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CREATING MISSPECIFIED MODELS IN MOMENT STRUCTURE ANALYSIS

Keke Lai
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To understand how SEM methods perform in practice where models always have misfit, simulation
studies often involve incorrect models. To create a wrong model, traditionally one specifies a perfect model
first and then removes some paths. This approach becomes difficult or even impossible to implement in
moment structure analysis and fails to control the amounts of misfit separately and precisely for the mean
and covariance parts. Most importantly, this approach assumes a perfect model exists and wrong models
can eventually be made perfect, whereas in practice models are all implausible if taken literally and at best
provide approximations of the real world. To improve the traditional approach, we propose a more realistic
and flexible way to create model misfit for multiple group moment structure analysis. Given (a) the model
μ(·) and �(·), (b) population model parameters θ0, and (c) F1 and F2 specified by the researcher, our
method creates μ∗ and�∗ to simultaneously satisfy (a) θ0 = argmin F[μ∗,�∗; μ(·), �(·)], (b) the mean
structure’s misfit equals F1, and (c) the covariance structure’s misfit equals F2.

Key words: Monte Carlo experiments, model misspecification, moment structure analysis, multiple group
analysis.

Many methods in structural equation modeling (SEM) are developed by assuming the model
is correct, but this assumption never holds in reality. The consequences of incorrect models
are often unknown and need examinations on a case-by-case basis. Methods robust to model
misspecifications exist (e.g., Arminger & Schoenberg, 1989; Gourieroux et al., 1984; Vuong,
1989; White, 1982), but their robustness is usually asymptotic. It is thus important to ask to what
extent those methods can remain robust to model misspecifications given sample sizes typical
of the behavioral sciences. Therefore, no matter whether a method requires the correct model
assumption or not, to better understand the method’s performance in practice, it is necessary to
evaluate the method in simulation studies. Such simulation studies in the literature often proceed
as follows. First, the researcher specifies themodel�(·) and its parameter valuesθ0, obtaining the
model-implied covariance matrix�0 = �(θ0). Second, the researcher removes some parameters
from the correctmodel�(·) and creates an incorrectmodel�∗(·). Third, randomdata are generated
from thepopulationwith�0,whereas data analyses are basedon thewrongmodel�∗(·).Hereafter,
we refer to this type of methods to create model misfit as the Type I approach.

The Type I perspective is easy to implement if the simulation scenario is simple, but becomes
unwieldly as the problem becomes more complex, especially when the model involves mean
structure. First, the form of �(·) partly determines the range of options in the model parameters
one can remove. For example, consider Model 1 depicted in Fig. 1. It is impossible to remove
the factor loadings, and the only parameters available for removal is the factor covariances. To
misspecify the mean structure, the only possibility is to remove the latent means (keep fixing the
intercepts of the indicators to 0 at the same time). Second, because the removablemodel parameters
are limited, the analysis model �∗(·) one obtains is sometimes unrealistic. For example, using
the Type I method, one might remove cF1F2 from Model 1, but in practice a researcher almost
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never leaves F1 and F2 independent. Similarly, the model without aF1 is also unlikely to occur
in practice. These two limitations become salient in some important applications of mean and
covariance structure analysis, including growth curve models and multiple group comparisons.
For growth curvemodels, cross-loadings do not exist, the values of (many or all) factor loadings are
often fixed, and the means of latent factors need to be free parameters. All these characteristics
make it difficult to remove any of the model parameters. Although there are clever ways to
implement the Type I misspecification in this case, they are ad hoc and hold only for peculiar
model forms or special parameter values. For multigroup analysis, it is even more difficult to find
paths in a model to remove. The Type I approach usually comes in the form of incorrect equality
constraints between groups, namely θ j = θk instead of θ j = 0.

The third limitation of the Type I method is the difficulty in controlling the amount of misfit
and the location of misfit. For example, removing cF1F3 from Model 1 (see Fig. 1) leads to
FML = .166 (RMSEA = .073; CFI = .950), and this is the smallest FML one can obtain by
removing a path. Without changing θ0 values, it is impossible to create a wrong model with
smaller FML values such as .15 or .10. Regarding the lack of control on the location of misfit,
removing cF1F2 from Model 1 will not introduce any misfit on the covariances among X1 to
X3, on the covariances among X4 to X6, or on the means of X1 to X9. If one removes aF1
from Model 1, then the model-implied means of X1 to X3 will always be zero. The lack of
control on the misfit location not only restricts the model forms and parameter values available
for simulation design, it also impairs the verisimilitude of a simulation study, because in practice
the discrepancy between model and data usually permeates all the elements of μ(θ) and �(θ)

rather than takes place on few elements only. Without a realistic design, a simulation study is
not helpful for guiding research in practice. The fourth limitation is the difficulty in separating
the misfit in mean structure from that in the covariance structure. The factor loadings, as well
as structural coefficients if any, play a role in both μ(θ) and �(θ), and thus any changes in the
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Figure 1.
Path diagram of Model 1 used in introduction and Demonstration 1. Values are the population model parameters specified
by the researcher. Parameters originating from the triangle “1” have the label “a.” Single-headed arrows from one variable
to another have the label “b.” Double-headed arrows have the label “c”.
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factor loadings affect both the mean and covariance parts. On the other hand, it is important to
understand the different roles of mean structure and covariance structure in model misfit, and
methods are desirable that can change the misfit in one part while maintain the misfit in the other
part constant. For the Type I misspecification, unless designing the simulation in an unrealistic
and peculiar way, it is impossible to separately study the misfit in μ(θ) and �(θ).

The fifth and most fundamental limitation of the Type I method is how it conceptualizes
mistakes in models. Statistical models are at best over-simplifications of reality. They are literally
implausible because they never describe the real process that gives rise to the phenomenon, but
are merely artificial and convenient approximations of the real process. The notion “all models are
wrong” (Box, 1979a) has been reiterated over the history of psychometrics by influential scholars
such as Thurstone (1930), Tukey (1961), Box (1979b), Meehl (1990), Cudeck and Henly (1991),
Thissen (2001), and MacCallum (2003). Because all models are wrong, in practice there never
exists a θ such that � = �(θ). The literal implausibility of models implies that there are always
inherently non-fixable mistakes in modeling; no matter how hard one improves the model by
correcting the fixable mistakes, there will always be discrepancy between � and �(θ) because
�(·) is not the real process that gives rise to�. However, the Type I approach begins by assuming
there is a perfect model, and in this framework, a wrong model can eventually become perfect if
one keeps adding the missing paths back to the model. This perspective imitates only the fixable
mistakes, but ignores the non-fixable mistakes in modeling. A more realistic approach is thus
to imitate both the fixable and non-fixable mistakes, and we refer to this approach as the Type
II perspective. Given a � created from the Type II perspective, even when a model has all the
parameters it should have, there is still discrepancy between � and �(θ).

Important applications of the Type II perspective include MacCallum and Tucker (1991) and
MacCallum and colleagues (1999, 2001; see also MacCallum 2003; Tucker et al., 1969) in the
context of factor analysis. In particular, data are generated based on � = �model +�minor, where
�minor is the covariance matrix of a large number (50 in MacCallum & Tucker, 1991) of minor
latent factors. The rationale is that manifest variables X j and Xk are correlated because they are
affected by numerous common but unknown sources in reality, but a model explains σ jk with
only few common (major) factors. Misfit comes in because the model omits many other sources
of influence, referred to as the minor factors. The best effort in modeling will lead to �model, but
the misfit due to �minor is not fixable because the minor factors are too many to be included in
the model. This application of the Type II perspective is reasonable but difficult to extend outside
of factor analysis. Another application of the Type II perspective is Cudeck and Browne (1992),
where the researcher specifies (a) the model �(·), (b) population model parameter values θ0, and
(c) desired fit function value c (c > 0) based on FML or FO L S . Then, the data covariance matrix
�∗ is created such that (a) θ0 = argmin F[�∗,�(·)] and (b) F[�∗,�(θ0)] = c . Therefore, the
covariance structure holds only approximately in the population. In simulations, random data are
generated from �∗ and the analysis model remains �(·). Compared to MacCallum and Tucker’s
method, Cudeck and Browne’s method is applicable to covariance structure analysis in general
and can control the amount of misfit more easily and precisely. Both methods are free from the
five limitations of the Type I perspective discussed above. However, both methods are limited to
single-group covariance structure analysis.

In this paper, we extend Cudeck and Browne’s (1992) method to multiple group mean
and covariance structure analysis. We propose a method to create μ∗ and �∗ so that, given
μ(·), �(·), θ0, Fmean, and Fcov specified by the researcher, it simultaneously satisfies (a)
θ0 = argmin F[μ∗,�∗;μ(·),�(·)], (b) the mean structure’s misfit equals Fmean, and (c) the
covariance structure’s misfit equals Fcov. Our method is applicable to any simulations involving
moment structure analysis, such as growth curve modeling, measurement invariance, and mixture
modeling. In the rest of the paper, we first describe the basic procedure in the context of single-
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group mean and covariance structure analysis, followed by an empirical demonstration. Then, we
further extend our method to multigroup moment analysis, followed by a second demonstration.

