn � I
reg
2n |greg

n
//Gn.

Since the maps in (3.7) are compatible with the natural Gn-action and the desired map is the
map on the GIT quotients,

Jn � Iregn //Gn −→ Ireg2n |greg
n
//Gn � J2n|cn .

�

3.4.3 Kostant sections. We give an alternative construction of the map Jn→ J2n in (3.6)
using Kostant sections.

Consider the following two ordered bases of C2n: the standard basis {e1 = (1, 0, . . . , 0), . . . ,
e2n = (0, . . . , 0, 1)} and the basis {w1 = e1, w2 = e3, . . . , wn = e2n−1, wn+1 = e2, wn+2 =
e4, . . . , w2n = e2n}. Let P ∈G2n be the matrix associated to the linear map wi �→ ei in
the basis w1, . . . , w2n.

For any positive integer s, consider the Kostant section κs : cs→ gs for Gs given by

κs(c) =

⎛
⎜⎜⎜⎜⎝

0 1
... 0

. . .
...

. . . 1
−cs −cs−1 . . . −c1

⎞
⎟⎟⎟⎟⎠ , c= (c1, . . . , cs)∈ cs.

A direct computation shows that⎛
⎜⎜⎜⎜⎝

0 1
... 0

. . .
...

. . . 1
−c2n −c2n−1 . . . −c1

⎞
⎟⎟⎟⎟⎠= P

(
0 Idn
C D

)
P−1

where

C =

⎛
⎜⎜⎜⎜⎝

0 1
... 0

. . .
...

. . . 1
−c2n −c2n−2 . . . −c2

⎞
⎟⎟⎟⎟⎠ , D=

⎛
⎜⎜⎜⎝

0 0 . . . 0
...

... . . . 0
0 0 . . . 0

−c2n−1 −c2n−3 . . . −c1

⎞
⎟⎟⎟⎠ .
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It follows that for any c= (c1, . . . , cn)∈ cn with τ(c) = (0, c1, 0, c2, . . . , 0, cn)∈ c2n, we have⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 . . . . . . . . . . . . 0
... 0

. . .
...

. . .
. . .

...
. . .

. . .
...

. . .
. . .

. . . 1
−cn 0 −cn−1 0 . . . 0 −c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P

(
0 Idn

κn(c) 0

)
P−1. (3.8)

Thus there is the following commutative diagram.

greg
n

τ
greg

2n

cn

κn

τ
c2n

Ad−1
P ◦κ2n (3.9)

In particular, we have

τ ◦ κn : cn→ greg2n .

The pullback of the group scheme Ireg2n along the map above τ ◦ κn is isomorphic to

(τ ◦ κn)∗(Ireg2n )� ((κ2n)
∗Ad∗P−1(I

reg
2n ))|cn � (κ2n)

∗(Ireg2n )|cn � J2n|cn ,
and the desired map is given by pullback of (3.7) along the map τ ◦ κn:

Jn � κ∗n(Iregn )−→ κ∗n(I
reg
2n |greg

n
)� (τ ◦ κn)∗(Ireg2n )� J2n|cn . (3.10)

3.4.4. The identification c� cn in (3.5) gives rise to a map

t→ c� cn

sending (t1, . . . , tn,−t1, . . . ,−tn)∈ t to the coefficients (c1, . . . , cn)∈ cn of the monic polynomial
f(x) =

∏n
i=1 (x− t2i ) of degree n. We shall give a description of the pullback

Jn ×cn t→ J2n ×c2n t (3.11)

of (3.6) along t→ cn. Consider the map

eT2n : t2n→ g2n, eT2n(t) =

⎛
⎜⎜⎜⎜⎝
t1 1

0 t2
. . .

...
. . . 1

0 . . . 0 t2n

⎞
⎟⎟⎟⎟⎠ , t=diag(t1, . . . , t2n). (3.12)

Note that the image of eT2n consists of regular elements. We have a commutative diagram

t2n
eT2n

g2n

c2n c2n
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where the vertical arrows are the natural adjoint quotient maps. If follows that there is a canonical
isomorphism

J2n ×c2n t2n � (eT )∗I2n = (G2n × t2n)
eT2n

where (G2n × t2n)
eT2n = {(g, t)∈G2n × t2n |Adg(eT2n(t)) = eT2n(t)} denotes the subgroup scheme

of the constant group scheme G2n × t2n over t2n of centralizers of the section eT2n .
Consider the restriction eT = eT2n |t : t→ g2n. Concretely, we have

eT : t→ g2n, eT(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . tn

. . .
...

...
. . . −t1 . . . 0

...
. . .

. . . 1
0 . . . . . . . . . 0 −tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, t=diag(t1, . . . , tn,−t1, . . . ,−t2n).

(3.13)
It is clear that

J2n ×c2n t� (eT )∗I2n = (G2n × t)e
T

.

Consider the map

eTX : t→ gn, eTX(t) =

⎛
⎜⎜⎜⎜⎝
t21 1
... t22

. . .
...

. . . 1
0 0 . . . t2n

⎞
⎟⎟⎟⎟⎠ . (3.14)

The image of eTX consists of regular elements, and we have the following commutative diagram.

t
eT
X

gn

cn
id

cn

It follows that we have a canonical isomorphism

Jn ×cn t� (eTX)
∗In = (Gn × t)e

T
X

of group schemes over t. For any t∈ t, we have

τ ◦ eTX(t) =
(
0 Idn
C 0

)
, C =

⎛
⎜⎜⎜⎜⎝
t21 1
... t22

. . .
...

. . . 1
0 0 . . . t2n

⎞
⎟⎟⎟⎟⎠ . (3.15)

Note that the elements τ ◦ eTX(t) and eT (t) are regular and have the same characteristic
polynomial and hence lie in the same G2n-orbit. Pick an element gt ∈G2n such that

eT (t) = gt(τ ◦ eTX(t))g−1
t .
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Then the conjugation map Adgt :G2n→G2n, g→ gtgg
−1
t restricts to a map between the

centralizers,

(Gn)
eTX(t) δ→ (G2n)

eT (t) Adgt→ (G2n)
eT (t).

Since centralizers of a regular element form a commutative group, the map above is independent
of the choice of the element gt and hence is canonical. Then, as t varies over t, we obtain a map
between the corresponding centralizer group schemes,

Jn ×cn t� (Gn × t)e
T
X → (G2n × t)e

T � J2n ×cX t, (3.16)

which is the map in (3.11).
Alternatively, the assignment t→ gt gives rise to an element

Φ∈G2n ⊗RT , Φ(t) = gt,

where we set RT =O(t). If we regard the maps eT and τ ◦ eTX as elements in g2n ⊗RT ,
we have

eT =Φ(τ ◦ eTX)Φ−1 ∈ g2n ⊗RT (3.17)

(we will give a canonical construction of the element Φ; see Remark 5.2). Then the
composition

AdΦ ◦ δ :Gn × t→G2n × t, (g, t)→Φ(t)(δ(g))Φ−1(t)

restricts to the map (3.16) between the corresponding centralizer group schemes.

3.5 Dual group

In [Nad05], the author associated to each real form GR of a complex reductive group G, or
equivalently a symmetric space X of G, a complex reductive group ǦX together with a homo-
morphism δ : ǦX→ Ǧ. In the case of G=G2n and GR =Gn,H, or equivalently X =G2n/Sp2n,
we have Ǧ=G2n and ǦX =Gn, and the homomorphism is the diagonal embedding

δ :Gn→G2n, δ(A) =

(
A 0
0 A

)
. (3.18)

Let P =LN be the complexification of the minimal parabolic Pn,H. The Levi subgroup L consists
of matrices of the form

L=

{(
A B
C D

)
∈G2n

∣∣∣∣ A, B, C, and D are diagonal matrices

}
.

Consider the principal SL2 of L given by

ψ : SL2→L, ψ

(
a b
c d

)
=

(
A B
C D

)
,

where A= aIdn, B = bIdn, etc. The restriction of ψ to the torus Gm ⊂ SL2 is the co-character

2ρL :Gm→L, 2ρL(h) = diag(h, . . . , h, h−1, . . . , h−1)

corresponding to the sum of the positive roots of the Levi factor L. A direct computation shows
that the image ψ(SL2)⊂G2n centralizes the subgroup δ(Gn)⊂G2n, and hence we obtain a
homomorphism

ψX : ǦX × SL2→G2n, ψX(g, y)→ δ(g)ψ(y). (3.19)
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3.6 The partial Whittaker reduction

Consider the identification T ∗G2n �G2n × g∗2n by considering g∗2n as left-invariant differential
forms on G2n. The group G2n ×G2n acts on G2n via left and right multiplication, and the induced
action on T ∗G2n �G2n × g∗2n is given by (g, h)(x, v) = (gxh−1,Adhv). The moment map (μl, μr) :
T ∗G2n→ g∗2n × g∗2n with respect to the G2n ×G2n-action is given by (μl, μr)(x, v) = (Adxv,−v).

Consider the Shalika subgroup Gn �U and the generic morphism ψ in (1.13). Let gn × u be
the Lie algebra of Gn �U . Then one can view ψ as an element ψ= (0,−tr) in g∗n × u∗:

ψ

((
A 0
0 A

)
,

(
0 0
C 0

))
=−tr(C).

The moment map for the right Gn �U -action on T ∗G2n is given by

μ : T ∗G2n
μr→ g∗2n→ g∗n × u∗

where μr is the right moment map above and the second map is the natural restriction map.
The partial Whittaker reduction M̌ of T ∗G2n with respect to the right Gn �U -action is given
by

M̌ = T ∗(G2n/Gn �U, ψ) := μ−1(ψ)/Gn �U.

Lemma 3.2. There is an isomorphism M̌ �G2n ×Gn gn fitting into a commutative diagram

M̌
�

G2n ×Gn gn

g∗2n
�

g2n

where the left vertical arrow is the left moment map μl, the bottom arrow is induced by the
trace pairing (A, B)→ tr(AB), and the right vertical map is given by

(x, C) �→Adx

(
0 Idn
C 0

)
.

Proof. We will identify g∗2n with g2n via the trace pairing. The pre-image of ψ= (0,−tr)∈ g∗n × u∗

in g∗2n � g2n is given by

g∗2n,ψ :=

{(
A −Idn
C −A

)∣∣∣∣A, C ∈ gn
}
,

and it follows that

M̌ � μ−1(ψ)/Gn �U � μ−1
r (g∗2n,ψ)/Gn �U �G2n ×Gn�U (− g∗2n,ψ)

(recall that μr(x, v) =−v). On the other hand, a direct computation shows that the action of

U on −g∗2n,ψ is free and any U -orbit on −g∗2n,ψ contains a unique element of the form
(
0 Idn
C 0

)
with C ∈ gn.4 Thus there is an isomorphism

M̌ �G2n ×Gn�U (−g∗2n,ψ)�G2n ×Gn gn

such that the left moment map is given by μl(x, C) =Adx

(
0 Idn
C 0

)
. The lemma follows. �

4Indeed, this follows from

(
Idn 0
X Idn

)(
A Idn

C −A

)(
Idn 0
−X Idn

)
=

(
A−X Idn

C +XA+AX −X2 X −A

)
.
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4. Constructible side

4.1 Twistor fibration

Consider the complex projective space P2n−1 and the quaternionic projective spaceHPn−1. Recall
the identification C2n �Hn sending

(z, w) = (z1, . . . , zn, w1, . . . , wn)→ z + jw= (q1 = z1 + jw1, . . . , qn = zn + jwn).

If to each complex line in C2n �Hn we associate the quaternionic line it generates, we get
a map

f : P2n−1→HPn−1, [z, w]→ [q1, . . . , qn] (4.1)

between the corresponding complex and quaternionic projective spaces, called the twistor fibra-
tion for HPn−1. The fiber of f over a quaternionic line (a copy of H�C2) consists of all complex
lines generating that quaternionic line, which is a copy of P1 � S2. Thus the twistor fibration f
is a fiber bundle with fiber P1. In the n= 2 case, we have HPn−1 =HP1 � S4 and the map (4.1)
is the well-known twistor fibration

f : P3→ S4

for S4.
Consider the standard action of the complex torus T2n (respectively, Tn) on P2n−1

(respectively, HPn−1):

x · [z1, . . . , z2n] = [x1z1, . . . , x2nz2n], x= (x1, . . . , x2n)∈ T2n
(respectively, x · [q1, . . . , qn] = [x1q1, . . . , xnqn], x= (x1, . . . , xn)∈ Tn).

Then the twistor map f : P2n−1→HPn−1 is Tn-equivariant, where Tn acts on P2n−1 through the
embedding

Tn
∼−→ Tn,H ⊂ T2n, (x1, . . . , xn)→ (x1, . . . , xn, x̄1, . . . , x̄n)

(recall that Tn,H is the Cartan subgroup of Gn,H). Indeed, for any x= (x1, . . . , xn)∈ Tn, we have

f(x · [z, w]) = f([x1z1, . . . , xnzn, x̄1w1, . . . , x̄nwn]) = [x1z1 + jx̄1w1, . . . , xnzn + jx̄nwn]

= [x1z1 + x1jw1, . . . , xnzn + xnjwn] = x · [q1, . . . , qn].

