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Abstract

We present the mineralogy and whole rock geochemistry of the lamproites dykes from the
Kawardha area of the Western Bastar Craton. These dykes are characterized by phenocrysts and
microphenocrysts of olivine, phlogopite, ulvo-spinel, Cr-spinel and magnetite within the
chlorite and carbonate-rich groundmass with rutile and apatite as accessory phases. Mineral
chemistry indicates that the lamproites in Kawardha are similar to olivine-phlogopite
lamproites and are geochemically similar to other lamproites in the eastern Bastar craton. The
Kawardha lamproites are characterized by higher concentrations of MgO (12-20.29 wt%), V
(193-502 ppm), Ni (206-823 ppm), Cr (146-1130 ppm), Nb (101-260 ppm), Zr (301-635
ppm), Hf (6-13 ppm) and LREEs. Positive Nb-Ta anomalies and Th, Hf and Zr variations are
comparable to other intra-cratonic rift-related lamproites. The geochemical variations (such as
REE, HFSE and LILE) are consistent with an asthenospheric mantle source similar to the other
lamproites in Bastar craton. Trace element modelling implies a low-degree partial melting
(0.1-2%) of phlogopite-bearing garnet-lherzolite and/or phlogopite-bearing spinel-lherzolite
mantle source. The widespread Proterozoic rifting events in the Bastar craton likely led to the
melting and upwelling of the asthenospheric mantle and which further interacted with the
metasomatized lithospheric mantle to form the parental melts of the lamproite dykes of the
Kawardha area.

1. Introduction

Lamproites are rare, hydrous, mafic-ultramafic (Mg# = Mg/Mg+Fe > 60%) to ultrapotassic
(K/Na > 3) and peralkaline (Na,O + K,0 > Al,O;) igneous rocks, and are characterized by their
exceptional enrichment of compatible and incompatible trace elements (Bergman, 1987; Foley
et al. 1987; Kjarsgaard et al. 2009). The lamproites are often derived from the deepest mantle
sources, and their unique geochemistry and distinct modes of origin are often utilized to study
large-scale geodynamic processes and deep volatile fluxes (Thompson et al. 1990; Gibson et al.
1995; Martinotti et al. 2006; Prelevi¢ et al. 2010; Huang et al. 2010; Yilmaz, 2010; Rukhlov,
Blinova & Pawlowicz, 2013; Liu et al. 2014; Stern, Leybourne & Tsujimori, 2016).

In general, lamproite magmas are derived from the partial melting of heterogeneous mantle
sources that include geochemically enriched domains (metasomatized) of the subcontinental
lithospheric mantle (Foley, 1992; Murphy, Collerson & Kamber, 2002; Davies et al. 2006), and
melts from sub-lithospheric sources further interacts with metasomatized subcontinental
lithospheric domains during the melt transit to the surface (Sarkar et al. 2022). However, the
origin of lamproites and the enrichment of incompatible trace elements are debated. Several
models for their origin have been proposed, which include (1) ancient subducted continental
material in the mantle transition zone (Murphy, Collerson & Kamber, 2002; Rapp et al. 2008),
(2) recycled crustal materials in subcontinental lithospheric mantle (SCLM) (Avanzinelli et al.
2009; Prelevi¢ et al. 2010; Tommasini, Avanzinelli & Conticelli, 2011), (3) enrichment of a
previously depleted SCLM by metasomatic melts originating either from the asthenosphere or
subducted crustal slab (McKenzie, 1989; Foley, 1992; Nelson, 1992; Tainton & McKenzie, 1994;
Turner et al. 1999; Davies et al. 2006; Tappe et al. 2008) and (4) direct formation from a
heterogeneous mantle plume (Mirnejad & Bell, 2006; Rukhlov, Blinova & Pawlowicz, 2013;
Sushchevskaya et al. 2014; Santosh et al. 2018). Experimental evidence suggests that the primary
melts of Si-rich ultrapotassic rocks require high-degree melting of a phlogopite-bearing mantle
source. However, Si-deficient ultrapotassic primary melts may originate in the wehrlitic mantle,
facilitated by metasomatic phases that are fluxed by volatiles such as H,O and CO, (Giilmez
et al. 2023; Forster et al. 2019a; Wang, Foley & Prelevic, 2017). Forster et al. (2019b) investigated
the effects of mantle metasomatism through sediment and hydrous mantle melts using a two-
layer reaction experiment. The results show that sediment-dunite interactions at low
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temperatures (<1000°C) form K-enriched phlogopite-pyroxenite,
while higher temperature reactions (1200°C) with hydrous basanite
led to enrichment in K and K/Na and the generation of lamproite
melt. It has also been demonstrated that experimental partial melts of
K-richterite-bearing mica pyroxenites produce melts similar to
lamproites (Ezad & Foley, 2022).