1. The Basic Procedure

In this section, we focus on single-group mean and structure analysis and will extend to
multigroup analysis later. Let the p × 1 vector x denote the manifest variables, μ(·) and �(·) the
model of interest, and the q ×1 vector θ0 the population model parameter values specified by the
researcher. The goal is to find some noise t and E to imitate the lack of fit in reality and construct
μ∗ = μ(θ0) + t and �∗ = �(θ0) +E. Then, μ∗ and �∗ are considered the population moments
of x and used to generate random data for simulation studies. We hope when fitting the model to
μ∗ and �∗, the discrepancy function achieves its minimum at the specified parameter values θ0,
and the amount of misfit equals some desired values. Here, we select the normal theory maximum
likelihood (ML) fit function as the measure of misfit:

FML = [μ∗ − μ(θ)]′�−1(θ)[μ∗ − μ(θ)] + ln |�(θ)| − ln |�∗| + tr[�∗�−1(θ)] − p. (1)

In constructing μ∗ and �∗ (or equivalently t and E), we seek to satisfy the following three
requirements simultaneously:

θ0 = argmin F[μ∗,�∗;μ(θ),�(θ)]; (2)

[μ∗ − μ(θ0)]′�−1(θ0)[μ∗ − μ(θ0)] = Fmean; (3)

ln |�(θ0)| − ln |�∗| + tr[�∗�−1(θ0)] − p = Fcov; (4)

where θ0, Fmean, and Fcov are constants specified by the researcher. The desired FML value for
the whole model is then Fmean + Fcov. The necessary condition for Eq. (2) is (see “Appendix”):

Ḟ(θ0) = 2μ̇(θ0)�
−1(θ0) · t + �̇(θ0)[�−1(θ0) ⊗ �−1(θ0)] · vec(tt′ + E) = 0, (5)

where Ḟ(θ0) = ∂ F/∂θ |θ=θ0 (a q × 1 vector), μ̇(θ0) = ∂μ(θ)′/∂θ |θ=θ0 (a q × p matrix),
�̇(θ0) = ∂vec′[�(θ)]/∂θ |θ=θ0 (a q × p2 matrix), vec(·) stack the columns of a matrix into a
vector, and⊗ is the Kronecker product. We define the derivatives in this way so that the j-th row in
Ḟ(θ) is the derivative of F(θ) with respect to θ j . That is, we define Ḟ(θ) as the transpose of the
Jacobian matrix of F(θ) with respect to θ, because doing so facilitates the following exposition
of our method. We define μ̇(θ) and �̇(θ) in the same manner.

Note some rows in μ̇(θ0) and �̇(θ0) are zeros because some model parameters do not play
a role in the mean or the covariance structure. More specifically, parameters for the mean or
intercept of a variable (i.e., coefficients originating from the triangle “1” in a path diagram) affect
μ(θ) but not �(θ), and we refer to them as θa or Type-a parameters. Regression coefficients
from one variable to another (e.g., factor loadings, structural coefficients) affect both μ(θ) and
�(θ), and we refer to them as θb or Type-b parameters. Variances and covariances of variables
affect �(θ) only but not μ(θ), and we refer to them as θc or Type-c parameters. An example for
such notations is in Fig. 1. Throughout the paper, we use the subscripts “a,” “b,” and “c” to denote
the subsets corresponding to the Type-a, b, and c parameters. For example, qa , qb, and qc denote
the number of elements in θa , θb, and θc. Next, we study the specific forms of μ̇(θ0) and �̇(θ0).
Without loss of generality, let us assume the model parameters are arranged in such an order that
θ = (θ′

a,θ′
b,θ

′
c)

′. For μ̇(θ0), the first (qa + qb) rows are nonzero, whereas the last qc rows are
all zeros. For �̇(θ0), the first qa rows are all zeros, but the last (qb + qc) rows are nonzero. In this
paper, we focus on the case where rank[μ̇(θ0)a] = qa and rank[�̇(θ0)b,c] = qb + qc, meaning
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the first qa rows in μ̇(θ0) are linearly independent, and so are the last (qb + qc) rows in �̇(θ0).
This is generally true for SEM analyses in practice.

Using the shorthand � = 2μ̇(θ0)�
−1
0 and � = �̇(θ0)(�

−1
0 ⊗ �−1

0 ) (recall �0 = �(θ0)),
we rewrite Eq. (5) as

� · t + � · vec(tt′) + � · vecE = 0. (6)

Because the last qc rows in μ̇(θ0) are zeros, the last qc rows in � are also zeros. Similarly, the
first qa rows in � are also zeros. Accordingly, Eq. (6) has the form

⎡
⎣

�a

�b

O

⎤
⎦ · t +

⎡
⎣
O
�b

�c

⎤
⎦ · vec(tt′) +

⎡
⎣
O
�b

�c

⎤
⎦ · vecE =

⎡
⎣
0
0
0

⎤
⎦ , (7)

whereO is a matrix of zeros. The strategy for finding t and E is as follows. First, we find an initial
solution to

�a · t = 0, (8)

and denote this solution as t̃. Second, we find a scalar π for t̃ such that (πt̃)′�−1
0 (πt̃) = Fmean,

and thus, t = πt̃ satisfies Eqs. (3) and (8). Third, given t, an identity about E can be obtained
based on Eqs. (6) and (7):

� · vecE = −� · t − � · vec(tt′) ≡ η. (9)

Fourth, we substitute Eq. (9) into Eq. (4) and solve for E.
Now let us consider how to implement these four steps. We do not consider the trivial case

where the intercept of an endogenous manifest variable is freely estimated. This is because, say
if X j is such a variable and its intercept a j is free, then the model can always fit the mean of X j

perfectly. Thus, there is no nonzero solution for t j in t. In a later section, when we extend the
procedure to multigroup analyses, due to between-group constraints, it becomes possible to create
misfit on the intercepts of manifest variables. Returning to Eq. (6), given that rank[μ̇(θ0)a] = qa

and �−1
0 has full rank p, it follows rank(�a) = qa . Because rank([�a | 0]) = rank(�a), �a is

a qa × p matrix, and rank(�a) < p , it follows that Eq. (8) has infinitely many solutions. The
solutions are of the form

t = (I − �−
a �a)yt , (10)

where �−
a is a generalized inverse of �a , and yt can be any p × 1 vector. For convenience, one

can just use the Moore–Penrose inverse for the generalized inverse. Given a randomly generated
ỹt , an initial solution to Eq. (8) is thus t̃ = (I − �−

a �a)ỹt . Next, we calculate t̃
′
�−1

0 t̃ ≡ F̃mean.

Defining t as t = t̃
√

Fmean/F̃mean will satisfy Eqs. (8) and (3) simultaneously. Given t, the value
of vec(tt′) is also determined, and thus, the only unknown in Eq. (7) is E.

Next, we construct E. The first qa rows in Eq. (7) always hold regardless of the choice of E,
and thus, we just need to focus on the nonzero rows concerning θb and θc. To ensure the solution
E is symmetric, we rewrite Eq. (9) as

�D · vech(E) = B · vech(E) = η, (11)
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where vech(·) stacks the lower triangular elements of a matrix into a vector, B = �D, and D
is the duplication matrix such that vec(E) = D · vech(E) . Given that rank[�̇(θ0)] = qb + qc,
(�−1

0 ⊗ �−1
0 ) has full rank p2, and D has full column rank p∗ (where p∗ = p(p + 1)/2), we

have rank(�) = qb + qc and rank(B) ≤ qb + qc. The first qa rows of B are all zeros, and if
rank(B) = qb + qc, then the rest (qb + qc) rows are linearly independent. Because the first qa

elements of η are all zeros, it follows that rank([B | η]) = rank(B) and Eq. (11) is a consistent
linear system. Given that B is a q × p2 matrix and rank(B) < p2, Eq. (11) has infinitely many
solutions. If rank(B) < qb + qc, rank([B | η]) may not equal rank(B) and thus sometimes
B · vech(E) = η is not a consistent system. In that case, one can simply find a different η to
satisfy rank([B | η]) = rank(B) by generating a new t from Eq. (10). Therefore, Eq. (11) can be
guaranteed to have infinitely many solutions, and their general form is

vech(E) = B−η + (I − B−B)yE , (12)

where yE can be any p∗ × 1 vector. Next, we rewrite E in Eq. (4) in terms of yE and solve the
equation for yE . More specifically, we define a new function:

φ = ln |�0| − ln |�0 + E| + tr(I + E�−1
0 ) − p − Fcov, (13)

and then find a root forφ = 0 in terms of yE using the Newton method. In particular, the Jacobian
of φ with respect to yE is Jφ(yE ) = ∂φ/∂y′

E = (∂φ/∂E)(∂E/∂y′
E ), where

∂φ

∂E
= vec′[�−1

0 − (�0 + E)−1] · ∂E
∂E

; (14)

∂E
∂yE

= ∂[Dvech(E)]
∂yE

= D(I − B−B). (15)

Note ∂E/∂E does not equal I but another constant matrix instead, because each off-diagonal
element of E appears twice in E, leading to ∂ei j/∂e ji = 1 even if i �= j . Then we can find a root
for φ(yE ) = 0 using an iterative process. The update from step k to step (k + 1) is:

y(k+1)
E = y(k)

E − J−1
φ [y(k)

E ] · φ[y(k)
E ]. (16)

At convergence, the y(k+1)
E value is a root to φ(yE ) = 0. Then, we can construct E based on

Eq. (12). Now that t and E are available, it is straightforward to compute μ∗ and �∗.
The μ∗ and �∗ obtained with the above procedure will satisfy Eqs. (3) to (5), but any θ

satisfying Eq. (5) is only a stationary point of FML[μ∗,�∗;μ(θ),�(θ)]. Equation (2) requiresθ0
to be the global minimizer of FML[μ∗,�∗;μ(θ),�(θ)], not just a stationary point. Therefore, it
needs to continue to show thatθ0 is indeed the globalminimizer. To prove this, we borrow from the
arguments that established the consistency of theML point estimator (Kano, 1986; Shapiro, 1984;
see also Chun & Shapiro, 2010). More specifically, let m(θ) = [μ(θ)′, vec′[�(θ)]]′ denote the
model-implied moments, m̃ = [μ̃′

, vec′(�̃)]′ the moments of the data, andm0 = [μ′
0, vec

′(�0)]′.
Because m0 = m(θ0), θ0 is always a global minimizer of FML[m0,m(θ)]. Moreover, if the
model is identified at θ0, then θ0 is the unique minimizer (Kano, 1986; Shapiro, 1984). Let
θ̃ = argmin

θ∈�

FML[m̃,m(θ)], and θ̃ is consistent if, for all m̃ sufficiently close to m0, θ̃ → θ0 as

m̃ → m0. Under mild regularity conditions, the consistency of m̃ holds if the model is identified
at θ0 and the set � is compact (Kano, 1986; Shapiro, 1984).
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Proposition 1. Suppose the consistency of θ̃ holds for the researcher’s model, and the Hes-
sian ∂2F[m,m(θ)]/∂θ∂θ evaluated at m = m0 and θ = θ0 is positive definite (denoted as
F̈[m0,m(θ0)]). Then, there exists a neighborhood U of m0, such that for any mk ∈ U satisfying
Ḟ[mk,m(θ0)] = 0 (i.e., θ0 is a stationary point when fitting the model to mk), it follows that θ0
is the unique minimizer of F[mk,m(θ)] over θ ∈ �.

Proof. We argue by a contradiction. First, suppose the assertion is false. Suppose there is a
sequence {mk} → m0, such that Ḟ[mk,m(θ0)] = 0 but θ0 �= argmin

θ∈�

F[mk,m(θ)]. Let this
minimizer be denoted as θ̃k = argmin

θ∈�

F[mk,m(θ)]. Because mk → m0 as k → ∞, the con-

sistency of θ̃ML implies that θ̃k → θ0 as k → ∞. In addition, because θ̃k is the minimizer of
F[mk,m(θ)] but θ0 is not, it follows that F[mk,m(θ0)] > F[mk,m(θ̃k)].

On the other hand, because the Hessian F̈[m0,m(θ0)] is positive definite, by continuity
arguments the Hessian F̈[mk,m(θ0)] is also positive definite if k is large enough (i.e., mk is
close enough tom0; see “Appendix” for details). Because Ḟ[mk,m(θ0)] = 0 and F̈[mk,m(θ0)]
is positive definite, θ0 is a strict local minimizer of F[mk,m(θ)]. Accordingly, there is a neigh-
borhood V of θ0, such that for all the θv ∈ V , F[mk,m(θ0)] < F[mk,m(θv)]. Note the
neighborhood V can be taken independent of k. Moreover, because θ̃k → θ0, if k is large enough,
we have θ̃k ∈ V and thus F[mk,m(θ0)] < F[mk,m(θ̃k)]. But this result contradicts with
F[mk,m(θ0)] > F[mk,m(θ̃k)], which is obtained by assuming θ0 �= argmin

θ∈�

F[mk,m(θ)].
Hence, the proof is complete. ��

Proposition 1 implies that if F̈[m0,m(θ0)] is positive definite and the misfit is not too large
(i.e., μ∗ and �∗ do not depart from μ(θ0) and �(θ0) by too much), Eq. (2) will hold as long as
Eq. (5) holds. In the context of covariance structure analysis (i.e., fixing t = 0 and Fmean = 0),
Cudeck and Browne (1992) and Chun and Shapiro (2010) proved that the stationary point θ0 is
the global minimizer if E is not too large. Chun and Shapiro (2010) also showed that the misfit
can be in fact quite large before θ0 stops being the global minimizer. Based on Proposition 1,
therefore, the μ∗ and �∗ constructed using our proposed procedure can satisfy Eqs. (2) through
(4) simultaneously. This concludes the basic procedure.

2. Demonstration 1

In this section we use the proposed method to create several sets of μ∗ and �∗ for Model
1 in Fig. 1. The model form and θ0 values are presented in Fig. 1. For the amount of misfit,
we choose values that render the misfit quite serious and greater than values of interest to a
researcher when designing simulation studies or analyzing real data. We use huge FML values
because, based on the above discussion of Proposition 1, for the proposed method to work well,
it needs the misfit being not too large. Therefore, if our method works well given huge Fmean and
Fcov in this demonstration, it should perform even better given smaller Fmean and Fcov values in
practice. In choosing Fmean and Fcov for this demonstration, we draw analogy with the definition
of RMSEA ε = √

F/d f , and set Fmean = (.15)2d fmean = .135 and Fcov = (.20)2d fcov = .96.
Accordingly, Fall = 1.095 and the model’s RMSEA is .191, indicating serious misfit. Next, we
used the proposed method to create four sets of μ∗ and �∗ randomly (as yt and yE can be chosen
randomly, see Eqs. (10) and (12)). We then fitted Model 1 to μ∗ and �∗ using the “lavaan”
package (Rosseel, 2012) in R (R Core Team, 2017) and recorded θ f i t , F (fit)

mean, and F (fit)
cov , where

θ f i t is the fitted model parameter.
Table 1 presents the four sets of μ∗ and �∗ and model estimation results. Comparing μ(θ0)

and �(θ0) to μ∗ and �∗, we see the model can largely reproduce the data and the misfit spreads
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Table 1.
Population model-implied moments and four generated moments with specified misfit and parameter values in Demon-
stration 1.