4.2 Equivariant cohomology of quaternionic projective spaces

Consider the inverse action of T2n on P2n−1.5 Recall the following well known description of the
T2n-equivariant cohomology of P2n−1:

H∗
T2n

(P2n−1)�C[t1, . . . , t2n][ξ]/
2n∏
i=1

(ξ − ti) (4.2)

where

ξ = cT2n

1 (O(1))∈H∗
T2n

(P2n−1)

is the first equivariant Chern class of the line bundle O(1) over P2n−1 and H∗
T2n

(pt)�O(t2n)�
C[t1, . . . , t2n].

5The reason to consider the inverse of the standard action will become clear later; see the proof of Lemma 4.9.
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The imbedding Tn � Tn,H ⊂ T2n gives rise to a map H∗
T2n

(pt)→H∗
Tn
(pt), and a direct compu-

tation show that under the isomorphism C[t1, . . . , t2n]�H∗
T2n

(pt) and C[t1, . . . , tn]�H∗
Tn
(pt),

the map is given by

C[t1, . . . , t2n]→C[t1, . . . , t2n]/(t1 + tn+1, t2 + tn+2, . . . , tn + t2n)�C[t1, . . . , tn].

It follows that

H∗
Tn
(P2n−1)�H∗

T2n
(P2n−1)⊗H∗

T2n
(pt)H

∗
Tn
(pt)�C[t1, . . . , tn][ξ]/

n∏
i=1

(ξ2 − t2i ). (4.3)

Similarly, we consider the inverse Tn-action on HPn−1. Let OH(−1) be the tautological H-line
bundle OH(−1) over HPn−1. It is canonically Tn-equivariant, and we denote by

η=−eTn(OH(−1))∈H4
Tn
(HPn−1)

the negative of the equivariant Euler class of OH(−1).

Lemma 4.1. There is an isomorphism

H∗
Tn
(HPn−1)�C[t1, . . . tn][η]/

n∏
i=1

(η− t2i )

making a diagram commute

H∗
Tn

(HPn−1)
f∗

�

H∗
Tn

(P2n−1)

�

C[t1, ...tn][η]/
∏n

i=1(η − t2i ) C[t1, ...tn][ξ]/
∏n

i=1(ξ
2 − t2i )

where the bottom arrow is the natural C[t1, . . . tn]-linear embedding sending η to ξ2, that is, we
have f∗(η) = ξ2.

Proof. The Tn-fixed points on HPn−1 are p0 = [1, 0, . . . , 0]H, p2 = [0, 1, 0, . . . , 0]H, . . . ,pn =
[0, 0, . . . , 0, 1]H. Write si : {pi}→HPn−1 for the inclusion map. Then equivariant localization
says that we have an injective map of rings

Loc =
⊕

s∗i :H
∗
Tn
(HPn−1)−→R⊕n

Tn
.

The fiber of OH(−1)|pi over pi is the H-line spanned by the ith coordinate vector of Hn, and hence
the action of Tn factors though the ith projection Tn→Gm, (x1, . . . , xn)→ xi. It follows that,
in terms of the coordinate C2 �OH(−1)|pi , (zi, wi)→ zi + jwi (and hence a chosen orientation),
the (inverse) action is given by xi(zi, wi) = (x−1

i zi, x̄
−1
i wi)) and hence

s∗i (η) = s∗i (−eTn(OH(−1))) =−eTn(OH(−1)|pi) = t2i .

Thus we have

Loc(η) = Loc(−eTn(OH(−1))) = (t21, . . . , t
2
n)∈R⊕n

Tn
,

and it follows that Loc(
∏n
i=1 (η− t2i )) = 0; as Loc is injective, this implies

∏n
i=1 (η− t2i ) = 0.

To see that f∗(η) = ξ2, we observe that the pre-image f−1(pi) is isomorphic to the projec-
tion line P1

i = [zi, wi]⊂ P2n−1. The Tn-action preserves P1
i and is given by (x1, . . . , xn)[zi, wi] =

[x−1
i zi, x̄

−1
i wi]. The localization map Loc′ :H∗

Tn
(P2n−1)→⊕

H∗
Tn
(P1
i ) =C[ti][ξi]/(ξ2i − t2i ) is
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injective and we have Loc′(ξ2) = (ξ21 , . . . , ξ
2
n). On the other hand, we have

Loc′(f∗η) = f∗(Loc(η)) = f∗((t21, . . . , t
2
n)) = (t21, . . . , t

2
n) = (ξ21 , . . . , ξ

2
n)∈

⊕
H∗
Tn
(P1
i )

as ξ2i = t2i in H∗
Tn
(P1
i ). We conclude that Loc′(ξ2) = Loc′(f∗η) and hence ξ2 = f∗η. �

Remark 4.2. Here is an alternative argument. One can show that there is an isomorphism of
Tn-equivariant complex vector bundles

f∗OH(−1)�O(−1)⊕O(−1)
over P2n−1. Here O(−1) is the complex conjugate of O(−1) (note that a choice of a hermi-
tian metric on O(−1) induces an isomorphism O(−1)�O(−1)∨ �O(1)). Since eT (O(−1)) =
−eT (O(−1)) =−ξ, it follows that

f∗(η) =−f∗(eT (OH(−1)) =−eT (O(−1)⊕O(−1)) = eT (O(−1))2 = ξ2.

Now the lemma follows from the fact that f∗ :H∗
Tn
(HPn−1)→H∗

Tn
(P2n−1) is injective and

f∗(
∏n
i=1 (η− t2i )) =

∏n
i=1 (f

∗η− t2i ) =
∏n
i=1 (ξ

2 − t2i ) = 0 in H∗
Tn
(P2n−1).

Consider the pushforward functor f∗ :Db
Tn
(P2n−1)→Db

Tn
(HPn−1).

Lemma 4.3. We have that f∗(CP2n−1)�CHP
n−1 ⊕CHP

n−1 [−2].
Proof. Since f is a P1-fibration, we have a distinguished triangle

CHP
n−1→ f∗(CP2n−1)→CHP

n−1 [−2]→CHP
n−1 [1]

and we need to show that it splits. But this follows from

Hom(CHP
n−1 [−2],CHP

n−1 [1])�Ext3(CHP
n−1 ,CHP

n−1)�H3
Tn
(HPn−1) = 0. �

4.3 Two bases

Consider the subvarieties Pi−1 = {[z1, . . . , zi, 0, . . . , 0]} ⊂ P2n−1 for i= 1, . . . , 2n. If we write
[Pi−1]∈HT2n

2i−2(P
2n−1)�H4n−2i

T2n
(P2n−1) for the corresponding fundamental class in the equi-

variant Borel–Moore homology, then the collection {[Pi−1]}i=1,...,2n forms a basis of the free
RT2n

-module H∗
T2n

(P2n−1). Moreover, one can check that the image of the fundamental class

[Pi−1] under the identification (4.3) is given by

Υ :H∗
T2n

(P2n−1)�C[t1, . . . , t2n][ξ]/
2n∏
i=1

(ξ − ti),

Υ([P2n−1]) = 1, Υ([Pi−1]) =

2n∏
s=i+1

(ξ − ts) for i= 1, . . . , 2n− 1.

Consider the subvarieties HPi−1 = {[q1, . . . , qi, 0, . . . , 0]} ⊂HPn−1 for i= 1, . . . , n. If we write
[HPi−1]∈H4i−4,Tn

(HPn−1)�H4n−4i
Tn

(P2n−1) for the corresponding fundamental class in the

equivariant Borel–Moore homology, then the collection {[HPi−1]}i=1,...,n forms a basis of the
free RTn

-module H∗
Tn
(HPn−1). Moreover, one can check that the image of the fundamental class

[HPi−1] under the identification in (4.1) is given by

ΥH :H∗
Tn
(HPn−1) =C[t1, . . . , tn][η]/

n∏
i=1

(η− t2i ),

ΥH([HPn−1]) = 1, ΥH([HPi−1]) =

n∏
s=i+1

(η− t2s) for i= 1, . . . , n− 1.
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The isomorphism f∗CP2n−1 �CHP
n−1 ⊕CHP

n−1 [−2] gives rise to a decomposition

Υ′ :H∗
Tn
(HPn−1)⊕H∗−2

Tn
(HPn−1)�H∗

Tn
(P2n−1)�C[t1, . . . , tn][ξ]/

n∏
i=1

(ξ2 − t2i ),

and one can check that the image of the basis {[HPi−1]} ∪ {[HPi−1][2]} of H∗
Tn
(HPn−1)⊕

H∗−2
Tn

(HPn−1) under the map above is given by

Υ′([HPn−1]) = 1, Υ′([HPi−1]) =

n∏
s=i+1

(ξ2 − t2s) for i= 1, . . . , n− 1,

(4.4)

Υ′([HPn−1[2]]) = ξ, Υ′([HPi−1[2]]) = ξ

n∏
s=i+1

(ξ2 − t2s) for i= 1, . . . , n− 1.

Lemma 4.4.

(1) In terms of the ordered basis {[P0], [P1], . . . , [P2n]}, the cup product action cT2n

1 (O(1))∪
(−)∈EndRTn

(H∗
Tn
(P2n−1)) is given by the element eT2n in (3.12):

eT2n =

⎛
⎜⎜⎜⎜⎝
t1 1

0 t2
. . .

...
. . . 1

0 . . . 0 t2n

⎞
⎟⎟⎟⎟⎠ .

(2) In terms of the ordered basis {[HP0][2], . . . , [HPn−1][2], [HP0], . . . , [HPn−1]}, the cup product
action cTn

1 (O(1))∪ (−)∈EndRTn
(H∗

Tn
(P2n−1)) is given by the element τ ◦ eTX in (3.14):

τ ◦ eTX =

(
0 Idn
C 0

)
, C =

⎛
⎜⎜⎜⎜⎝
t21 1
... t22

. . .
...

. . . 1
0 0 . . . t2n

⎞
⎟⎟⎟⎟⎠ .

Proof. The cup product action is given by mutiplication by ξ and the claim is a straightforward
computation. �

4.4 Complex and quaternionic affine Grassmannians

We denote by Gr2n =LG2n/L
+G2n the complex affine Grassmannian for G2n, where LG2n =

G2n(C((t))) and L+G2n =G2n(C[[t]]) are the Laurent loop group and Taylor arc group for
G2n, respectively. We denote by Db(L+G2n\Gr2n) the dg-category of L+G2n-equivariant con-
structible complexes on Gr2n and by Perv(Gr2n) the abelian category of L+G2n-equivariant
perverse sheaves on Gr2n.

We denote by Grn,H =LGn,H/L
+Gn,H the real affine Grassmannian for the quaternionic group

Gn,H, where LGn,H =Gn,H(R((t))) and L+Gn,H =Gn,H(R[[t]]) are the real Laurent loop group
and real Taylor arc group for Gn,H. The L

+Gn,H-orbits on Grn,H are of the form Grλn,H =L+Gn,H ·
tλ where (λ :Gm→ S)∈Λ+

S is a dominant real coweight. By [Nad05, Proposition 3.6.1], each orbit
Grλn,H is a real vector bundle over the quaternionic flag manifold Gn,H/P

λ
n,H of real dimension

2〈λ, ρ2n〉. We denote by Db(L+Gn,H\Grn,H) the dg-category of L+Gn,H-equivariant constructible
complexes on Grn,H. Since 〈λ, ρ2n〉= 4〈λ, ρn〉 ∈ 2Z for all λ∈Λ+

S (in the second paring we regard
λ as an element in Λn), all the orbits Grλn,H have real even dimension, and hence middle perversity
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makes sense and we denote by Perv(Grn,H) the category of L+Gn,H-equivariant perverse sheaves
on Grn,H. Note also that, as P

λ
n,H is connected, all the Gn,H-equivariant local systems on Grλn,H are

trivial and hence the irreducible objects in Perv(Grn,H) are intersection cohomology complexes

ICλ = IC(Grλn,H), λ∈Λ+
S , for the closure Grλn,H ⊂Grn,H.

Like in the case of complex reductive groups, there is a natural monoidal structure on
Db(L+Gn,H\Grn,H) given by the convolution product: consider the convolution diagram

Grn,H ×Grn,H
p←LGn,H ×Grn,H

q→Grn,H×̃Grn,H :=LGn,H ×L+Gn,H Grn,H
m→Grn,H

where p and q are the natural quotient maps and m(x, y mod L+Gn,H) = xy mod L+Gn,H.
For any F1, F2 ∈Db(L+Gn,H\Grn,H), the convolution is defined as

F1 �F2 =m!(F1�̃F2)

where F1�̃F2 ∈Db(L+Gn,H\Grn,H×̃Grn,H) is the unique complex such that q∗(F1�̃F2)� p∗(F1 �
F2).

4.5 Real nearby cycles functor

We shall recall the construction of the real nearby cycles functor in [Nad05]. Consider the

Beilinson–Drinfeld Grassmannian Gr
(2)
2n →C over the complex line C classifying a G2n-bundle

E→C, a point x∈C, and a section ν :C \ {±x}→ E|C\{±x}. It is well known that there are
canonical isomorphisms

Gr
(2)
2n |{0} �Gr2n,

Gr
(2)
2n |C\{0} �Gr2n ×Gr2n ×C \ {0}.