The emplacement of lamproites in central India has been
correlated with the Paleoproterozoic plume-induced global rifting
events (Santosh et al. 2018). The central Indian craton, also known
as the Bastar craton, records evidence of distinct lamproite
magmatism in the eastern and western domains. The Eastern
Bastar Craton (EBC), records lamproite magmatism at
Kalmidadar, Amlidadar, Darlimunda, Parkom, Sakri (Sahu et al.
2013; Chalapathi Rao et al. 2015; Santosh ef al. 2018) and Khadka
(Yellappa, Chalapathi Rao & Chetty, 2010). However, from the
Western Bastar Craton (WBC), only Kawardha lamproites (Lakra
& Kujur, 2021) have been reported so far. The lamproite
magmatism in the EBC is correlated with the widespread 1.1 Ga
extensional magmatic flux associated with the Rodinia super-
continent. The EBC lamproites are formed from a metasomatized
subcontinental lithospheric mantle source interacting with the
upwelling asthenosphere melt (Sahu et al. 2013; Chalapathi Rao
et al. 2015; Santosh et al. 2018). Similarly, the Kawardha lamproites
in WBC are proposed to be derived from the metasomatized SCLM
sources. The source of carbonate-rich fluids/melts has been
attributed to the subduction recycling of the Archean continental
lithosphere (Lakra & Kujur, 2021). However, the petrogenetic
mechanisms and the tectonic context of lamproite magmatism in
the WBC still need to be explored further. Moreover, the detailed
geochemical and petrological studies of this rare lamproite
occurrence in the Kawardha area of WBC are also significant to
understanding the crust-mantle processes in the WBC. In the
present study, we used whole-rock geochemistry and mineral
chemical analysis to investigate the petrogenetic and tectonic
aspects of Kawardha lamproites from WBC. We also evaluated the
geochemistry of previously reported lamproites from EBC to
delineate regional variations in the source mantle characteristics of
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lamproite magma generation in Bastar craton and their emplace-
ment mechanisms.

2. Geological framework and study area

The Bastar craton is situated in the central part of the Indian shield
(Fig. 1) (Meert et al. 2010). Geographically, the north-eastern
periphery of the Bastar craton is bordered by the Mahanadi
lineament, which separates it from the Singhbhum craton, while the
south-western boundary of the craton is marked by the Godavari
lineament, which separates it from Dharwar craton. The
southeastern and northern margins of the craton are outlined by
the Eastern Ghat Mobile Belt and Central Indian Tectonic Zone,
respectively. The craton encompasses crustal components from
Mesoarchean to Neoproterozoic (Santosh ef al. 2020; Manu Prasanth
et al. 2023). This craton is subdivided into two distinct blocks: WBC
and EBC, and their boundary is marked by the Kotri-Dongargarh
orogeny, also known as Central Bastar Orogen (Santosh et al. 2020).