X1 X2 X3 X4 X5 X6 X7 X8 X9 Mean Fit results

Model-implied moments based on θ0
X1 6.200 .717 .535 .308 .317 .229 .271 .331 .202 3.00 FCov Diff
X2 6.400 12.840 .595 .343 .353 .255 .301 .368 .225 4.80 FMean Diff
X3 3.200 5.120 5.760 .256 .263 .190 .225 .275 .168 2.40 RMSEA
X4 1.800 2.880 1.440 5.500 .561 .406 .331 .404 .247 4.00 CFI
X5 2.520 4.032 2.016 4.200 10.180 .418 .340 .416 .254 5.60 SRMR
X6 1.260 2.016 1.008 2.100 2.940 4.870 .246 .301 .184 2.80
X7 2.000 3.200 1.600 2.300 3.220 1.610 8.800 .695 .424 5.00
X8 4.400 7.040 3.520 5.060 7.084 3.542 11.000 28.500 .518 11.00
X9 1.000 1.600 0.800 1.150 1.610 0.805 2.500 5.500 3.950 2.50
Generated moments set 1
X1 8.050 .801 .687 .272 .426 .433 .318 .384 .329 2.67 8.356E−09
X2 7.362 10.496 .508 .187 .339 .351 .269 .330 .283 5.04 −5.551E−17
X3 4.668 3.936 5.730 .213 .324 .331 .243 .291 .249 2.41 .191
X4 1.508 1.184 0.995 3.819 .432 .531 .266 .311 .265 4.20 .759
X5 3.979 3.623 2.556 2.781 10.862 .715 .371 .427 .361 5.54 .155
X6 3.125 2.894 2.012 2.640 5.996 6.466 .369 .426 .360 2.50
X7 2.523 2.432 1.624 1.451 3.422 2.623 7.817 .644 .554 5.10
X8 5.756 5.634 3.676 3.204 7.422 5.717 9.508 27.854 .694 11.03
X9 2.084 2.051 1.335 1.159 2.663 2.049 3.463 8.186 4.998 2.28
Generated moments set 2
X1 4.897 .666 .560 .136 .381 .348 .293 .324 .282 3.21 8.738E−09
X2 5.384 13.336 .724 .155 .430 .395 .324 .348 .304 4.75 5.551E−17
X3 3.258 6.955 6.913 .128 .356 .327 .275 .294 .257 2.15 .191
X4 0.535 1.010 0.598 3.169 .461 .438 .241 .286 .251 4.28 .750
X5 2.930 5.460 3.253 2.852 12.090 .748 .406 .459 .394 5.43 .187
X6 1.935 3.628 2.162 1.959 6.544 6.324 .348 .384 .332 2.53
X7 1.775 3.241 1.982 1.174 3.861 2.392 7.491 .627 .584 5.13
X8 3.777 6.689 4.076 2.678 8.405 5.088 9.033 27.750 .743 11.03
X9 1.431 2.550 1.551 1.027 3.146 1.918 3.663 8.975 5.262 2.22
Generated moments set 3
X1 4.927 .622 .714 .287 .391 .338 .302 .366 .306 3.21 8.641E-09
X2 4.843 12.295 .818 .279 .351 .285 .332 .344 .318 4.86 −2.776E−17
X3 4.469 8.094 7.955 .248 .315 .269 .245 .274 .244 1.89 .191
X4 1.327 2.037 1.459 4.336 .532 .276 .339 .378 .368 4.14 .764
X5 2.940 4.164 3.005 3.748 11.467 .632 .361 .383 .404 5.48 .131
X6 1.743 2.320 1.762 1.336 4.965 5.388 .300 .351 .324 2.71
X7 2.043 3.547 2.105 2.152 3.726 2.125 9.302 .695 .641 4.95
X8 4.160 6.174 3.968 4.029 6.654 4.172 10.862 26.274 .655 11.10
X9 1.510 2.478 1.530 1.704 3.044 1.673 4.343 7.461 4.940 2.29
Generated moments set 4
X1 5.789 .643 .775 .342 .328 .286 .310 .355 .275 3.07 8.617E−09
X2 5.155 11.109 .815 .305 .308 .248 .287 .350 .287 4.98 1.110E−16
X3 5.316 7.746 8.130 .363 .350 .293 .246 .291 .289 1.84 .191
X4 2.056 2.535 2.583 6.230 .641 .391 .342 .392 .305 3.91 .749
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Table 1.
continued

X1 X2 X3 X4 X5 X6 X7 X8 X9 Mean Fit results

X5 2.467 3.204 3.119 5.001 9.773 .186 .362 .392 .235 5.64 .121
X6 1.404 1.688 1.709 1.994 1.186 4.171 .301 .299 .276 2.92
X7 2.378 3.048 2.239 2.722 3.610 1.960 10.158 .756 .326 4.86
X8 4.546 6.200 4.417 5.201 6.507 3.244 12.812 28.258 .349 11.01
X9 1.165 1.680 1.450 1.338 1.290 0.991 1.830 3.262 3.096 2.67

The lower triangle contains covariances and upper triangle correlations. FCov Diff & FMean Diff = Fitted
FML value for the covariance (or mean) part − Desired FML value for the covariance (or mean) part.

somewhat evenly over all the elements of μ(θ0) and �(θ0), representing a realistic modeling
scenario. For all the four sets of μ∗ and �∗, the θ f i t obtained is exactly equal to the specified
value θ0, indicating the goal in Eq. (2) is satisfied. Regarding the amount of misfit, the difference
in Fcov between fitted and desired values is around 10−9, and the difference in Fmean between fitted
and desired values is around 10−17 (see Table 1). Such a small difference between the desired and
fitted FML values can be well explained by rounding, and the goals in Eqs. (3) and (4) are also
satisfied.1 Therefore, even when such a large amount of model misfit is specified, the proposed
method still performs extremely well and is able to yield μ∗ and �∗ as desired.

2.1. Contrast to the Type I Approach

ForModel 1, if a researcher wants to create a misspecified model from the Type I perspective,
there are only six model parameters possible for removal, namely the three latent means and the
three latent covariances. To better illustrate the limitations of the Type I perspective, we fit the
six misspecified models (only one parameter is missing in each model) to μ(θ0) and �(θ0) and
record the fit indices and FML values in Table 2. First, it is almost impossible for the Type I
approach to control the amount of model misfit. Among the six wrong models, the best-fitting
model is the one without cF1F3, which yields RMSEA = .073; CFI = .950; SRMR = .122. Unless
changing the θ0 values, it is impossible to have a wrong model with, say an RMSEA of .05 or
.06. It is also impossible to achieve a larger RMSEA values, say .08 or .10 in the current example,
and the only available RMSEA values are those six values in Table 2. However, the method we
proposed allows the researcher to specify the desired FML values on a continuous scale. Second,
if one removes a latent covariance from Model 1, the model is wrong in the covariance part only
and its F (fit)

mean is always 0 (see Table 2). To introduce misfit on the mean part, one has to remove
a latent mean, but in that case the model will be too wrong to be useful in a simulation study (see
Table 2 for the fit indices). By contrast, our method is able to control both F (fit)

mean and F (fit)
cov at a

reasonable level. Third, the Type I approach is unable to control the location of model misfit. If
one removes a latent covariance, say cF1F2, then only some elements in�(θ)will have misfit and
the other elements will remain in perfect fit, showing an unrealistic pattern in the residual matrix
(see Table 3). In addition, if one removes a latent mean (e.g., aF1), the model-implied means will
all be zeros for the indicators that load on this latent factor (e.g., X1 to X3; see Table 3). Again
this is not a problem for our method, as we saw earlier in Table 1 that for the four sets of μ∗ and
�∗, all the elements in μ(θ) and �(θ) have some lack of fit, depicting a more realistic scenario.

1In R, by default two quantities are considered functionally equal if their difference is less than 1.5 × 10−8.
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Table 2.
Population fit indices and FML values after removing a parameter from the model in Demonstration 1.

Remove path RMSEA CFI SRMR FCov FMean

cF1F2 .079 .942 .128 .193 0
cF1F3 .073 .950 .122 .166 0
cF2F3 .093 .920 .138 .265 0
aF1 .187 .674 .664 .421 .661
aF2 .228 .515 1.235 .809 .800
aF3 .233 .492 1.364 .872 .815

Table 3.
Residuals or model-implied moments after removing a parameter from Model 1 in Demonstration 1.

X1 X2 X3 X4 X5 X6 X7 X8 X9

Residuals after removing cF1F2
X1 0
X2 0 0
X3 0 0 0
X4 1.80 2.88 1.44 0
X5 2.52 4.03 2.02 0 0
X6 1.26 2.02 1.01 0 0 0
X7 .83 1.33 .66 .46 .64 .32 .42
X8 1.82 2.92 1.46 1.01 1.41 .70 .93 2.04
X9 .41 .66 .33 .23 .32 .16 .21 .46 .11
Residuals for mean 0 0 0 0 0 0 0 0 0
Model-implied means after removing aF1

0 0 0 2.93 3.96 1.98 3.70 8.14 1.85

3. Multiple Group Analysis

In this section, we first introduce some new notations for themultigroup context.We illustrate
the notations with Model 2 in Fig. 2. We focus on the cases where the model form is the same
across all the G groups. We use “(g)” flexibly in the subscript or superscript (e.g., θ(g)

a , θ′
(g)) to

denote the elements within group g (where g = 1, 2, · · · , G) and use vectors or matrices without
“(g)” to denote those that contain the corresponding elements of all the G groups. For example,
for the model in Fig. 2, we have θ = [θ′

(1),θ
′
(2)]′ and � = Diag[�(1),�(2)], where Diag[·]

denotes a block diagonal matrix. Suppose Model 2 has the constraints a(1)
F = 0, a(1)

x = a(2)
x ,

and b(1) = b(2), where ax = [a1, a2, a3]′ and b = [b2, b3]′. Then, the Type-a parameters in
the two groups are written as θ(1)

a = [0, a(1)
1 , a(1)

2 , a(1)
3 ]′ and θ(2)

a = [a(2)
F , a(2)

1 , a(2)
2 , a(2)

3 ]′. That
is, the number of elements in θ

(g)
a remains the same across all groups, and we define θ

(g)
b and

θ
(g)
c in the same manner. If a parameter is set to a special value in a certain group g (e.g.,

a(1)
F = 0), we still include the fixed value in θ(g). (Thus, the first element of θ(1)

a is 0.) In addition,
for the parameters constrained to be equal over some groups, we consider them as the same
parameter but give them different labels in θ(g) (e.g., θ

(1)
b = [b(1)

2 , b(1)
3 ]′, θ

(2)
b = [b(2)

2 , b(2)
3 ]′).