It is shown in [Nad05, Proposition 4.3.1] that the real form Gn,H of G2n together with real form

iR of C (corresponding to the complex conjugation x→−x̄ on C) defines a real form Gr
(2)
n,H→ iR

of Gr
(2)
2n such that there are canonical isomorphisms

Gr
(2)
n,H|{0} �Grn,H

Gr
(2)
n,H|iR\{0} �Gr2n × (iR \ {0})

Consider the following diagram.

Gr2n × iR �
Gr

(2)
n,H|iR>0

j
Gr

(2)
n,H|iR≥0

Gr
(2)
n,H|{0}i

Grn,H
�

iR>0 iR≥0 {0}

Note that the maps in the above diagram are all Kc-equivariant, and we define the functor

R′ :Db(Kc\Gr2n)→Db(Kc\Grn,H)

by the formula

R′(F) = i∗j∗(F�CiR≥0
). (4.5)

By [Nad05, Proposition 4.5.1], the functor R′ takes L+G2n-constructible complexes to
L+Gn,H-constructible complexes. Introduce the subcategory Db

{L+Gn,H}(Kc\Grn,H) (respectively,
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Db
{L+G2n}(Gc\Gr2n) and D

b
{L+G2n}(Kc\Gr2n)) of D

b(Kc\Grn,H) (respectively, D
b(Gc\Gr2n) and

Db(Kc\Gr2n)) consisting L+Gn,H-constructible complexes (respectively, L+G2n-constructible
complexes). Since the quotients L+G2n/Gc and L+Gn,H/Kc are contractible, we have
natural equivalences Db

{L+Gn,H}(Kc\Grn,H)�Db(L+Gn,H\Grn,H) and Db
{L+G2n}(Gc\Gr2n)�

Db(L+G2n\Gr2n), and the nearby cycles functor R′ above induces a functor

R′ :Db
{L+G2n}(Kc\Gr2n)→Db

{L+Gn,H}(Kc\Grn,H)�Db(L+Gn,H\Grn,H). (4.6)

Finally, the real nearby cycles functor is defined as

R :Db(L+G2n\Gr2n)�Db
{L+G2n}(Gc\Gr2n)→Db

{L+G2n}(Kc\Gr2n)
R′→Db(L+Gn,H\Grn,H) (4.7)

where the middle arrow is the natural forgetful functor.
The following properties of Perv(Grn,H) and R can be deduced from [Nad05].

Proposition 4.5.

(1) There is a tensor equivalence Rep(Gn)�Perv(Grn,H) sending the irreducible representation
Vλ of Gn with highest weight λ∈Λ+

S to ICλ.

(2) The real nearby cycle functor R preserves semisimplicity, that is, we have

R(F)�
⊕
n∈Z

pHnR(F)[−n]

for any semisimple complex F in Db(L+G2n\Gr2n).

(3) Consider the monoidal subcategory

Perv(Grn,H)Z :=
⊕
n∈Z

Perv(Grn,H)[n]⊂Db
L+Gn,H

(Grn,H).

The real nearby cycle functor restricts to a monoidal functor

pR=
⊕
n∈Z

pHnR(F) : Perv(Gr2n)→Perv(Grn,H)Z

such that there is a commutative diagram

Perv(Gr2n)
pR

�

Perv(Grn,H)Z

�

Rep(G2n) Rep(Gn ×Gm)

where the vertical tensor equivalences come from the complex and quaternionic Satake
isomorphisms (part (1)) and the bottom arrow is the restriction map to the subgroup Gn ×
Gm ⊂G2n as in § 3.5.

Proof. Part (1) is proved in [Nad05, Theorem 1.2.2], and part (3) is proved in [Nad05, § 10.3].
To prove part (2), it suffices to show that R(ICλ) is semisimple for all dominant λ. It is
shown in [Nad05, Corollary 1.2.1 and § 6.4] that R is monoidal and that given two semisim-
ple objects F1 and F2 in the essential image of R, the convolution F1 �F2 is again semisimple.
Let ω1 and ε (respectively, ω′

1 and ε′) be the highest weights of the standard representation
and determinant character of Gn (respectively, G2n), respectively. Since Rep(G2n) is tensor-
generated by the standard representation Vω′

1
and the determinant character Vε′ , it suffices to

show that R(ICω′
1
) and R(ICε′) are semisimple. It follows from part (3) that pR(ICε′)� IC2ε
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and pR(ICω′
1
)� ICω1

⊕ ICω1
where ICω1

is the IC-complex of Grω1

n,H �HPn−1. Since the Gm-
weights of det2n and Vω′

1
with respect to the co-character Gm � {e} ×Gm ⊂Gn ×Gm ⊂G2n in

part (3) are equal to 0 and {1,−1}, respectively, this implies that R(ICε′)� pR(ICε′)� IC2ε

is a simple perverse sheaf, and R(ICω′
1
) admits a filtration with associated graded given

by ICω1
[1]⊕ ICω1

[−1]. Since Ext1(ICω1
[−1], ICω1

[1]) = Ext3(CHP
n−1 ,CHP

n−1)�H3
Gn,H

(HPn−1)⊂
H3
Tn
(HPn−1) = 0, it follows that the filtration splits and hence that R(ICω′

1
)� ICω1

[1]⊕ ICω1
[−1]

is semisimple. �

In the course of the proof, together with Lemma 4.3, we have shown the following.

Corollary 4.6. There is an isomorphism R(ICω′
1
)� f∗(ICP2n−1)� ICHP

n−1 [1]⊕ ICHP
n−1 [−1].

Remark 4.7. In Theorem 5.7, we will give a spectral description of the nearby cycle functor R on
the whole derived category (not just its restriction pR to the subcategory of perverse sheaves).

Recall the nearby cycles functor R′ :Db
{L+G2n}(Kc\Gr2n)→Db

{L+Gn,H}(Kc\Grn,H) in (4.6).

It extends to the ind-completion (denoted again by R′)

R′ : Ind Db
{L+G2n}(Kc\Gr2n)→ Ind Db

{L+Gn,H}(Kc\Grn,H).

Lemma 4.8. The functor R′ admits the left adjoint

LR′ : Ind Db
{L+Gn,H}(Kc\Grn,H)→ Ind Db

{L+G2n}(Kc\Gr2n).

Moreover, we have LR′(CGrn,H
)�CGr2n .

Proof. By [Nad05, Proposition 4.5.1], the ind-proper family Gr
(2)
n,H→ iR≥0 is a Thom stratified

map with respect to a Whitney stratification T on Gr
(2)
n,H and the stratification iR>0 ∪ {0} on

iR≥0 such that T restricts to the L+G2n-orbits stratification on the generic fiber Gr2n and to
the L+Gn,H-orbits stratification on the special fiber Grn,H. The construction in [GM83, § 6],
together with the results in [PW19, Theorem 1.1] (extending Mather’s theory of control data to
the equivariant setting), implies that the nearby cycles functor R′ is isomorphic to the functor
given by ∗-pushforward along a Kc-equivariant specialization map ψ : Gr2n→Grn,H, and hence
admits a left adjoint given by the ∗-pullback ψ∗. It is clear that ψ∗ sends constant sheaf to
constant sheaf. The lemma follows. �

4.6 Equivariant homology and cohomology of affine Grassmannians

4.6.1. We reviewed the description of the equivariant homologiesHT2n∗ (Gr2n) andH
Tc∗ (Grn,H)

of Gr2n and Grn,H in [O’Br23, YZ11]. Recall that for an ind-proper semi-analytic set Y =
colimIYi acting real analytically by a Lie group G, the G-equivariant homology HG∗ (Y ) of Y
is defined as HG∗ (Y ) := colimIH

∗
G(Yi, ωi), where ωi ∈D(G\Yi) is the dualizing sheaf of G\Yi

and the colimit is induced by the natural adjunction map (ιi,i′)∗ωi � (ιi,i′)!ωi→ ωi′ , and the
G-equivariant cohomology H∗

G(Y ) of Y is defined as H∗
G(Y ) := limIH

∗
G(Yi,C), where the limit

is induced by the natural restriction map H∗
G(Yi′ ,C)→H∗

G(Yi,C).
Let L be the determinant line bundle on Gr2n and let cT2n

1 (L)∈H2
T2n

(Gr2n) be its equivariant
first Chern class. It is shown in [YZ11, Lemma 2.2] that there is an isomorphism of functors

H∗
T2n

(Gr2n,−)�H∗(Gr2n,−)⊗RT2n
: Perv(Gr2n)→RT2n

-mod (4.8)

induced by the canonical splitting of the MV-filtration associated to the semi-infinite orbits
Sλ2n, the LN2n-orbits through λ∈Λ2n. (Recall that N2n ⊂G2n denotes the subgroup of upper
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triangular unipotent matrices.) Moreover, the isomorphism respects the natural monoidal struc-
tures on H∗

T2n
(Gr2n,−) coming from fusion and the one on H∗(Gr2n,−)⊗RT2n

induced from

H∗(Gr2n,−). The cup product action ∧cT2n

1 (L) on H∗
T2n

(Gr2n,F) for F∈Perv(Gr2n) gives rise
to a tensor endomorphism of H∗

T2n
(Gr2n,−) and hence, by the Tannakian formalism, gives rise

to an element cT2n ∈ g2n ⊗RT2n
. One can regard the element cT2n as a map

cT2n : t2n→ g2n. (4.9)

The equivariant homology HT2n∗ (Gr2n) is a commutative and cocommutative Hopf algebra over
RT2n

, and there is an isomorphism of group schemes

Spec(HT2n∗ (Gr2n))� (G2n × t2n)
cT2n

(4.10)

where (G2n × t2n)
cT2n is the centralizer of cT2n in G2n × t2n.

We have a similar result for quaternionic Grassmannians. Let LH be the quaternionic deter-
minant line bundle on Grn,H and let pT (LH)∈H4

Tc
(Grn,H) be its equivariant Pontryagin class. It

is shown in [O’Br23, Theorem 3] that there is an isomorphism of functors

H∗
Tc
(Grn,H,−)�H∗(Grn,H,−)⊗C RT : Perv(Grn,H)→RT-mod (4.11)

induced by the canonical splitting of the real MV-filtration associated to the real semi-infinite
orbits Sλn,H, the LNn,H-orbits through λ∈ΛS . Moreover, the isomorphism above respects the nat-
ural monoidal structures onH∗

Tc
(Grn,H,−) coming from fusion and the one onH∗(Grn,H,−)⊗RT

induced from H∗(Grn,H,−). The cup product action of pT (LH) on H∗
Tc
(Grn,H, F) for F∈

Perv(Grn,H)�Rep(Gn) gives rise to a tensor endomorphism of H∗
T(Grn,H,−) and hence an

element pTX ∈ gn ⊗RT . Let
pTX : t→ gn (4.12)

be the corresponding map. The main result in [O’Br23, Theorem 9 and Corollary 1] says that
there an isomorphism of group schemes

Spec(HTc∗ (Grn,H))� (Gn × t)p
T
X (4.13)

where (Gn × t)p
T
X is the centralizer of pTX in Gn × t.

Recall the maps eT2n and eTX introduced in (3.13) and (3.14), respectively.

Lemma 4.9. We have cT2n = eT2n and pTX =−eTX . Thus there are isomorphisms of group schemes

Spec(HT2n∗ (Gr2n))� (G2n × t2n)
eT2n � J2n ×c2n t2n,

Spec(HT
∗ (Grn,H))� (Gn × t)e

T
X � Jn ×cn t

over t2n and t, respectively, and isomorphisms of group schemes

HGc∗ (Gr2n)�HT2n∗ (Gr2n)
W2n � (J2n ×c2n t2n)

W2n � J2n,

HKc∗ (Grn,H)�HTc∗ (Grn,H)
W � (Jn ×cn t)W � Jn

over c2n = t2n//W2n and t//W� cn, respectively.

Proof. The result follows from the computations in [YZ11, § 5] and [O’Br23]. We give an
alternative (and more direct) proof using the computation in § 4.3.
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It suffices to show that the element

cT2n = cT2n

1 (L)∪ (−)∈End(H∗
T2n

(Gr2n, ICω′
1
))�End(H∗(Gr2n, ICω′

1
)⊗RT2n

)

�End(Vω′
1
⊗RT2n

)� g2n ⊗RT
(respectively, pTX = pT1 (LH)∪ (−)∈End(H∗

Tc
(Grn,H, ICω1

))�End(H∗(Grn,H, ICω1
)⊗RT )

�End(Vω1
⊗RT )� gn ⊗RT )

is given by eT2n (respectively, −eTX). We have the following observations:

(1) there is a T2n-equivariant (respectively, Tc-equivariant) isomorphism Gr
ω′

1

2n � P2n−1

(respectively, Grω1

n,H �HPn−1), where T2n (respectively, Tc) acts on P2n−1 (respectively,

HPn−1) via the inverse of the natural action;6

(2) the restriction L|
Gr

ω′
1

2n

(respectively, LH|Gr
ω1
n,H

) is isomorphic to O(1) (respectively, OH(1), the

H-dual of the OH(−1));
(3) the composed isomorphism

RT2n
⊗ Vω′

1
�RT2n

⊗H∗(Gr2n, ICω′
1
)�H∗

T2n
(Gr2n, ICω′

1
)�H∗

T2n
(P2n−1, ICP2n−1)

(respectively, RT ⊗ Vω1
�RT ⊗H∗(Grn,H, ICω1

)�H∗
T(Grn,H, ICω1

)�H∗
T(HPn−1, ICHP

n−1))

sends the vectors 1⊗ ei, i= 1, . . . , 2n, to the fundamental class

[Pi−1]∈H2n+1−2i
T2n

(P2n−1, ICP2n−1) =H4n−2i
T2n

(P2n−1)

(respectively, 1⊗ ei, i= 1, . . . , n, to the fundamental class

[HPi−1]∈H2n+2−4i
T (HPn−1, ICHP

n−1) =H4n−4i
T (HPn−1)).