Regarding the type of constraints, we focus on between-group equality constraints only, because
other constraint types seldom appear in practice. Let q denote the number of elements in θ(g),
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Figure 2.
Path diagram of Model 2 used to introduce new notations for our proposed method in the multiple group context. The
latent mean is fixed at 0 in Group 1, but freely estimated in Group 2. All the factor loadings and intercepts are constrained
equal across the two groups. The parameters constrained to be equal across groups are considered as the same parameter,

but have different labels (e.g., a(1)
1 and a(2)

1 are the same parameters, but have two different labels).

q(g) the number of free parameters in θ(g), and qall the total number of free parameters in θ. The
subsets corresponding to the Type-a, b, and c parameters are defined in the sameway. For example,
in Fig. 2, q(1)

a = 3 and qa = q(2)
a = 4. Vector θa has qaG = 8 elements, but q(all)

a = 4. We
consider the model-implied moments in group g as functions of θ (not θ(g)) and denote them as
μ(g)(θ) and �(g)(θ). The model-implied moments of the whole multigroup analysis are μ(θ) =
[μ(1)(θ)′,μ(2)(θ)′, · · · ,μ(G)(θ)′]′ and �(θ) = Diag[�(1)(θ),�(2)(θ), · · · ,�(G)(θ)].

Given θ0, the parameter values of all the G groups, we continue to describe the mis-
fit as μ∗ = μ(θ0) + t and �∗ = �(θ0) + E, where t = [t′(1), t′(2), · · · , t′(G)]′ and
E = Diag[E(1),E(2), · · · ,E(G)]. The population FML value in multigroup analysis is FML =∑G

g=1 F(g)/G, where

F(g) = [μ∗
(g) − μ(g)(θ)]′ · �−1

(g)(θ) · [μ∗
(g) − μ(g)(θ)]

+ ln |�(g)(θ)| − ln |�∗
(g)| + tr[�∗

(g)�
−1
(g)(θ)] − p. (17)

is the ML fit function value in group g. To construct misfit for multigroup moment structures, we
try to find μ∗ and �∗ (or equivalently t and E ) that simultaneously satisfy

θ0 = argmin FML[μ∗,�∗;μ(θ),�(θ)]
subject to γa(θa) = 0;γb(θb) = 0;γc(θc) = 0; (18)
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G∑
g=1

[μ∗
(g) − μ(g)(θ0)]′ · �−1

(g)(θ0) · [μ∗
(g) − μ(g)(θ0)] = Fmean; (19)

G∑
g=1

{
ln |�(g)(θ0)| − ln |�∗

(g)| + tr[�∗
(g)�

−1
(g)(θ0)] − p

}
= Fcov, (20)

where γa(·), γb(·), and γc(·) are between-group equality constraints on the Type-a, Type-b, and
Type-c model parameters. Note the θ0 specified by the researcher must already satisfy those
constraints; otherwise, θ0 is not even a feasible point in the optimization.

Similar to the basic procedure, we first calculate the derivative of FML with respect to θ

and set to zero the derivative evaluated at θ = θ0. Note that F(g) in Eq. (17) is defined as a
function of θ (not θ(g)), and the derivative of FML is easily calculated as Ḟ(θ) = ∑G

g=1 Ḟ(g)(θ).
Accordingly, we have

Ḟ(θ0) =
G∑

g=1

[
�(g) · t(g) + �(g) · vec(t(g)t′(g)) + �(g) · vecE(g)

]
= 0, (21)

where �(g) = 2μ̇(g)(θ0)�
−1
(g)(θ0) and �(g) = �̇(g)(θ0)[�−1

(g)(θ0) ⊗ �−1
(g)(θ0)]. To proceed, first

let us consider the forms of μ̇(g)(θ) and �(g) more closely. In particular, μ̇(g)(θ) is a qG × p
block vector:

μ̇(g)(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂μ(g)(θ)

∂θ(1)

∂μ(g)(θ)

∂θ(2)

...

∂μ(g)(θ)

∂θ(G)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

The derivative ∂μ(g)(θ)/∂θ(g) is calculated in the same way as that in single-group analysis.

If θ
(g)
j is a fixed value, ∂μ(g)(θ)/∂θ

(g)
j = 0′. Similar to the single-group context, we require the

nonzero rows of ∂μ(g)(θ0)/∂θ(g) concerning the Type-a parameters are linearly independent,

and thus, rank(∂μ(g)(θ0)/∂θ
(g)
a ) = min{q(g)

a , p} . For the derivative of μ(g)(θ) with respect to

parameters in another group k, if there is a constraint θ
(k)
j = θ

(g)
j , then we consider θ

(k)
j and

θ
(g)
j as the same parameter and write ∂μ(g)(θ)/∂θ

(k)
j = ∂μ(g)(θ)/∂θ

(g)
j . If there is no constraint

between θ
(k)
j and θ

(g)
j , then ∂μ(g)(θ)/∂θ

(k)
j is simply 0′. Therefore, ∂μ(g)(θ)/∂θ(g) contains all

the unique rows of μ̇(g)(θ). Because the j-th row in�(g) is the j-th row of μ̇(g)(θ0) post-multiplied

by 2�−1
(g)(θ0) and �−1

(g)(θ0) has full rank p, it follows rank(�(g)
a ) = min{q(g)

a , p}. Similarly to

Eq. (22), �̇(g)(θ) is also a block vector, where the k-th block of rows is ∂vec′[�(g)(θ)]/∂θ(k).

We also require the [q(g)
b + q(g)

c ] nonzero rows of ∂�(g)(θ0)/∂θ(g) being linearly independent.
Applying the same argument, it can be shown that rank(�̇(g)(θ0)) = rank(∂�(g)(θ0)/∂θ(g)) =
min{q(g)

b + q(g)
c , p2}. Because [�−1

(g)(θ0) ⊗ �−1
(g)(θ0)] has full rank p2 and q(g)

b + q(g)
c < p2, it

follows rank(�(g)) = q(g)
b + q(g)

c .
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Similar to Eq. (7), we rearrange the rows of �(g) and �(g) in terms of Type-a, b, and c
parameters (the rows were in group order before) and rewrite Eq. (21) as

G∑
g=1

⎡
⎢⎣

�
(g)
a

�
(g)
b
O

⎤
⎥⎦ · t(g) +

G∑
g=1

⎡
⎢⎣

O
�

(g)
b

�
(g)
c

⎤
⎥⎦ · vec[t(g)t′(g)] +

G∑
g=1

⎡
⎢⎣

O
�

(g)
b

�
(g)
c

⎤
⎥⎦ · vecE(g) =

⎡
⎣
0
0
0

⎤
⎦ . (23)

First, let us consider
∑G

g=1 �
(g)
a t(g) = 0. If �

(g)
a t(g) = 0 holds for any g in 1, 2, · · · , G, certainly∑G

g=1 �
(g)
a t(g) will be zero, but this case is trivial and often unrealistic in multigroup analyses.

This is because rank(�(g)
a ) = min{q(g)

a , p}, and �
(g)
a t(g) = 0 has nonzero solutions only if

q(g)
a < p, namely the free intercepts and means together in any given group are fewer than p. In
the special case where q(g)

a < p holds for all the groups, one can simply solve
∑G

g=1 �
(g)
a t(g) = 0

by solving �
(g)
a t(g) = 0 individually for the G groups. In that case, it is even possible to control

the misfit t′(g)�
−1
(g)(θ0)t(g) = F (g)

mean separately for the G groups. This special case amounts to
conducting the single-group procedure G times separately, and thus, we do not elaborate on it.
However, multigroup analyses often involve Type-a parameters for all the manifest and latent
variables, causing q(g)

a > p (for example, Model 2 has q(1)
a = 3 and q(2)

a = 4, but p = 3). The
model is not identified within group g, but with proper constraints q(all)

a < pG becomes possible,
and the multigroup analysis can be identified on the mean part. Accordingly, it often needs to
solve

∑G
g=1 �

(g)
a t(g) = 0 simultaneously for all the G groups.

We recognize that

G∑
g=1

�
(g)
a · t(g) = �a · t = 0, (24)

where �a = [�(1)
a |�(2)

a | · · · |�(G)
a ] is a qaG × pG block row vector (recall qa is the length of

θ
(g)
a ) and rank(�a) = q(all)

a < pG. Accordingly, Eq. (24) has infinitely many solutions, and a
generic solution for t is t = (I − �−

a �a)yt , in the same form as t in the single-group context.
Next, we find a specific t to satisfy Eq. (19). We recognize that

G∑
g=1

[μ∗
(g) − μ(g)(θ0)]′ · �−1

(g)(θ0) · [μ∗
(g) − μ(g)(θ0)]

= [t′(1), t′(2), · · · , t′(G)] · Diag[�−1
(1)(θ0),�

−1
(2)(θ0), · · · ,�−1

(G)(θ0)] · [t′(1), t′(2), · · · , t′(G)]′
= t′ · �−1(θ0) · t (25)

which is also in the same form as Eq. (3) in the single-group context. Therefore, we can directly
apply the procedure in the single-group context to the current problem and find a solution for t.
Given t, its subsets t(1), t(2), · · · , t(G) can be easily obtained.

Next, we return to Eq. (23) and consider E(g). For group g, given the values of t(g) and
vec[t(g)t′(g)], Eq. (23) leads to

G∑
g=1

�(g)vecE(g) = −
G∑

g=1

�(g)t(g) −
G∑

g=1

�(g)vec[t(g)t′(g)] ≡
G∑

g=1

η(g), (26)
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where

η(g) = −
⎡
⎢⎣

�
(g)
a t(g)

�
(g)
b t(g)

0

⎤
⎥⎦ −

⎡
⎢⎣

0
�

(g)
b vec[t(g)t′(g)]

�
(g)
c vec[t(g)t′(g)]

⎤
⎥⎦ . (27)

Note �
(g)
a t(g) is often not 0 based on the discussion above, but the first qaG rows of �(g) are

all zeros, and thus it is usually not possible to solve �(g)vecE(g) = η(g) separately for group g.
Instead, we construct the Gq × Gp∗ block row vector B = [�(1)D|�(2)D| · · · |�(G)D] and solve

B · v = ηsum, (28)

where v = [vech′(E(1)), vech′(E(2)), · · · , vech′(E(G))]′ and ηsum = ∑G
g=1 η(g). Note v �=

vech(E). Because
∑G

g=1 �
(g)
a t(g) = 0, the first qaG elements of ηsum are all zeros, and so

are the first qaG rows of B · v. Using the same argument as that in the single-group context,
rank(B) ≤ q(all)

b +q(all)
c and it is possible to have rank([B|ηsum]) = rank(B). Therefore, Eq. (28)

can be a consistent system with infinitely many solutions. We also require the solution v to satisfy
Eq. (20). Given that

G∑
g=1

ln |�(g)(θ0)| = ln
{ G∏

g=1

|�(g)(θ0)|
}

= ln |�(θ0)|; (29)

G∑
g=1

ln |�∗
(g)| = ln |�∗|; (30)

G∑
g=1

tr[�∗
(g)�

−1
(g)(θ0)] = tr[�∗�−1(θ0)]; (31)

Equation (20) is equivalent to

ln |�(θ0)| − ln |�∗| + tr[�∗�−1(θ0)] − Gp = Fcov, (32)

which has the same form as Eq. (4). Therefore, the steps for finding v to satisfy Eq. (20)
are the same as the method described in the single-group context. In particular, we write the
general solution to Eq. (28) as v = B−ηsum + (I − B−B)yv and define a new function
φ = ln |�(θ0)| − ln |�∗| + tr[�∗�−1(θ0)] − Gp − Fcov. The Jacobian of φ with respect
to yv is Jφ(yv) = (∂φ/∂E)(∂E/∂v)(∂v/∂yv), where ∂φ/∂E has the same form as Eq. (14).
Also, ∂E/∂v = ∂[Dvech(E)]/∂v is a constant matrix with 0’s and 1’s, and ∂v/∂yv = I − B−B.
The solution yv to φ = 0 can be obtained with the Newton method in the same way as the
single-group case.

Based on the discussion so far, the t and E obtained will satisfy Eqs. (19), (20), and (21),
and the only task left is to show that such t and E will also satisfy Eq. (18). This is easily
achieved with Proposition 1, with the adaptation that the Hessian ∂2F[m0,m(θ0)]/∂θ∂θ of the
whole multigroup analysis is positive definite. In fact, Proposition 1 implies that θ0 is the global
minimizer of FML even in unconstrained optimization, and obviously, θ0 will also satisfy the
constrained optimization in Eq. (18).
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Table 4.
Population model parameter values for the simulation study in Demonstration 2.

Unstd loading Unstd error var Intercept/mean Std loading

G1 G2 G1 G2 G1 G2 G1 G2

X1 1* 2.2 2.4 2.5 .803 .822
X2 1.6 2.6 2.8 2.0 .893 .906
X3 0.8 3.2 3.5 1.5 .667 .691
X4 1* 2.5 2.7 2.5 .739 .773
X5 1.4 4.3 4.4 2.0 .760 .800
X6 0.7 3.4 3.6 1.5 .549 .594
X7 1* 3.8 3.5 2.5 .754 .795
X8 2.2 4.3 4.0 2.0 .921 .938
X9 0.5 2.7 3.0 1.5 .563 .577
F1 0* 7
F2 0* 8
F3 0* 9

Factor covariance (lower) & correlation (upper)

G1 G2

4 .520 .447 5 .626 .475
1.8 3 .594 2.8 4 .490
2.0 2.3 5 2.6 2.4 6

The unstandardized factor loadings and intercepts of X1 to X9 are the same in Groups 1 and 2.
Bold values with a star indicate the model parameter is fixed at that particular value for model identification.
G1 & G2 = Groups 1 & 2.

4. Demonstration 2

In this section, we carry out an example simulation study in the multigroup analysis context.
Simulation studies in the literature of measurement invariance or latent mean comparisons have
predominantly used the Type I perspective to misspecify models, where equality constraints are
imposed on groups whose parameters actually differ. Therefore, if the incorrect constraints are
removed the model will have perfect fit. A more realistic situation is, even when the model has
only the correct constraints, the model still fails to perfectly reproduce the data but only holds
approximately. Accordingly, in this demonstration, we conduct simulations to study the quality
of parameter estimations in this more realistic situation. The model is a 3-factor CFA model,
where X1 to X3 load on F1, X4 to X6 load on F2, and X7 to X9 load on F3. No cross-loadings
are present, the three factors are correlated, and the measurement errors are independent of each
other and of the factors. The nine intercepts and three latent means are all estimated. The analysis
involves two groups, where all the factor loadings and intercepts are constrained equal over the
two Groups. The loadings of X1, X4, and X7 are fixed at 1, and the three latent means are fixed at
0 in Group 1 but free in Group 2. The specified model parameter values θ0 are given in Table 4.
It is clear that all the between-group constraints are correct.

Giving the model and θ0, we used the proposed method to create population moments based
on various desired misfit levels. We chose values of .075, .192, .300, and .432 to represent four
conditions of misfit, corresponding to RMSEA values of .05, .08, .10, and .12. Note FML =
(Fmean + Fcov)/2 as G = 2. Given FML, the desired values of Fmean and Fcov are calculated
using an 15/85 ratio, so as to keep Fmean/Fcov consistent with d fmean/d fcov = 1/9 while slightly
worsen the misfit on the mean part. Given μ∗ and �∗ in a condition, we generated random data
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Table 5.
Relative bias of point estimates and of standard errors for selected model parameters in Demonstration 2.

FML .075 .192 .300 .432
RMSEA .050 .080 .100 .120
CFI .979 .951 .923 .893
SRMR .043 .072 .082 .098

Pt Est SE Pt Est SE Pt Est SE Pt Est SE

a(2)
F1 .001 .006 .000 .006 .001 − .042 .000 .000

a(2)
F2 .001 .016 − .001 − .033 .000 .010 .001 − .008

a(2)
F3 .000 .005 − .001 .010 .000 .027 .000 .037

aX7 − .001 .053 .002 − .028 .000 .099 .002 .072

aX8 − .003 −.007 .002 .001 .008 .018 .000 .013
aX9 .000 .017 .004 −.059 .004 −.079 .002 −.136
bF3X8 .000 − .002 .001 − .024 .000 − .100 .000 − .145
bF3X9 .001 − .038 .000 .067 − .001 − .109 − .001 − .073

Pt Est = relative bias of point estimates, SE = relative bias of standard errors. Bold values = Relative bias
exceeding 10% for SE or 5% for point estimates.

from a multivariate normal distribution using n = 150 per group, and replicated 2,000 times in
each condition. Of interest are point estimates and standard errors. All the replications converged
and representative results are in Table 5. Results suggest that latent means have largely unbiased
SE even when the model is relatively poor (RMSEA = .120; CFI = .893; SRMR= .098). Intercepts
are slightly more difficult to estimate, but the SE becomes problematic only in the condition with
the most serious misfit. Factor loadings begin to have unacceptable SEs if the misfit is somewhat
large (RMSEA = .100; CFI = .923; SRMR = .082). Therefore, for the situations we have explored,
it seems it is still safe to compare latent means when a model is quite poor, but investigations of
factor loading invariance require a much better model. Moreover, it is dangerous to solely rely on
fit indices to judge whether a constraint is valid, as we see in this demonstration the constraints
are always correct, but the misfit can range from somewhat small to fairly large.