From the above observations, we see that cT2n ∈ g2n ⊗RT2n
(respectively, pTX ∈ gn ⊗RT ) is the

matrix presentation of the cup product action cT2n

1 (O(1))∪ (−) (respectively, eT (OH(1))∪ (−))7
in the basis {[Pi−1]}i=1,...,2n (respectively, {[HPi−1]}i=1,...,n), and the desired claim follows from
Lemma 4.4. �

4.6.2. Recall that for any Lie group G and any ind-proper G-variety Y we have a paring

H∗
G(Y )×HG

∗ (Y )→H∗
G(pt)�RG

induced by the action of cohomology on homology and then the pushforward map in the Borel–
Moore homologyHG∗ (Y )→H∗

G(pt). On the other hand, for any commutative affine group scheme
H over S there is a canonical paring

U(LieH)×O(H)→O(S), (ξ, f)→ ξ(f)|e
between the relative universal enveloping algebra U(LieH) and the ring of functions on H. Here
e : S→H is the unity map.

According to [BFM05, Remark 2.13], there are isomorphisms

H∗
Gc
(Gr2n)�U(LieJ2n) and H∗

Kc
(Grn,H)�U(LieJn) (4.14)

6This is because the isomorphism Gr
ω′
1

2n � P2n−1 is given by the composition of the canonical T2n-equivariant

isomorphism Gr
ω′
1

2n �Gr(2n− 1,C2n), where Gr(2n− 1,C2n) is the Grassmannian variety of (2n− 1)-dimensional
subspaces of C2n, with the duality Gr(2n− 1,C2n)�Gr(1, (C2n)∗)� P2n−1.
7Note that the underlying complex rank 2 bundles of OH(−1) and OH(1) are complex conjugate to each other and
hence eT (OH(1))� (−1)2eT (OH(−1)) = eT (OH(−1)).
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such that the paring above between the cohomology and homology of Y =Gr2n (respectively,
Grn,H) becomes the paring between the universal enveloping algebra and ring of functions for
the group scheme H = J2n (respectively, Jn).

4.7 Fully-faithfulness

A key ingredient in the proof of the (complex) derived Satake theorem is the fully-faithfulness of
the equivariant cohomology functorH∗

L+G2n
(Gr2n,−) into the category of modules over the global

cohomology H∗
L+G2n

(Gr2n,C). In [BF08], this was established using general results of Ginzburg
[Gin91]. Ginzburg’s arguments appeal to Hodge theory and therefore must be modified in the
real setting. As in [AR15], we can use parity considerations in place of Hodge theory. More
precisely, we will make use of the theory of parity sheaves [JMW14]. Our first step, therefore, is
to establish that the complexes ICλ (for λ∈Λ+

S ) are even.

Remark 4.10. In fact, our situation is simpler than the modular setting considered in [JMW14]
owing to the fact that the tensor category Perv(Grn,H) of spherical perverse sheaves on Grn,H is
semisimple (see Proposition 4.5).

4.7.1. Recall that if a coweight μ∈Λ+
S is minuscule, the orbit Grμn,H is closed. Such an orbit

is necessarily smooth.

Lemma 4.11. Let μ1, . . . , μk ∈Λ+
S denote minuscule coweights. Consider the convolution

morphism

m : Grμ•
n,H :=Grμ1

n,H×̃ · · · ×̃Grμk

n,H→Grn,H.

Then the non-empty fibers of m are paved by quaternionic affine spaces.

Proof. In the complex setting, this result is due to [Hai06]. We proceed by induction on k. When
k= 1, there is nothing to prove. In general, we factor m as follows.

Grμ•
n,H

q

m

Grn,H ×̃Grμk

n,H

p

Grn,H

Here, q is induced by multiplying the first k− 1 factors of Grμ•
n,H. Since m is L+Gn,H-equivariant,

it suffices to show that each fiber m−1(tλ) (for λ∈Λ+
S ) is paved by quaternionic affine spaces.

By the above diagram, we have

m−1(tλ) = q−1(p−1(tλ)).

Let μ′• = (μ1, . . . , μk−1). Observe that we have the following commutative diagram.

m−1(tλ)

q

Grμ•
n,H

q

Gr
μ′•
n,H

a

p−1(tλ) Grn,H ×̃Grμk

n,H
π

Grn,H
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Here, π is the projection to the first factor and a is the convolution map. Observe that both
horizontal compositions are closed embeddings. Hence, we obtain a Cartesian diagram as follows.

m−1(tλ)

π◦q

Gr
μ′•
n,H

a

π(p−1(tλ)) Grn,H

By induction, the fibers of a are paved by quaternionic affine spaces. Hence, the same is true
of π ◦ q. It therefore suffices to show that π(p−1(tλ)) is paved by quaternionic affine spaces
over which a is a trivial fibration. Since L+Gn,H acts transitively on the fiber p−1(t0), we have

π(p−1(t0)) =L+Gn,Ht
−μk =Gr

−w0(μk)
n,H and hence

π(p−1(tλ)) = tλπ(p−1(t0)) = tλGr
−w0(μk)
n,H ,

where w0 is the longest element of the Weyl group. Multiplication by tλ is an isomorphism

commuting with a, so it suffices to show that Gr
−w0(μk)
n,H is paved by quaternionic affine spaces

over which a is a trivial fibration. Let μ=−w0(μk). The coweight μ is once again minuscule.
Recall that Grμn,H is a vector bundle over a partial flag variety of Gn,H. On the other hand, Grμn,H
is closed, so it is a partial flag variety of Gn,H. We claim that the orbits of Pμn,H on Grμn,H are the
desired affine spaces.

Each such orbit has the form Pμn,Ht
w(μ) for w ∈Wn an element of the Weyl group. Let wPμn,H =

w(Pμn,H). Then, by the real Bruhat decomposition, there exists a unipotent subgroup wNμ
n,H of

wPμn,H which acts freely and transitively on the orbit Pμn,Ht
w(μ). Hence Pμn,Ht

w(μ) = wNμ
n,Ht

w(μ).
By the LGn,H equivariance of a, we have the following commutative diagram.

wNμ
n,H × a−1(tw(μ))

π1

a−1(wNμ
n,Htw(μ))

a

wNμ
n,H

∼ wNμ
n,Htw(μ)

As the diagram is Cartesian and the bottom arrow is an isomorphism, the top arrow is an
isomorphism as well. By induction, a−1(tw(μ)) is paved by quaternionic affine spaces. Therefore,
it suffices to show that the unipotent subgroup wNμ

n,H is a quaternionic affine space, which is
clear. �

We now recall the terminology of [JMW14] that we will use. For λ∈Λ+
S , let

iλ : Grλn,H ↪→Grn,H

denote the inclusion.

Definition 4.12. Let F∈Db
L+Gn,H

(Grn,H). We say that F is ∗-even (respectively, !-even) if for all

λ∈Λ+
S , the L

+Gn,H-equivariant sheaf i
∗
λF (respectively, i!λF) is a direct sum of constant sheaves

appearing in even degrees. If F is both ∗-even and !-even, we simply say that it is even.
We say that F is ∗-odd (respectively, !-odd) if F[1] is ∗-even (respectively, !-even). If F is both

∗-odd and !-odd, we simply say that it is odd.

Proposition 4.13. For λ∈Λ+
S , the complex ICλ is even.
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Proof. Since ICλ is self-dual, it suffices to show that it is ∗-even. Recall from Proposition 4.5(1)
that we have an equivalence Perv(Grn,H)�Rep(Gn) taking ICλ to the highest-weight module

Vλ. Then Vλ is a direct summand of a tensor product V ⊗j
ε ⊗ V ⊗k

ω1
for some j, k≥ 0. Hence ICλ

is a direct summand of the convolution IC�jε � IC�kω1
. It therefore suffices to show that IC�jε � IC�kω1

is ∗-even. We now apply Lemma 4.11 with μ1, . . . , μj = ε and μj+1 = . . .= μj+k = ω1. Let

m : Grμ•
n,H→Grn,H

denote the convolution map. We have

IC�jε � IC�kω1
�m!(IC

˜�j
ε �̃IC

˜�k
ε ).

Now let ν ∈ΛS and let iν : Grνn,H ↪→Grn,H denote the inclusion. Firstly, we have

H∗
L+Gn,H

(i∗ν(IC
�j
ε � IC�kω1

))�H∗
Tc
(i∗ν(IC

�j
ε � IC�kω1

))W .

Next, by proper base change,

H∗
Tc
(i∗ν(IC

�j
ε � IC�kω1

))�H∗
Tc
(m−1(Grνn,H), IC

˜�j
ε �̃IC

˜�k
ω1

).

Since ε and ω1 are minuscule, the orbits Grω1

n,H and Grεn,H are smooth. Therefore, ICω1
�C[2(n−

1)] and ICε �C. Hence,

H∗
Tc
(m−1(Grνn,H), IC

˜�j
ε �̃IC

˜�k
ω1

)�H∗
Tc
(m−1(Grνn,H),C)[2k(n− 1)].

By Lemma 4.11, the ordinary cohomology H∗(m−1(Grνn,H),C) is concentrated in even degrees
(in fact, in degrees divisible by 4). Hence, m−1(Grνn,H) is equivariantly formal with respect to
the action of Tc. Therefore, H

∗
Tc
(m−1(Grνn,H),C) is concentrated in even degrees.

Now we may express i∗ν(IC
�j
ε � IC�kω1

) as a direct sum of constant sheaves. We have

i∗ν(IC
�j
ε � IC�kω1

)� V
for a complex V ∈Db(VectC). Hence,

H∗
Tc
(i∗ν(IC

�j
ε )�H∗

Tc
(Grλn,H,C)⊗ V.

We have shown that H∗
Tc
(i∗ν(IC

�j
ε ) is concentrated in even degrees. Since H0

Tc
(Grλn,H,C) �= 0, we

conclude that V is concentrated in even degrees. The result follows. �

As a corollary of the proof we obtain the following parity vanishing result.

Corollary 4.14. We have H i−〈λ,ρ2n〉(ICλ) = 0 for i � 4.

Proof. We have shown that any direct summand ICλ of IC�jε � IC�kω1
satisfies

H i−2k(n−1)(ICλ)Z = 0 for i � 4. Since kω1 − λ is a non-negative integral sum of positive coroots,
we have 〈kω1 − λ, ρn〉 ∈Z, and hence 2k(n− 1)− 〈λ, ρ2n〉= 〈kω1 − λ, ρ2n〉= 4〈kω1 − λ, ρn〉 is
divisible by four. The desired claim follows. �

4.7.2. Our goal is now to apply the parity vanishing result above to deduce the following
faithfulness result.

Proposition 4.15. For any λ, μ∈Λ+
S , the natural map

Ext•Db
L+Gn,H

(Grn,H)
(ICλ, ICμ)→Hom•

H∗
L+Gn,H

(Grn,H)
(H∗

L+Gn,H
(ICλ), H

∗
L+Gn,H

(ICμ))

is an isomorphism of graded modules.
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We will deduce Proposition 4.15 as a consequence of the following more general result.

Proposition 4.16. Let F, G∈Db
L+Gn,H

(Grn,H). Assume that F and G are even. Then the natural
map

Ext•Db
L+Gn,H

(Grn,H)
(F, G)→Hom•

H∗
L+Gn,H

(Grn,H)
(H∗

L+Gn,H
(F), H∗

L+Gn,H
(G))

is an isomorphism of graded modules.

Proof of Proposition 4.15. By Proposition 4.13, we know that ICλ and ICμ are even complexes.
The claim now follows from Proposition 4.16. �

4.7.3. In the proof of Proposition 4.16, we will make use of the following terminology.
Consider a triangulated functor

Ω :Db
L+Gn,H

(Grn,H)→Db(VectC).

We say that Ω is ∗-parity preserving (respectively, !-parity preserving) if it takes ∗-even (respec-
tively, !-even) complexes of sheaves to even complexes of vector spaces. If Ω is both ∗-parity
preserving and !-parity preserving, we will simply say that it is parity preserving. We use the
same terminology for functors

Ω :Db
L+Gn,H

(Grn,H)
op→Db(VectC).

To check that functors are parity preserving, we will use the following criterion.

Lemma 4.17. Let

Ω :Db
L+Gn,H

(Grn,H)→Db(VectC)

be a triangulated functor. Then Ω is ∗-even if and only if for each λ∈Λ+
S the complex Ω(jλ!C)

is even. Here, jλ : Grλn,H ↪→Grn,H is the natural inclusion.