5. Implications of Many Possible Population Moments

Given the model form, θ0 and the desired Fmean and Fcov values, there are infinite sets of
μ∗ and �∗ that can satisfy the goals in Eqs. (2) to (4). Accordingly, it is natural to ask whether
some μ∗ and �∗ are better than others and how should one choose the population moments for
a simulation study. Before we discuss this, it is important to note the possibility of generating
data from many populations is not a limitation of our method, but rather the normal state of
affairs in statistical simulation studies. MacCallum and Tucker’s (1991) method and Cudeck and
Browne’s (1992) method are two examples of the Type II approach, and they both can yield
infinite �∗ matrices that satisfy their research goals. Similarly, in the context of data analysis,
different studies do not sample from exactly the same population (e.g., Tucker et al., 1969). Wu
and Browne (2015) conceptualized this problem as one where study j collects a sample S j from
its population � j , while all the � j ’s come from a hyper-population with mean �hyper. From Wu
and Browne’s perspective, finding a �∗ for simulations amounts to choosing a � j randomly and
then generating random samples from it. However, this paper concerns how to construct � j ’s ,
whereas Wu and Browne’s method pertains to estimating �hyper given an S j .
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Table 6.
Residuals for fitting Model 1 to population moments created with fixed initial values.

X1 X2 X3 X4 X5 X6 X7 X8 X9 Mean

X1 − 0.097 0.016
X2 0.217 0.531 − 0.056
X3 − 0.701 − 0.357 − 0.528 0.108
X4 − 0.032 0.064 0.204 0.363 − 0.046
X5 − 0.187 −0.178 0.176 0.548 − 0.041 0.004
X6 − 0.007 0.085 0.167 −0.280 − 0.972 − 0.471 0.083
X7 − 0.136 −0.204 0.105 − 0.309 −0.492 − 0.185 −0.681 0.068
X8 0.002 − 0.098 0.475 0.374 0.073 0.192 − 0.156 1.655 − 0.076
X9 0.009 0.061 0.095 − 0.103 − 0.217 −0.094 −1.566 − 0.907 − 0.575 0.113

Regardless of the method for creating model misfit, one could always ask why a simulation
study is based on one model (say three-factor CFA) rather than another (say two-factor CFA).
Once the model form is chosen, one could ask why a population model parameter equals a certain
value instead of being 2% larger or 3% smaller. All such questions pertain to the � that gives
rise to the random data in simulations, and slight changes in �(·) or θ0 can lead to a different �.
Thus, the� matrices available for a simulation study are always infinite. If the researcher uses the
Type I approach to misspecify the model, one could also ask why a model parameter is removed
instead of another parameter being removed. Although on surface the Type I approach yields
a definite � and model, implicitly such uniqueness results from an arbitrary selection from the
otherwise infinite suitable� matrices and models. In essence, asking how to choose μ∗ and�∗ in
applying our method is similar to asking questions like “Is 0.72 or 0.75 better for the population
factor loading of X1?” All the μ∗ and �∗ satisfying Eqs. (2) to (4) are reasonable, and one can
just randomly pick a set for their simulation study. This strategy has been widely used in other
simulation studies that applied MacCallum and Tucker’s (1991) method or Cudeck and Browne’s
(1992) method (see, e.g., MacCallum et al., 1999, 2001; Lai & Green, 2016; Lai, 2018).

Nevertheless, is it possible to obtain a unique μ∗ and �∗? We discuss several possible direc-
tions. First, to obtain μ∗, we need yt for Eq. (10), where yt can be any p × 1 vector. Therefore, to
ensure μ∗ is unique, one can simply assign specific values to yt instead of getting a yt randomly.
Even vectors like [1, 1, · · · , 1] and [1, 0, · · · , 0] for yt will satisfy Eq. (10). Moreover, such a
special yt will not undermine the verisimilitude of μ∗, because the “perfect” values in yt are later
multiplied by other ordinary matrices in constructing μ∗ (see Eq. (10)). Similarly, one can assign
convenient values to yE in constructing �∗. To illustrate, we revisit Model 1 in Demonstration
1 and create μ∗ and �∗ using Fmean = (.05)2d fmean = .015 and Fcov = (.10)2d fcov = .24 as
the desired misfit amount. We set all the elements in yt and yE to 1, fit Model 1 to the resulting
(unique) μ∗ and �∗ and report the residuals on the mean and covariance parts in Table 6. Clearly,
the residuals do not exhibit any systematic pattern.

A secondmethod to obtain uniqueμ∗ and�∗ is to impose additional constraints on these data
moments. For example, one could choose the moments with the smallest or largest ‖m0 − m∗‖
(recallm = [μ′,σ′]′). Geometrically, this means to find μ∗ and �∗ that are closest to, or farthest
from, μ0 and �0. To achieve this goal, the current problem becomes to minimize (or maximize)
‖m0 − m∗‖ subject to the constraints in Eqs. (2) to (4). How to perform such an optimization is
beyond the scope of this paper and requires future research. Third, in the context of covariance
structure analysis, Chun and Shapiro (2010) studied a similar optimization problem with the goal
to obtain a unique �∗ for Cudeck and Browne’s (1992) method. In particular, Chun and Shapiro
sought E to maximize F[�0 +E,�0] subject to θ0 = argminF[�0 +E,�(·)]. Given the model
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and θ0, E is unique. Once E is found, one can shrink the length of e (where e = vecE) along
its direction and obtain a new vector ẽ = τ · e (0 ≤ τ ≤ 1). Then, F[�0 + τE,�0] is a strictly
decreasing function of τ, and θ0 remains the minimizer of F[�0 + τE,�(·)] (Chun & Shapiro,
2010). Choosing a proper τ value will ensure F[�0 + τE,�(θ0)] equals the desired FML value.
Constructing �∗ = �0 + τE in this way ensures �∗ is unique. However, one cannot directly
apply Chun & Shapiro’s approach to mean and covariance structure analysis. That is, for the β

(where β = [t′, e′]′) that maximizes F[m0 + β,m0] subject to θ0 = argminF[m0 + β,m(·)],
the minimizer of F[m0 + τβ,m(·)] is no longer θ0.

6. Discussion

Our method requires the following conditions: (a) The model �(θ) is identified, and θ0
is an interior point in the parameter space; (b) all partial derivatives of the first three orders of
�(θ) and μ(θ) with respect to θ are continuous and bounded in a neighborhood of θ0; (c) �∗ is
positive definite; (d) μ̇(θ0)a and �̇(θ0)b,c both have full rank (or rank(�a) = q(all)

a and rank(B) =
q(all)

b +q(all)
c in themultigroup context); (e) F̈[m0,m(θ0)] is positive definite. Conditions (a) to (d)

are simply the mild regularity conditions commonly assumed in SEM analysis. We need them to
guarantee the consistency of θ̂ML. Condition (e) is necessary for deriving Proposition 1. Because
Conditions (c) to (e) have special implications for our method, we study them more closely.
Affecting Condition (c) are the values of Fmean, Fcov, yt , and yE . Although Fmean and Fcov are
specified independently by the researcher, indiscreet choices of their values can sometimes cause
the �∗ created to be non-positive definite. If the desired misfit is somewhat small, then it does
not matter how to choose Fmean and Fcov. Otherwise, the proposed method performs best when
Fmean/Fcov is proportional to or less thand fmean/d fcov. If Fmean/Fcov exceedsd fmean/d fcov by too
much (i.e., overly large weight is given to misfit in the mean part), non-positive definite �∗ tends
to appear more often. In addition, initial values yt and yE (or yv in multigroup context), especially
yt , play a crucial role in whether the�∗ obtained is positive definite. Based on our experience, we
recommend randomly generating negative values for yt (e.g., Uni f [−1, 0], Uni f [−2, 0]) and
positive values for yE . If the �∗ created is non-positive definite, changing the initial values can
easily solve the problem.

To verify Condition (d) and for constructing μ∗ and �∗, it needs to compute μ̇(θ0) and
�̇(θ0). In practice, μ̇(θ0) and �̇(θ0) are usually obtained with numerical differentiation instead
of analytic methods. The numerical accuracy of these derivatives plays a more important role in
our method than in SEM data analysis (e.g., calculating the standard error of θ̂ML). Although
traditional numerical methods such as the central difference formula and Richardson’s extrapo-
lation (see, e.g., Linfield & Penny, 1989) are acceptable, to achieve a higher level of accuracy,
we recommend the complex variable method (see Squire & Trapp, 1998). In R, numerical differ-
entiation with complex variables is available in the “numDeriv” package (GilBert & Varadhan,
2016). Regardless of the numerical method, note software usually returns the Jacobian of μ(θ) or
�(θ) with respect to θ, and one needs to transpose the Jacobians to obtain the μ̇(θ0) and �̇(θ0)

defined in this paper. Regarding Condition (e), some SEM software (e.g., lavaan in R) has built-in
functions to calculate F̈[m0,m(θ0)]. If the Hessian is not a standard output in the software, given
the μ̇(θ0) and �̇(θ0) obtained in Condition (d), it is also easy to calculate the Hessian manually
(see “Appendix”):

F̈[m0,m(θ0)] = 2μ̇(θ0)�
−1(θ0)μ̇(θ0)

′ + �̇(θ0)[�−1(θ0) ⊗ �−1(θ0)]�̇(θ0)
′. (33)

Conditions (d) and (e) generally hold in practice and are both easy to verify. In the rare occasions
where a condition fails to hold, specifying a slightly different θ0 often solves the problem.
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Many applications of SEM include the mean structure, such as growth curve models, mixture
models, and measurement invariance, but the statistical theories for these methods often assume a
correct model. It is thus important to conduct simulations to study the consequences when amodel
is imperfect, a case always true in practice. As a simulation problem becomes more complex, it
becomes increasingly difficult or even impossible to create model misfit by removing paths from a
model. Currently, simulation studies on moment structure analysis often create incorrect models
from the Type I perspective, and their design often requires a peculiar model form or special
parameter values. Most importantly, the Type I approach fails to reflect how people define and use
statistical models to understand the real world. The framework we proposed is both conceptually
and mathematically more refined than the Type I approach and can help design SEM simulations
in a manner not only more realistic but also more flexible.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

7. Appendix

This Appendix derives some results used in Eq. (5) and Proposition 1. In particular, Eq. (5)
pertains to the first derivative of FML[μ,�;μ(θ),�(θ)] with respect to θ, and Proposition 1
pertains to the second derivative. Note the values of μ and � are to be realized, and in general,
μ �= μ(θ) and � �= �(θ). The first derivative is

∂ F

∂θ
=∂t′�−1(θ)t + ln |�(θ)| + tr[��−1(θ)]

∂θ

= ∂t
∂θ

{I1 ⊗ [�−1(θ)t]} + ∂[�−1(θ)t]
∂θ

[t ⊗ I1] + ∂�(θ)

∂θ
vec[�−1(θ)] + ∂��−1(θ)

∂θ
vecIp

= − μ̇(θ)�−1(θ)t − �̇(θ)W[Ip ⊗ t]vec(t) − μ̇(θ)�−1(θ)t

+ �̇(θ)W · vec�(θ) − �̇(θ)W · vec�
= − 2μ̇(θ)�−1(θ)t − �̇(θ)W · vec(tt′) − �̇(θ)W · vecE, (A1)

where W = �−1(θ) ⊗ �−1(θ). Accordingly, Eq. (5) in the main text follows.
To derive a result needed in Proposition 1, we continue to calculate the second derivative. In

particular, the derivative of the first term in Eq. (A1) with respect to θ is as follows.

∂[−2μ̇(θ)�−1(θ)t]/∂θ

= ∂ − 2μ̇(θ)

∂θ
{Iq ⊗ [�−1(θ)t]} + ∂[�−1(θ)t]

∂θ
[−2μ̇(θ)′ ⊗ I1]

= −2μ̈(θ){Iq ⊗ [�−1(θ)t]} +
{

∂�−1(θ)

∂θ
(Ip ⊗ t) + ∂t

∂θ
[�−1(θ) ⊗ I1]

}
[−2μ̇(θ)′]

= −2μ̈(θ){Iq ⊗ [�−1(θ)t]} + 2�̇(θ)W(Ip ⊗ t)μ̇(θ)′ + 2μ̇(θ)�−1(θ)μ̇(θ)′ (A2)

The derivative of the second term in Eq. (A1) respect to θ is as follows.

∂{−�̇(θ)W · vec(tt′)}/∂θ

= ∂{−�̇(θ) · vec[�−1(θ)(tt′)�−1(θ)]}/∂θ
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= −�̈(θ){Iq ⊗ vec[�−1(θ)(tt′)�−1(θ)]} − ∂vec[�−1(θ)(tt′)�−1(θ)]
∂θ

[�̇(θ)′ ⊗ I1].
(A3)

To proceed, we define the shorthand Q1 = �−1(θ)(tt′)�−1(θ). Then, we have

− ∂vecQ1

∂θ
[�̇(θ)′ ⊗ I1]

= −∂�−1(θ)

∂θ

{
Ip ⊗ [(tt′)�−1(θ)]

}
�̇(θ)′ − ∂[(tt′)�−1(θ)]

∂θ
[�−1(θ) ⊗ Ip]�̇(θ)′

= �̇(θ)[�−1(θ) ⊗ Q1]�̇(θ)′ − ∂(tt′)
∂θ

W�̇(θ)′

+ �̇(θ) · W[(tt′)�−1(θ) ⊗ Ip] · �̇(θ)′

= �̇(θ)[�−1(θ) ⊗ Q1]�̇(θ)′ − [ ∂t
∂θ

(Ip ⊗ t′) + ∂t
∂θ

(t′ ⊗ Ip)] · W�̇(θ)′

+ �̇(θ)[Q1 ⊗ �−1(θ)]�̇(θ)′

= μ̇(θ)
{
�−1(θ) ⊗ [t′�−1(θ)]

}
�̇(θ)′ + μ̇(θ)

{
[t′�−1(θ)] ⊗ �−1(θ)

}
�̇(θ)′

+ �̇(θ)[�−1(θ) ⊗ Q1]�̇(θ)′ + �̇(θ)[Q1 ⊗ �−1(θ)]�̇(θ)′. (A4)

Similarly, the derivative of the third term in Eq. (A1) with respect to θ is as follows.

∂{−�̇(θ)W · vecE}/∂θ

= −�̈(θ)(Iq ⊗ vecQ2) + �̇(θ)[�−1(θ) ⊗ Q2]�̇(θ)′

+ �̇(θ)[Q2 ⊗ �−1(θ)]�̇(θ)′ + �̇(θ)W�̇(θ)′, (A5)

where Q2 = �−1(θ)E�−1(θ). Combining Eqs. (A2) to (A5) and rearranging the terms, we
have:

∂2F[μ,�;μ(θ),�(θ)]
∂θ∂θ

≡ ∂2F[m,m(θ)]
∂θ∂θ

= H1(θ) + H2(t,E,θ), (A6)

where

H1(θ) = 2μ̇(θ)�−1(θ)μ̇(θ)′ + �̇(θ)W�̇(θ)′, (A7)

and

H2(t,E,θ) = − �̈(θ)[Iq ⊗ vecQ1] − �̈(θ)[Iq ⊗ vecQ2] − 2μ̈(θ){Iq ⊗ [�−1(θ)t]}
+ 2�̇(θ)

{
�−1(θ) ⊗ [�−1(θ)t]

}
μ̇(θ)′

+ �̇(θ)
{
�−1(θ) ⊗ (Q1 + Q2)

}
�̇(θ)′ + �̇(θ)

{
(Q1 + Q2) ⊗ �−1(θ)

}
�̇(θ)′

+ μ̇(θ)
{
�−1(θ) ⊗ [t′�−1(θ)]

}
�̇(θ)′ + μ̇(θ)

{
[t′�−1(θ)] ⊗ �−1(θ)

}
�̇(θ)′.

(A8)
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Therefore, evaluating ∂2F[m,m(θ)]/∂θ∂θ at m = m0 and θ = θ0, we have
H2(t0,E0,θ0) = O and F̈[m0,m(θ0)] = H1(θ0), as t0 = μ0 − μ(θ0) = 0 and E0 =
�0 − �(θ0) = O. The assumption in Proposition 1 that F̈[m0,m(θ0)] is positive definite
leads to thatH1(θ0) is positive definite. Whenmk is sufficiently close tom0, by continuity argu-
ments tk = μk − μ(θ0) and Ek = �k − �(θ0) will be sufficiently close to t0 and E0, and thus,
H2(tk,Ek,θ0)will also be sufficiently close toH2(t0,E0,θ0), which isO. Evaluated atm = mk

and θ = θ0, the Hessian is F̈[mk,m(θ0)] = H1(θ0) + H2(tk,Ek,θ0). For any vector z, we
have z′ · F̈[mk,m(θ0)] · z = z′H1(θ0)z+ z′H2(tk,Ek,θ0)z > 0, and thus F̈[mk,m(θ0)] is also
positive definite.
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