Proof. We assume that the latter condition holds and prove that Ω is ∗-parity preserving. Let
F∈Db

L+Gn,H
(Grn,H) be ∗-even. We must show that Ω(F) is even, which we do by induction on

the support of F (which is a finite union of L+Gn,H-orbits). Let

j : Grλn,H ↪→Grn,H

denote the inclusion of a L+Gn,H-orbit open in the support of F. Let

i : Grλn,H \Grλn,H ↪→Grn,H

denote the complementary closed embedding. We have a triangle

j!j
!F→F→ i∗i∗F→ .

Applying Ω yields

Ω(j!j
!F)→Ω(F)→Ω(i∗i∗F)→ .

By induction, we may assume that Ω(i∗i∗F) is even. On the other hand, F is L+Gn,H equivariant
and ∗-even. Hence, j!F is a direct sum of complexes of the form C[m] for m even. Therefore,
Ω(j!j

!F) is ∗-even, Ω(F) is ∗-even, and Ω is ∗-parity preserving.
For the converse, observe that each jλ!C is ∗-even, as its only non-trivial stalk is isomorphic

to H∗
L+Gn,H

(pt). Hence Ω(jλ!C) is ∗-even. �
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Corollary 4.18.

(i) The functor ΓL+Gn,H
(Grn,H,−) is ∗-parity preserving.

(ii) Let G∈Db
L+Gn,H

(Grn,H) be !-even. Then the functor HomDb
L+Gn,H

(Grn,H)(−, G) is ∗-parity
preserving.

Proof.

(i) We claim that the cohomology H∗
L+Gn,H

(j!λC) is even. By the long exact sequence, it suffices

to show that each H∗
L+Gn,H

(Grλn,H,C) is even. The non-equivariant cohomology H∗(Grλn,H,C)

is even because Grλn,H is paved by quaternionic affine spaces. Therefore jλ!C is L+Gn,H-

equivariantly formal, and so H∗
L+Gn,H

(Grλn,H,C)�H∗(Grλn,H,C)⊗H∗
L+Gn,H

(pt,C) is even.

By Lemma 4.17, we conclude that ΓL+Gn,H
(Grn,H,−) is ∗-parity preserving.

(ii) By Lemma 4.17, we must check that

ExtiDb
L+Gn,H

(Grn,H)
(jλ!C, G)� 0

for each λ∈X+
A and i odd. By adjunction,

ExtiDb
L+Gn,H

(Grn,H)
(jλ!C, G)�ExtiDb

L+Gn,H
(Grn,H)

(C, j!λG)�H i
L+Gn,H

(j!λG).

The claim follows from the assumption that G is !-even. �

Lemma 4.19. Let F∈Db
L+Gn,H

(Grn,H) be ∗-even. Suppose that X ⊆Grn,H is a closed finite union

of L+Gn,H-orbits such that X contains the support of F. Let Z ⊆X denote a L+Gn,H-stable
closed subset, and U =X \Z its open complement. Let j :U ↪→X and i :Z ↪→X denote the
natural inclusions. We have a triangle

j!j
!F→F→ i∗i∗F→ .

Now let Ω :Db
L+Gn,H

(Grn,H)→Db(VectC) denote a ∗-parity preserving functor. Then the triangle

Ω(j!j
!F)→Ω(F)→Ω(i∗i∗F)→

is split.

Proof. We must show that the boundary map δ : Ω(i∗i∗F)→Ω(j!j
!F)[1] is zero. Observe that

the functors j!j
! and i∗i∗ take ∗-even sheaves to ∗-even sheaves. Since Ω is ∗-parity preserving,

the complexes Ω(i∗i∗F) and Ω(j!j
!F) are even. Hence, Ω(j!j

!F)[1] is odd. Therefore, δ induces
the zero map in cohomology and so is zero. �

Lemma 4.20. Let F, G∈Db
L+Gn,H

(Grn,H). We make the following assumptions:

(1) F is ∗-even;
(2) G is !-even;

(3) for any μ∈Λ+
S , the map

H∗
L+Gn,H

(F)→H∗
L+Gn,H

(j∗μF)

is surjective;

(4) for any μ∈Λ+
S , the map

H∗
L+Gn,H

(jμ!j
!
μG)→H∗

L+Gn,H
(G)

is injective.
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Then the natural map

Ext∗Db
L+Gn,H

(Grn,H)
(F, G)→Hom∗

H∗
L+Gn,H

(Grn,H)
(H∗

L+Gn,H
(F), H∗

L+Gn,H
(G))

is an isomorphism of graded modules.

Proof. Let Z denote the union of the supports of F and G. We proceed by induction on Z.
Certainly there exists an orbit Grλn,H open in Z. Let Y =Z \Grλn,H, and let iλ : Y ↪→Z denote

the inclusion. We claim that the pair i∗λF and i!λG satisfies the assumptions (1)–(4).
That i∗λF is ∗-even and that i!λG is !-even is evident. We verify (3) for i∗λF. If Grμn,H does not

lie in the support of i∗λF, then there is nothing to prove. So we may assume that Grμn,H ⊆ Y .
Therefore, we have the composition of maps

H∗
L+Gn,H

(F)→H∗
L+Gn,H

(i∗λF)→H∗
L+Gn,H

(j∗μi
∗
λF)�H∗

L+Gn,H
(j∗μF).

The composite is surjective by assumption. Hence, the map

H∗
L+Gn,H

(i∗λF)→H∗
L+Gn,H

(j∗μi
∗
λF)

is surjective, as needed. The proof that i!λG satisfies (4) is similar.
Now we proceed with the induction. To avoid overly cumbersone notation, we will suppress

the subscripts on Ext∗Db
L+Gn,H

(Grn,H)
and Hom∗

H∗
L+Gn,H

(Grn,H)
. Similarly, we will make use of the

isomorphism H∗
L+Gn,H

�H∗
G to simplify notation. Lastly, we let H =H∗

L+Gn,H
(Grn,H).

Consider the triangle

jλ!j
!
λF→F→ iλ∗i∗λF→ . (4.15)

By Lemma 4.19, Corollary 4.18, and adjunction, we have an exact sequence

0→Ext∗(i∗λF, i
!
λG)→Ext∗(F, G)→Ext∗(j!λF, j

!
λG)→ 0. (4.16)

We can also apply the functor H∗ to (4.15) to obtain the exact sequence

0→H∗
G(jλ!j

!
λF)→H∗

G(F)→H∗
G(i

∗
λF)→ 0.

Similarly, we have the exact sequence

0→H∗
G(i

!
λG)→H∗

G(G)→H∗
G(j

∗
λG)→ 0. (4.17)

These two exact sequences induce a sequence

0→Hom∗(H∗
G(i

∗
λF), H

∗
G(i

!
λG))→Hom∗(H∗

G(F), H
∗
G(G))→Hom∗(H∗

G(F), H
∗
G(j

∗
λG)).

The second map is clearly an injection. We claim that the sequence is also exact in the middle.
It suffices to show that any H-linear map

α :H∗
G(F)→H∗

G(i
!
λG)

factors through H∗
G(i

∗
λF). Consider the compactly supported cohomology H∗

G,c(Grλn,H). Let cλ ∈
H

〈2ρ2n,λ〉
G,c (Grλn,H) denote a lift of a generator to G-equivariant cohomology; it maps to an element

cλ ∈H. Since cλ maps to 0∈H∗
G(Y ), it acts trivially on H∗(i!λG). Since α is H-linear, it suffices

to show that H∗(jλ!j!λF) lies in the image of

cλ :H
∗
G(F)→H∗

G(F[−〈2ρ2n, λ〉]).
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To do so, we note that by Poincaré duality for the smooth manifold Grλn,H, cupping with cλ
induces an isomorphism

cλ :H
∗
G(jλ!j

!
λF)→H∗

G(jλ∗j
∗
λF[−〈2ρ2n, λ〉]).

Thus we obtain the following commutative diagram.

H∗
G( )

cλ
H∗
G( [−〈2ρ2n, λ〉])

H∗
G(jλ!j

!
λ )

cλ
H∗
G(jλ∗j

∗
λ [−〈2ρ2n, λ〉])

As the bottom arrow is an isomorphism, it suffices to show that the right vertical map is
surjective. But this is assumed in (3).

Next, we observe that any H-linear map β :H∗
G(F)→H∗

G(j
∗
λG) factors through H

∗
G(j

∗
λF). The

proof is similar to that of the previous step, using (4) in place of (3), and is therefore omitted.
Hence, we have an exact sequence

0→Hom∗(H∗
G(i

∗
λF), H

∗
G(i

!
λG))→Hom∗(H∗

G(F), H
∗
G(G))→Hom∗(H∗

G(j
∗
λF), H

∗
G(j

∗
λG)).

To conclude, we observe that this exact sequence fits into the following commutative diagram
with (4.16).

Ext∗(i∗λ , i!λ )

f

Ext∗( , )

g

Ext∗(j∗λ , j∗λ )

h

Hom∗
H(H

∗
G(i

∗
λ ), H∗

G(i
!
λ )) Hom∗

H(H
∗
G( ), H∗

G( )) Hom∗
H(H

∗
G(j

∗
λ ), H∗

G(j
∗
λ ))

The map f is an isomorphism by induction, and h is easily seen to be an isomorphism. Hence g
is an isomorphism, as claimed. �

Proof of Proposition 4.16. It suffices to verify that F and G satisfy the hypotheses of Lemma
4.20. The properties (1) and (2) are assumed. We will show that (3) holds; the proof of (4) is
similar. We must show that for each λ∈Λ+

S , the map

H∗
G(F)→H∗

G(j
∗
λF)

is surjective. It identifies with

H∗
Tc
(F)Wn→H∗

Tc
(j∗λF)

Wn .

Since the coefficient field has characteristic zero, the functor of Wn-invariants is exact, and it
suffices to show that the restriction map H∗

Tc
(F)→H∗

Tc
(j∗λF) is surjective. We let

kλ : (Grλn,H)
Tc ↪→Grn,H

denote the inclusion of the Tc-fixed locus in Grλn,H. Now, consider the composition

H∗
Tc
(F)→H∗

Tc
(j∗λF)→H∗

Tc
(k∗λF). (4.18)

Observe that j∗λF is a constant sheaf and that Grλn,H is an equivariantly formal Tc-manifold.
Hence, the second map above is injective by the localization theorem. The surjectivity of the
first map is then reduced to that of the composition. Now, kλ is a closed inclusion, so kλ∗k∗λF
is ∗-even. The proof of Lemma 4.19, applied in the Tc-equivariant derived category, shows that
the restriction map H∗

Tc
(F)→H∗

Tc
(k∗λF) is indeed surjective. �
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4.8 Ext algebras

The tensor equivalence Rep(Gn)�Perv(Grn,H) gives rise to a monoidal action of Rep(Gn) on
Db(L+Gn,H\Grn,H). We compute the de-equivariantized extension algebra

Ext∗Db(L+Gn,H\Grn,H)
(IC0, IC0 �O(Gn)).

Strictly speaking, O(Gn) is not an object of Rep(Gn), but by the Peter–Weyl theorem, it is
an increasing direct sum of objects. We understand the above extension algebra to mean the
increasing direct sum of extensions.

Proposition 4.21. There is a Gn-equivariant isomorphism of graded algebras

Ext∗Db
L+Gn,H

(Grn,H)
(IC0, IC0 �O(Gn))�O(gn[4])� Sym(gn[−4]).

Proof. By Proposition 4.15, taking equivariant cohomology induces a Gn-equivariant isomor-
phism of graded algebras

Ext∗Db(L+Gn,H\Grn,H)
(IC0, IC0 �O(Gn))� (Hom∗

H∗
Tc

(Grn,H)
(H∗

Tc
(pt), H∗

Tc
(Grn,H, IC0 �O(Gn))

W

� (Hom∗
H∗

Tc
(Grn,H)

(O(t),O(Gn × t)))W

� (O(Gn × t)Spec(H
Tc∗ (Grn,H)))W,

where O(Gn × t)Spec(H
Tc∗ (Grn,H)) ⊂O(Gn × t) is the subspace consisting of functions that are

invariant (relative over t) with respect to the left action of the group scheme Spec(HTc∗ (Grn,H))�
(Gn × t)e

T
X on Gn × t. Since O(gregn ×cn t) =O(gn ×cn t) and the map

ν :Gn × t→ gregn ×cn t, (g, t)→ (Adg−1eTX(t), t) (4.19)

realizes Gn × t as a (Gn × t)e
T
X -torsor over gregn ×cn t, we obtain an isomorphism of algebras

Ext∗Db(L+Gn,H\Grn,H)
(IC0, IC0 �O(Gn))� (O(Gn × t)Spec(H

Tc∗ (Grn,H)))W

�O(gregn ×cn t)W �O(gn ×cn t)W �O(gn).

It remains to check that the isomorphism above is compatible with the desired gradings. By
[Nad05, Theorem 8.5.1], for any λ∈ΛS and F∈Perv(Grn,H), the compactly supported cohomol-

ogy H∗
c (S

λ
n,H, F) along the real semi-infinite orbit Sλn,H is non-zero only in degree 〈λ, ρ2n〉. Note

that 〈λ, ρ2n〉= 4〈λ, ρn〉, where in the second paring we regard λ as an element in Λn. Thus the
grading on H∗(Grn,H, ICλ) corresponds, under the geometric Satake equivalence, to the grading
on Vλ given by co-character 4ρn, and it follows that the grading on H∗

Tc
(Grn,H, IC0 �O(Gn))�

O(Gn × t) is induced by the Gm-action on Gn × t given by x(g, t) = (4ρn(x)g, x
−2t) (note that

the generators of O(t) are in degree 2). We claim that the map ν in (4.19) is Gm-equivariant with
respect to the above action on Gn × t and the action on gregn ×cn t given by x(v, t) = (x−4v, x−2t).
Indeed, we have

Ad4ρn(x−1)e
T
X(x

−2t) =Ad4ρn(x−1)

⎛
⎜⎜⎜⎜⎝
x−4t21 1
... x−4t22

. . .
...

. . . 1
0 0 . . . x−4t2n

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝
x−4t21 x−4

... x−4t22
. . .

...
. . . x−4

0 0 . . . x−4t2n

⎞
⎟⎟⎟⎟⎠

= x−4eTX(t),
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and hence

ν(x(g, t)) = ν(4ρn(x)g, x
−2t) = (Adg−1Ad4ρn(x)−1eTX(x

−2t), x−2t)

= (x−4Adg−1eTX(t), x
−2t) = x(Adg−1eTX(t), t) = xν(g, t).

Thus the pullback along the map ν induces an isomorphism of graded algebras

(O(Gn × t)Spec(H
Tc∗ (Grn,H)))W �O(gregn [4]×gn[4]//Gn

t[2])W �O(gn[4]).

This finishes the proof of the theorem. �

4.9 IC-stalks, q-analogue of weight multiplicity, and Kostka–Foulkes polynomials

In this section we shall prove Theorem 1.9(2). We will follow Ginzburg’s approach [Gin95] (see
also [Zhu15, § 5]) using techniques of equivariant cohomology.

Let V ∈Rep(Gn). Consider the Brylinski–Kostant filtration FiV := ker ei+1
n , i≥ 0 on V asso-

ciated to the regular nilpotent element en. For any μ∈Λn, we denote by V (μ) the μ-weight
space of V (since Gn is self-dual, we can view Λn as the weight lattice of Gn). The filtration FiV
induces a filtration on the weight space:

FiV (μ) = FiV ∩ V (μ).

Let

Pμ(V, q) =
∑
i

dim(FiV (μ)/Fi−1V (μ))qi

be the q-analogue of the weight multiplicity polynomial.
From now on we will identify Λn with the set ΛS of real coweights and denote by sμ : {μ}→

Λn �ΛS ⊂Grn,H the inclusion map.

Theorem 4.22. Let F∈Perv(Grn,H) and let V =H∗(Grn,H, F) be the corresponding represen-
tation of Gn. We have

Pμ(V, q) =
∑
i

dimH−4i−4〈μ,ρn〉(s∗μF)q
i =

∑
i

dimH4i+4〈μ,ρn〉(s!μF)q
i.

The theorem above implies Theorem 1.9(2) in the case of the quaternionic affine
Grassmannian. Indeed, if μ, λ∈Λ+

n and V = Vλ is the irreducible representation of highest weight
λ, then it is known that Pμ(Vλ, q) =Kλ,μ(q) is the Kostka–Foulkes polynomial associated to
λ and μ (see e.g. [Bry89]). Thus, for any x∈Grμn,H, we have

Kλ,μ(q) =
∑
i

dimH−4i−4〈μ,ρn〉(s∗μF)q
i =

∑
i

dimH −4i−4〈μ,ρn〉
x (ICλ)q

i,

and it follows that

q〈λ−μ,ρn〉Kλ,μ(q
−1) =

∑
i

dimH −4i−4〈μ,ρn〉
x (ICλ)q

−i−〈μ,ρn〉+〈λ,ρn〉 =
∑
i

dimH 4i−4〈λ,ρn〉
x (ICλ)q

i.

The case of LK-orbits on Gr2n follows from the fact [CN24, Theorem 7.5] that there is
a stratified Kc-equivariant homeomorphism between ΩKc\Gr2n and Grn,H (where ΩKc is the
based loop group ofKc) with stratifications given by images of LK-orbits on Gr2n in the quotient
ΩKc\Gr2n and the L+Gn,H-orbits on Grn,H.
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4.9.1 Proof of Theorem 4.22. We follow closely the presentation in [Zhu15, § 5]. For any
t∈ t we denote by κ(t) the residue field of t. The specialized cohomology

Ht(Grn,H, F) :=H∗
Tc
(Grn,H,F)⊗RT

κ(t)

carries a canonical filtration

H≤i
t (Grn,H, F) := Im

(∑
j≤i

Hj
Tc
(Grn,H, F)→Ht(Grn,H,F)

)
.

Let us identify Ht(Grn,H, F)� (H∗(Grn,H,F)⊗RT )⊗RT
κ(t)� V via the canonical splitting in

(4.11). As explained in the proof of Proposition 4.21, the cohomological grading on H∗(Grn,H, F)
corresponds to the grading on the representation V given by the eigenvalues of 4ρn. It follows
that the filtration H≤i

t (Grn,H,F) corresponds to the increasing filtration on V given by the
eigenvalues of 4ρn (see e.g. [Gin95, Theorem 5.2.1]).

Fix a generic element t= (t1, . . . , tn)∈ t away from the root hyperplanes. The localization
theorem implies that there is an isomorphism⊕

μ∈Λn

Ht(s
!
μF)�Ht(Grn,H,F). (4.20)

Recall the description of the equivariant homology Spec(HTc∗ (Grn,H))� (Gn × t)e
T
X in Lemma

4.9. The fiber of the group scheme (Gn × t)e
T
X over t is the centralizer subgroup (Gn)

eTX(t) ⊂Gn
of the element eTX(t)∈ gn in (3.14) . Let Bn→ Tn be the natural projection. It is shown in
[O’Br23, Lemma 4] (generalizing [YZ11, Remark 3.4]) that the composition

Spec(HTc∗ (Grn,H))� (Gn × t)e
T
X ⊂Bn × t→ Tn × t

can be identified with the map coming from equivariant localization,

Spec(Loc∗) : Spec(HTc∗ (Grn,H))→ Spec(RT [Λn]) = Tn × t.

Over t, this is an isomorphism and therefore we obtain a canonical isomorphism (Gn)
eTX(t) �

Tn × {t} � Tn. In addition, the action of (Gn)
eTX(t) on Ht(S

μ
n,H,F) via (Gn)

eTX(t) � Tn is identi-

fied with the natural action of (Gn)
eTX(t) on Ht(S

μ
n,H,F)�Ht(s

!
μF). Thus we conclude that the

decomposition in (4.20) corresponds to the weight decomposition under (Gn)
eTX(t) (generalizing

[Zhu15, Proposition 5.2]).

Lemma 4.23. The decomposition in (4.20) corresponds, under the canonical isomorphism
Ht(Grn,H,F)� V , to the weight decomposition V =⊕μ∈Λn

V (μt) with respect to the action
of the maximal torus (Gn)

eTX(t). Here V (μt) is the weight space associated to the character

μt : (Gn)
eTX(t) � Tn μ→C×.

Choose t∈ t such that eTX(t) = en + 2ρn. Let u be the unique element in Nn such that
Adu(en + 2ρn) = 2ρn.

Lemma 4.24. We have

H≤4i+2m
t (Grn,H,F)∩

⊕
μ∈Λn,2〈μ,ρn〉=m

Ht(s
!
μF) = FiV ∩

⊕
μ∈Λn,2〈μ,ρn〉=m

V (μt).

Proof. Let V =
⊕

V 1(i) and V =
⊕

V 2(i) be two gradings on V given by the cocharacters 2ρn
and Adu−12ρn, respectively. Let F

1
i V and F 2

i V be the two filtrations on V given by F 1
i V =

⊕j≤iV 1(j) and F 2
i V = ker(ei+1

n ). We have

FiV ∩
⊕

μ∈Λn,2〈μ,ρn〉=m
V (μt) = F 2

i V ∩ V 2(m)
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and

H≤4i+2m
t (Grn,H, F)∩

⊕
μ∈Λn,2〈μ,ρn〉=m

Ht(s
!
μF) = F 1

2i+m(V )∩ V 2(m),

and the desired claim follows from [Zhu15, Lemma 5.5]. �

Note that we have shown in (4.18) that the natural map H∗
Tc
(Grn,H,F)→H∗

Tc
(s∗μF) is a

surjective map of free RT -modules, and it implies that the dual map H∗
Tc
(s!μF)→H∗

Tc
(Grn,H,F)

is a splitting injective map of free RT -modules. Thus we have

H≤i
t (Grn,H,F)∩Ht(s

!
μF) =H≤i

t (s!μF).

On the other hand, the element u∈Nn above maps V (μt) to V (μ) and preserves the filtra-
tion FiV , and hence dim(FiV (μ)/Fi−1V (μ)) = dim(FiV (μt)/Fi−1V (μt)). Now the lemma above
implies

Pμ(V, q) =
∑
i

dim(FiV (μ)/Fi−1V (μ))qi =
∑
i

dim(FiV (μt)/Fi−1V (μt))q
i

=
∑
i

dim(H
≤4i+4〈μ,ρn〉
t (Grn,H,F)∩Ht(s

!
μF)/H

≤4(i−1)+4〈μ,ρn〉
t (Grn,H,F)∩Ht(s

!
μF))q

i

=
∑
i

dim(H
≤4i+4〈μ,ρn〉
t (s!μF)/H

≤4(i−1)+4〈μ,ρn〉
t (s!μF))q

i.

To conclude the proof, we observe that under the canonical isomorphism Ht(s
!
μF)�H∗(s!μF),

the canonical filtration on the left-hand side corresponds to the cohomological degree filtration
on the right-hand side, and hence we obtain

Pμ(V, q) =
∑
i

dim(H
≤4i+4〈μ,ρn〉
t (s!μF)/H

≤4(i−1)+4〈μ,ρn〉
t (s!μF))q

i =
∑
i

dim H4i+4〈μ,ρn〉(s!μF)q
i.

5. Main results

5.1 Formality

The goal of this section is to show that the dg-algebra

RHomDb(L+Gn,H\Grn,H)(IC0, IC0 �O(Gn))

is formal.
The proof is based on the following key proposition. The existence of the left adjoint of the

nearby cycles functor in Lemma 4.8 gives rise to a map between Kc-equivariant cohomology

H∗
Kc

(Grn,H)�Ext∗(CGrn,H
,CGrn,H

)
LR′−→Ext∗(CGr2n ,CGr2n)�H∗

Kc
(Gr2n). (5.1)

By taking the graded dual (see § 4.6.2), we get a map between equivariant homology

HKc∗ (Gr2n)→HKc∗ (Grn,H). (5.2)

Proposition 5.1. We have the commutative diagram

Spec(HKc∗ (Grn,H))

�

Spec(HKc∗ (Gr2n))

�

Jn J2n|cn

where the bottom arrow Jn→ J2n|cn is the morphism introduced in (3.6).
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Proof. We shall verify the statement for Tc-equivariant homology, that is, we have a commutative
diagram

Spec(HTc∗ (Grn,H))

�

Spec(HTc∗ (Gr2n))

�

(Gn × t)eT
X � Jn ×cn t (G2n × t)eT � J2n ×c2n t

where the bottom arrow is the map (3.16). All the maps above are compatible with the natural
W-actions, and upon taking W-invariants we get the desired claim.

Let Vω1
and Vω′

1
be the standard representations of Gn and G2n, respectively. Recall the

isomorphisms

H∗
Tc
(Gr2n, ICω′

1
)�H∗(Gr2n, ICω′

1
)⊗RT � Vω′

1
⊗RT , (5.3)

H∗
Tc
(Grn,H,R(ICω′

1
))�H∗(Grn,H,R(ICω′

1
))⊗RT � Vω′

1
⊗RT (5.4)

induced by the complex and real MV-filtrations. Together with the canonical isomorphism

H∗
Tc
(Grn,H,R(ICω′

1
))�H∗

Tc
(Gr2n, ICω′

1
), (5.5)

we get an automorphism

Vω′
1
⊗RT �H∗

Tc
(Grn,H,R(ICω′

1
))�H∗

Tc
(Gr2n, ICω1

)� Vω′
1
⊗RT (5.6)

and hence an element

Φ′ ∈GL(Vω′
1
)⊗RT �G2n ⊗RT . (5.7)

Note that the isomorphisms (5.3) and (5.4) map the standard basis {e1 ⊗ 1, . . . , e2n ⊗ 1} of
Vω′

1
⊗RT to the basis

{b1, . . . , b2n}= {[P0], . . . , [P2n−1]}

of H∗
Tc
(Gr2n, ICω′

1
)�H∗

Tc
(P2n−1) (up to a constant degree shift) and the basis

{c1, . . . , c2n}= {[HP0][2], [HP0], [HP1][2], [HP1], . . . , [HPn−1][2], [HPn−1]}

ofH∗
T (Grn,H,R(ICω′

1
))

Cor4.6� H∗
Tc
(HPn−1)⊕H∗−2

Tc
(HPn−1) (up to a constant degree shift), respec-

tively, and the element Φ′ is the matrix for the linear map sending ci→ bi in the basis c1, . . . , c2n
(which is not the identity element).

By Lemma 4.9, there is a commutative diagram

Gn × t)eT
X

�
Spec H∗

Tc
(Grn,H) GL(H∗

Tc
(Grn,H, R(ICω′

1
)))

�
(5.4)

�(5.5)

G2n × t

�AdΦ′

(G2n × t)eT �
Spec H∗

Tc
(Gr2n) GL(H∗

Tc
(Gr2n, ICω′

1
))

�
(5.3)

G2n × t

(

(5.8)

where the upper and lower middle arrows are given by the co-action ofHTc∗ (Grn,H) andH
Tc∗ (Gr2n)

on H∗
Tc
(Grn,H,R(ICω′

1
)) and H∗

Tc
(Gr2n, ICω′

1
), and the right vertical isomorphism is given by the

conjugation action

AdΦ′ :G2n × t→G2n × t, (g, t)→ (AdΦ′(t)g, t).

1653

https://doi.org/10.1112/S0010437X25007146 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007146


T.-H. Chen et al.

Note that in the above diagram the lower composed map (G2n × t)e
T →G2n × t is the natural

embedding and the upper composed map (Gn × t)e
T
X →G2n × t is the restriction of the map

AdP ◦ δ :Gn × t→G2n × t→G2n × t, (g, t)→ (Pδ(g)P−1, t)

to (Gn × t)e
T
X , where P ∈G2n is the permutation matrix which sends the the ordered basis

{e1, e3, . . . , e2n−1, e2, e4, . . . , e2n} to the ordered basis {e1, . . . , e2n} (see § 3.4.3).
Thus, in view of the description of the map (Gn × t)e

T
X → (G2n × t)e

T

in (3.16), we need to
show that the element

Φ :=Φ′ ◦ P ∈G2n ⊗RT
satisfies

eT =Φ(τ ◦ eTX)Φ−1 ∈ g2n ⊗RT . (5.9)

To this end, we observe that, by Lemma 4.4, the elements τ ◦ eTX and eT in g2n ⊗RT are
the matrices of the cup product map cT1 (L)∪ (−) :H∗

Tc
(Gr2n, ICω′

1
)→H∗

Tc
(Gr2n, ICω′

1
) in the

bases {d1, . . . , d2n}= {[HP0][2], . . . , [HPn−1][2], [HP0], . . . , [HPn−1]} and {b1, . . . , b2n}, respec-
tively. On the other hand, the element Φ=Φ′ ◦ P is the matrix for the linear map sending
di→ ci→ bi in the basis d1, . . . , d2n, and hence (5.9) holds. This completes the proof of the
proposition. �

Remark 5.2. The proof gives a canonical construction of the element Φ in (3.17).

In the statement and proof of the next results, we continue with the following conven-
tion: the corresponding objects O(Gn)↔ ICO(Gn) and their variants may not lie in Rep(Gn)�
Perv(Grn,H), but they are an increasing direct sum of objects, and we understand all calculations
to mean the increasing direct sum of calculations.

Proposition 5.3. The dg-algebra RHomDb(L+Gn,H\Grn,H)(IC0, IC0 �O(Gn)) is formal.

Proof. Consider the dg-algebras

A=RHomDb(L+G2n\Gr2n)(IC0, IC0 �O(G2n)),

B =RHomDb(L+Gn,H\Grn,H)(IC0, IC0 �O(Gn ×Gm)).

Here we consider O(Gn ×Gm)�
⊕

j∈Z ICO(Gn)[j] via the monoidal functor Rep(Gn ×Gm)�⊕
j∈Z Perv(Grn,H)[j]⊂Db(L+Gn,H\Grn,H). Proposition 4.5(3) implies that the nearby cycle

functor gives rise to a map of dg-algebras

φ :A=RHomDb(L+G2n\Gr2n)(IC0, IC0 �O(G2n))

R→RHomDb(L+Gn,H\Grn,H)(IC0, IC0 � (Res
G2n

Gn×Gm
O(G2n)))

→B =RHomDb(L+Gn,H\Grn,H)(IC0, IC0 �O(Gn ×Gm)),

where the last arrow is induced by the quotient map ResG2n

Gn×Gm
O(G2n)→O(Gn ×Gm) (in

the category of Rep(Gn ×Gm)). The right regular representations of G2n on Gn ×Gm induce
natural G2n- and Gn ×Gm-actions on A and B, and their restrictions to the subgroup
Gm ⊂Gn ×Gm ⊂G2n give rise to Gm-weight decompositions A=⊕j∈ZAj and B =⊕j∈ZBj .
Note that the zero-weight spaces A0 and B0 are dg-subalgebras of A and B and that B0 =
RHomDb(L+Gn,H\Grn,H)(IC0, IC0 �O(Gn)).

According to [BF08], the dg-algebra A is formal; moreover, we have A�H∗(A)�O(g2n[2]).
Note that the map φ :A→B above respects the Gm-action and hence restricts to a map φ0 :
A0→B0 fitting into the following diagram.
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A0
φ0

B0

A
φ

B

We claim that the map H∗(φ0) :H∗(A0)→H∗(B0) between cohomology is surjective. Since
A0 is formal with generators in even degree and H∗(B0)�H∗(RHomDb(L+Gn,H\Grn,H)(IC0, IC0 �
O(Gn)))�O(gn[4]), which is a polynomial ring with generators in even degree (see Lemma 4.21),
Lemma 5.4 below implies that B0 is formal. The proposition follows.

To proof the claim and show the surjectivity of H∗(φ0) :H∗(A0)→H∗(B0), we can ignore the
grading and view H∗(φ0) as maps between ungraded algebras. We have a commutative diagram

H∗(A)
�

H∗(φ)

Hom∗
H∗

G2n
(Gr2n)(H

∗
G2n

(IC0), H
∗
G2n

(IC0 � O(G2n)))

H∗(B)
�

Hom∗
H∗

Kc
(Grn,H)(H

∗
Kc

(IC0), H
∗
Kc

(IC0 � O(Gn ×Gm)))

where the horizontal isomorphisms are given by the functor of equivariant cohomology; see
Proposition 4.15. Note that IC0 �O(Gn ×Gm)�

⊕
j∈Z ICO(Gn)[j] is a direct sum of shifts of IC-

complexes and hence Proposition 4.15 is applicable. On the other hand, using Proposition 5.1,
we can identify the right vertical arrow as

Hom∗
H∗

G2n
(Gr2n)(H

∗
G2n

(IC0), H
∗
G2n

(IC0 � O(G2n))) O(G2n × c2n)J2n

Hom∗
H∗

Kc
(Grn,H)(H

∗
Kc

(IC0), H
∗
Kc

(IC0 � O(Gn ×Gm))) O(Gn ×Gm × cn)Jn

where the right vertical map above is induced by the embeddings τ : cn→ c2n in (3.4) and
δ × 2ρL :Gn ×Gm→G2n in (3.19). The group schemes J2n and Jn act on O(G2n × c2n) and

O(Gn ×Gm × cn) via the identifications J2n � (G2n × c2n)
Ad−1

P ◦κ2n and Jn � (Gn × cn)
τ◦κn , where

Ad−1
P ◦ κ2n : c2n

κ2n→ greg2n

Ad−1
P→ greg2n and τ ◦ κn : cn κn→ gregn

τ→ greg2n are the maps in (3.9). Thus we have
a commutative diagram

O(G2n × cn)J2n
�

O(greg
2n ) � O(g2n)

O(Gn ×Gm × cn)Jn
�

O(greg
n ×Gm) � O(gn ×Gm)

where the right vertical arrow is given by pullback of functions along the map

gn ×Gm→ g2n, (C, t)→Ad2ρL(t)−1τ(C) =

(
0 t−2Idn
t2C 0

)
. (5.10)

All together we can identify H∗(φ) :H∗(A)→H∗(B) with the map O(g2n)→O(gn ×Gm) (as
map between non-graded algebras), and we need to show that the induced map

O(g2n)0→O(gn ×Gm)0 =O(gn) (5.11)
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between the zero-Gm-weight spaces is surjective. For this we observe that the map

g2n→ gn,

(
A B
C D

)
→BC (5.12)

is Gm-equivariant (Gm acts trivially on gn) and the composition gn ×Gm
(5.10)→ g2n

(5.12)→ gn is
the projection map (C, t)→C. Thus the pullback map O(gn)→O(g2n)0 along (5.12) defines a
section of (5.11). We are done. �

Lemma 5.4. Let φ :A1→A2 be a map of dg-algebras. Assume that (1) H∗(A1) is commutative,
(2) H∗(A2) is isomorphic to a polynomial ring with generators in even degree, and (3) the map
H∗(φ) :H∗(A1)→H∗(A2) is surjective. Then A1 being formal implies that A2 is formal.

Proof. Let x1, . . . , xl be the set of generators of H
∗(A2) in even degree such that C[x1, . . . , xl]�

H∗(A2). Since H∗(φ) :H∗(A1)→H∗(A2) is surjective, one can find homogeneous elements
y1, . . . , yl ∈H∗(A1) such that H∗(φ)(yi) = xi for i= 1, . . . , l. Assume that H∗(A1)�A1 is for-
mal; then we have map of dg-algebras C[z1, . . . , zl]→H∗(A1)�A1 sending zi to yi. Then

the composition γ :C[z1, . . . , zl]→H∗(A1)�A1
φ→A2 defines a dg-algebra morphism such that

H∗(γ) :C[z1, . . . , zl]�C[x1, . . . , xl]�H∗(A2) is the isomorphism sending zi to xi. The lemma
follows. �

5.2 Derived geometric Satake equivalence for the quaternionic groups

Denote by DGn(Sym(gn[−4])) the dg-category of Gn-equivariant dg-modules over the dg-algebra
Sym(gn[−4]) (equipped with trivial differential). It is known that DGn(Sym(gn[−4])) is com-
pactly generated and the full subcategory DGn(Sym(gn[−4]))c of compact objects coincides

with the full subcategory DGn(Sym(gn[−4]))c =DGn

perf(Sym(gn[−4])) consisting of perfect mod-

ules. Denote by DGn(Sym(gn[−4]))Nilp(gn)
and DGn

perf(Sym(gn[−4]))Nilp(gn)
the full subcategories

of DGn(Sym(gn[−4])) and DGn

perf(Sym(gn[−4])), respectively, consisting of modules that are
set-theoretically supported on the nilpotent cone Nilp(gn) of gn.

Note that the category DGn(Sym(gn[−4])) (respectively, DGn

perf(Sym(gn[−4])), DGn(Sym

(gn[−4]))Nilp(gn)
, or DGn

perf(Sym(gn[−4]))Nilp(gn)
) has a natural monoidal structure given by the

(derived) tensor product: (F1,F2)→F1 ⊗F2 :=F1 ⊗LSym(gn[−4]) F2.

Theorem 5.5.

(1) There is a canonical equivalence of monoidal categories

Ind(Db(L+Gn,H\Grn,H))�DGn(Sym(gn[−4]))
which induces a monoidal equivalence

Db(L+Gn,H\Grn,H)�DGn

perf(Sym(gn[−4]))
between the corresponding (non-cocomplete) full subcategory of compact objects.

(2) There is a canonical equivalence of monoidal categories

D(L+Gn,H\Grn,H)�DGn(Sym(gn[−4]))Nilp(gn)

which induces a monoidal equivalence

D(L+Gn,H\Grn,H)
c �DGn

perf(Sym(gn[−4]))Nilp(gn)

between the corresponding (non-cocomplete) full subcategory of compact objects.
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Proof. To prove (1), write C := Ind(Db(L+Gn,H\Grn,H)). The dg-category C is a module cat-
egory for the dg-category D(QCoh(BGn)) of quasi-coherent sheaves on BGn, and we can
form the de-equivariantized category Cdeeq := C×BG {pt} with objects Ob(Cdeeq) =Ob(C) and
(dg-)morphisms

HomCdeeq
(F1,F2) =HomC(F1,F2 �O(Gn)) =RHomInd(Db(L+Gn,H\Grn,H))(F1,F2 �O(Gn)).

Every object F∈ Cdeeq carries a natural action of Gn, and we can recover C by taking Gn-
equivariant objects in Cdeeq. The fact that IC0 is compact and generates C under the action
of DQCoh(BGn) implies that IC0, viewed as an object in Cdeeq, is a compact generator.
Hence the Barr–Beck–Lurie theorem [Lur17, Theorem 4.7.3.5] implies that the assignment
F→HomCdeeq

(IC0,F) defines an equivalence of categories

Cdeeq �D(HomCdeeq
(IC0, IC0)

op) (respectively, C �DGn(HomCdeeq
(IC0, IC0)

op)),

where HomCdeeq
(IC0, IC0)

op is the opposite of the dg-algebra of endomorphisms of IC0 and
D(HomCdeeq

(IC0, IC0)
op) (respectively, DGn(HomCdeeq

(IC0, IC0)
op)) are the corresponding dg-

categories of dg-modules (respectively, Gn-equivariant dg-modules). Now Proposition 4.21
and Proposition 5.3 imply that the dg-algebra HomCdeeq

(IC0, IC0)
op is formal and there is a

Gn-equivariant isomorphism8

HomCdeeq
(IC0, IC0)

op �RHomInd(Db(L+Gn,H\Grn,H))(IC0, IC0 �O(Gn))
op

�Ext∗Ind(Db(L+Gn,H\Grn,H))
(IC0, IC0 �O(Gn))

op

� Sym(gn[−4])op � Sym(gn[−4])8,
and hence we conclude that there is an equivalence

Ind(Db(L+Gn,H\Grn,H))�DGn(Sym(gn[−4])),
F→RHomInd(Db(L+Gn,H\Grn,H))(IC0,F �O(Gn)).

The monoidal structure on the constructed equivalence will be proved in § 5.4. This finishes the
proof of part (1).

Part (2) follows from the general discussion in [AG15, § 12] on derived geometric Satake for

complex reductive groups. Let ĨC0 = p!(Cpt)∈D(L+Gn,H\Grn,H) where p : pt→L+Gn,H\pt�
L+Gn,H\Gr0n,H→L+Gn,H\Grn,H. By [AG15, § 12.6.6], ĨC0 is in fact a compact object ĨC0 ∈
D(L+Gn,H\Grn,H)

c and the category D(L+Gn,H\Grn,H) is compactly generated by objects of

the form ĨC0 ∗ V for V ∈Rep(Gn). We claim that under the fully faithful embedding

D(L+Gn,H\Grn,H)� Ind(D(L+Gn,H\Grn,H)
c)→ Ind(Db(L+Gn,H\Grn,H))�DGn(Sym(gn[−4])),

(5.13)

the compact generator ĨC0 goes to Sym(gn[−4])⊗Sym(gn[−4])Gn C, where C is the augmenta-

tion module of Sym(gn[−4])Gn . Since Sym(gn)⊗Sym(gn)
Gn C�O(Nilp(gn)), we conclude that

D(L+Gn,H\Grn,H) is equivalent to the full subcategory of DGn(Sym(gn[−4])) generated by
objects of the form O(Nilp(gn))⊗ V for V ∈Rep(Gn). It is clear that this subcategory is exactly
DGn(Sym(gn[−4]))Nilp(gn)

. To prove the claim, we observe that Proposition 4.15 implies that the

image of ĨC0 under (5.13) is given by

RHomInd(Db(L+Gn,H\Grn,H))(IC0, ĨC0 �O(Gn))�Hom∗
H∗

Tc
(Grn,H)

(H∗
Tc
(IC0), H

∗
Tc
(ĨC0)⊗O(Gn))

W.

8The last isomorphism follows from the fact that Sym(gn[−4]) is commutative with grading in even degree.

1657

https://doi.org/10.1112/S0010437X25007146 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007146


T.-H. Chen et al.

Note that H∗
Tc
(ĨC0)�C is isomorphic to the augmented module of H∗

Tc
(IC0)�O(t[2]), and the

same computation as in Proposition 4.21 shows that

Hom∗
H∗

Tc
(Grn,H)

(H∗
Tc
(IC0), H

∗
Tc
(ĨC0)⊗O(Gn))

W �O(gregn [4]×gn[4]//Gn
{0})W

�O(gn[4]×gn[4]//Gn
{0})

� Sym(gn[−4])⊗Sym(gn[−4])Gn C.

The claim follows. �

5.3 Spectral description of nearby cycles functors

5.3.1 Shift of grading. Let (A=⊕Ai, d) be a dg-algebra equipped with an action of G=
H ×Gm. We will write Ai =⊕Aij where the lower index j refers to the Gm-weights coming from

the Gm-action. Assume that the Gm-weights are even, that is, we have Aij = 0 if j ∈ 2Z+ 1.

Following [AG15, Appendix A.2], one can introduce a new dg-algebra (Ã=
⊕

Ãij , d) where

Ãij =Ai+jj ,

such that the map sending a G-equivariant dg-module (M =
⊕

M i
j , d) over A to the dg-module

(M̃ =
⊕

M̃ i
j , d) over Ã with

M̃ i
j =M i+j

j

induces an equivalence of triangulated categories

DG(A)�DG(Ã) (respectively, DG
perf(A)�DG

perf(Ã)).

Example 5.6. Consider the dg-algebra (A=Sym(g2n), d= 0). The subgroup Gn ×Gm ⊂G2n as
in § 3.5 acts on the generators g2n of A via the adjoint action, and if we write the elements in
g2n in the form

g2n =

{(
A B
C D

)∣∣∣∣A, B, C, D ∈ gn
}
,

then A and D are of weight zero, B is of weight 2, and C is of weight −2. It follows that
Ã� Sym(g̃2n)

where g̃2n consists of elements of the form

g̃2n =

{(
A[0] B[−2]
C[2] D[0]

)∣∣∣∣A, B, C, D ∈ gn
}
.

5.3.2. It follows from Example 5.6 that we have an equivalence of categories

DGn×Gm(Sym(g2n[−2]))�DGn×Gm(Sym(g̃2n[−2])). (5.14)

On the other hand, the natural Gn-equivariant map gn[4]→ g̃2n[2] sending

C[4]→
(

0 Idn
C[4] 0

)
for C ∈ gn

gives rise to a map of dg-algebras

Sym(g̃2n[−2])�O(g̃2n[2])−→O(gn[4])� Sym(gn[−4]) (5.15)
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(here we identify the graded duals of g̃2n[−2] and gn[4] with g̃2n[2] and gn[−4] via the trace
form) and hence a functor

DGLn(Sym(g̃2n[−2]))→DGLn(Sym(gn[−4])), M → Sym(gn[−4])⊗LSym(g̃2n[−2])M. (5.16)

Finally, let us consider the functor

Φ :DG2n(Sym(g2n[−2])) F→DGn×Gm(Sym(g2n[−2]))
(5.14)� DGLn×Gm(Sym(g̃2n[−2]))

F→DGn(Sym(g̃2n[−2]))
(5.16)→ DGn(Sym(gn[−4])), (5.17)

where F are the natural forgetful functors.

Theorem 5.7. The following square is commutative

Ind Db(L+G2n\Gr2n)
R

Ψ �

Ind Db(L+Gn,H\Grn,H)

ΨH �

DG2n(Sym(g2n[−2]))
Φ

DGn(Sym(gn[−4]))

where Ψ and ΨH are the complex and quaternionic Satake equivalences, respectively. It induces
a similar commutative diagram for the subcategories of compact objects.

Proof. We shall construct a natural transformation Φ ◦Ψ→ΨH ◦R. Write A=RHom(IC0,
ICO(G2n))� Sym(g2n[−2]), B =RHom(IC0, ICO(Gn))� Sym(gn[−4]), and A′ =RHom(IC0,
R(ICO(G2n))). Since R(ICO(G2n)) is an algebra object in Ind(D(L+Gn,H\Grn,H)), the (dg) Hom
space A′ is naturally a dg-algebra.

For any F, we have a map of dg-modules for the dg-algebra A,

Ψ(F)�RHom(IC0,F � ICO(G2n))
R−→RHom(IC0,R(F) �R(ICO(G2n))) :=Ψ(F)′,

where A acts on Ψ(F)′ via the dg-algebra map

A=RHom(IC0, ICO(G2n))
R−→A′ =RHom(IC0,R(ICO(G2n))).

The right regular Gm-action on G2n via the co-character 2ρL :Gm→Gn ×Gm ⊂G2n induces
a Gm-action on the dg-algebras A and A′ (with even weights) and also the dg-modules Ψ(F)
and Ψ(F)′. Thus we can perform the shift of grading operation in § 5.3.1 and obtain a map of
dg-modules for the dg-algebra Ã,

Ψ̃(F)→ Ψ̃(F)′, (5.18)

where Ã acts on Ψ̃(F)′ via the map Ã→ Ã′. By Example 5.6, we have

Ã� Sym(g̃2n[−2]).
On the other hand, by Proposition 4.5(3), we have9

R(ICO(G2n))�
⊕
j∈Z

ICRes
G2n
Gn

O(G2n)j
[j]

where

ResG2n

Gn
(O(G2n))�

⊕
j∈Z

ResG2n

Gn×Gm
O(G2n)j

9We have the shift [j] instead of [−j] because we consider right regular action of Gm.
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is the Gm-weight decomposition of ResG2n

Gn
(O(G2n)), and it follows that

Ã′ �RHom(IC0, ICRes
G2n
Gn

(O(G2n))
), Ψ̃(F)′ �RHom(IC0,R(F) � ICRes

G2n
Gn

(O(G2n))
).

Since the natural algebra map ResG2n

Gn
(O(G2n))→O(Gn) of algebra objects in Rep(Gn) coming

from the embedding Gn→Gn ×Gm, g→ (g, e) induces a map

ι : ICRes
G2n
Gn×Gm

(O(G2n))
→ ICO(Gn)

between the corresponding algebra objects in Perv(Grn,H), we obtain a map of dg-algebras,

Ã→ Ã′ �RHom(IC0, ICRes
G2n
Gn

(O(G2n))
)
ι→RHom(IC0, ICO(Gn)) =B, (5.19)

and a map of dg-modules over the dg-algebra Ã,

Ψ̃(F)
(5.18)→ Ψ̃(F)′ �RHom(IC0,R(F) � ICRes

G2n
Gn

(O(G2n))
)
ι→RHom(IC0,R(F) � ICO(Gn))

�ΨH ◦R(F), (5.20)

where Ã acts on ΨH ◦R(F) via the morphism (5.19). Moreover, the proof of Proposition 5.3
implies that the map (5.19) is equal to the map in (5.15). Thus, by the universal property of the
tensor product, the map (5.20) gives rise to a map of dg-modules over the dg-algebra B,

Φ ◦Ψ(F)�B ⊗L
Ã
Ψ̃(F)→ΨH ◦R(F). (5.21)

This finishes the construction of the desired natural transformation map.
Now, to finish the proof, it suffices to check that (5.21) is an isomorphism when F is of

the form F� ICV with V∈Rep(G2n). For this we observe that if V=⊕j∈ZVj is the Gm-weight
decomposition, then we have

ΨH ◦R(ICV)�
⊕
j∈Z

ΨH(ICVj
)[−j]�

⊕
j∈Z

B ⊗C Vj [−j]. (5.22)

On the other hand, we have

Ψ̃(ICV)� ˜(A⊗C V)�
⊕
j∈Z

Ã⊗C Vj [−j]

and hence

Φ ◦Ψ(ICV)�B ⊗Ã Ψ̃(ICV)�B ⊗Ã
(⊕

j∈Z
Ã⊗C Vj [−j]

)
�
⊕
j∈Z

B ⊗C Vj [−j]. (5.23)

It follows from the construction that the map (5.21) is given by

Φ ◦Ψ(ICV)
(5.23)�

⊕
j∈Z

B ⊗C Vj [−j]
(5.22)� ΨH ◦R(ICV)

and hence is an isomorphism. This completes the proof of the proposition. �

5.4 Monoidal structures

We construct a monoidal structure on the equivalence ΨH : Ind(Db(L+Gn,H\Grn,H))�
DGn(Sym(gn[−4])) in Theorem 5.5. Consider the monoidal structure on DGn(Sym(gn[−4])),

M1 ⊗′M2 :=ΨH(Ψ
−1
H

(M1) �Ψ
−1
H

(M2)),

induced from the monoidal structure on Ind(Db(L+Gn,H\Grn,H)) via the equivalence ΨH. We
would like to show that ⊗′ is isomorphic to the natural tensor monoidal structure. The square

1660

https://doi.org/10.1112/S0010437X25007146 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007146


Quaternionic Satake equivalence

in Theorem 5.7, together with the fact that the derived Satake equivalence Ψ is monoidal,
implies that the functor Φ :DG2n(Sym(g2n[−2]))→DGn(Sym(gn[−4])) in loc. cit. is monoidal
with respect to the natural tensor monoidal structure on DG2n(Sym(g2n[−2]) and the above
monoidal structure ⊗′ on DGn(Sym(gn[−4])). Now the desired claim follows from the following
lemma.

Lemma 5.8. Equip DGn(Sym(gn[−4])) with its natural tensor monoidal structure.
Then the natural tensor monoidal structure on DGn(Sym(gn[−4])) is the unique (up to

equivalence) monoidal structure on DGn(Sym(gn[−4])) such that the Rep(G2n)-module functor

Φ : DG2n(Sym(g2n[−2])) DGn(Sym(gn[−4]))

may be compatibly lifted to a monoidal functor. Moreover, the compatible monoidal structure
on Φ is unique (up to equivalence).

Proof. Returning to its construction in (5.17), recall that Φ factors into the sheared forgetful
functor

DG2n(Sym(g2n[−2]))→DGn(Sym(g̃2n[−2]))
followed by the restriction

DGn(Sym(g̃2n[−2]))→DGn(Sym(gn[−4])), M �→ Sym(gn[−4])⊗LSym(g̃2n[−2])M.

First, Sym(g2n[−2])) is the unit of DG2n(Sym(g2n[−2])), so Sym(gn[−4])�Φ(Sym(g2n[−2]))
must be the unit of DGn(Sym(gn[−4])).

Next, recall that DGn(Sym(gn[−4])) is compactly generated by V ⊗ Sym(gn[−4]), where V
is a finite-dimensional representation of Gn. Note that every such V is a direct summand in the
restriction of a finite-dimensional representation of G2n. Since Φ is a Rep(G2n)-module map,
this determines the monoidal product on DGn(Sym(gn[−4])) as well as its coherent associativity
structure.

Finally, since the monoidal structures on Φ must be compatible with its Rep(G2n)-module
structure, it is determined by its restriction to the unit Sym(g2n[−2])) where there are no
choices. �
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