The Bastar craton consists of five major tectonic belts spanning
from Archean to Proterozoic, which are Sausar-Chilpi belt (Mishra
& Mohanty, 2021), Bengpal-Sukma belt (Ghosh, 2004), Sonakhan
greenstone belt (Deshmukh et al. 2018; Manu Prasanth ef al. 2018,
2019), Amgaon belt (Rajesh et al. 2009) and Kotri-Dongargarh belt
(Manu Prasanth et al. 2023). The craton also encompasses three
supracrustal sequences: Dongargarh, Sakoli and Sausar suites
(Mohanty, 2015; Santosh ef al. 2018). Among these, the Bengpal
and Sukma groups are the oldest granitic rocks in the craton, with
the ages of ca. 3561 Ma (Ghosh, 2004) and ca. 3582 Ma (Rajesh
et al. 2009). The Chilpi rock group represents the youngest rock
formations of age 1850-2050 Ma (Mohanty, 2021). Paleoarchean
(3.5-3.7 Ga) tonalite trondhjemite gneisses (TTGs) represent the
basement ages of the craton (Ghosh, 2004). The U Pb zircon ages of
the TTGs range from 3561 + 11 Ma (Ghosh, 2004), 3583 + 4 Ma
(Rajesh et al. 2009) to 3726 = 22 Ma (Ratre et al 2010).
Paleoproterozoic to Mesoproterozoic lamproite magmatism
(Yellappa, Chalapathi Rao & Chetty, 2010; Sahu et al 2013;
Chalapathi Rao et al. 2015; Santosh et al. 2018) has been reported
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Figure 1. Generalized geological map of the
Bastar craton showing the location of Kawardha
Lamproites. The inset map illustrates the
generalized geology of the Indian subcontinent
and the location of the Bastar craton (Modified
after Meert et al. 2010).
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from Darlimunda (2473 + 8 Ga, Santosh et al. 2018), Khadka (1.88
Ga, Yellappa, Chalapathi Rao & Chetty, 2010), Sakri (1045 + 9 Ma,
Chalapathi Rao et al. 2015) and Nuapada (1055 + 10 Ma, Sahu
et al. 2013) areas. Lamproites of the craton are correlated with two
distinct magmatic events. The oldest Nuapada lamproites are
correlated with the 2.2 Ga rifting event and a Paleoproterozoic
large igneous province event (Santosh et al. 2018). Other
lamproites represent the late Mesoproterozoic magma flux, where
it has been correlated with the rifting events associated with the
Rodinia supercontinent (Chalapathi Rao et al. 2015).

The study area, located in the north-western fringe of the
Chhattisgarh basin within the Bastar craton (Fig. 1), comprises the
Chilpi group, volcanics of the Nandgaon group and the basaltic
lava flows of the Deccan Traps (Lakra & Kujur, 2021). The Chilpi
group forms a linear north-south trending belt, extending
approximately 100 km, and consists predominantly of low-grade
metasedimentary sequences (Mishra & Mohanty, 2021). It
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represents the youngest rock unit in the region, with an estimated
age range of 1850-2050 Ma (Mohanty, 2021). The Pitepani
andesites and Bijli rhyolites of the Nandgaon group are the oldest
litho-units (~2663 Ma; Manikyamba et al. 2016). The entire
sequence is further overlain by Chhattisgarh Supergroup.

The Kawardha Lamproites intrude on the Paleoproterozoic
meta-andesites of the Nandgaon group (Figs. 2, 3). Two clusters of
lamproite occurrences can be noticed in the Piparadhar and
Mabharajpur areas of the Kawardha district (Fig. 2, insets a and b)
(Lakra & Kujur, 2021). The studied lamproites dykes are small in
dimension (10-40 m length) and occur as isolated exposures
within the meta-andesites (Fig. 3). More than ten dykes have been
identified as lamproites, of which three are located in the
Piparadhar area, and more than seven are confined in the
Mabharajpur area. The general trend of the studied lamproite dykes
is NW-SE. Numerous secondary quartz and carbonate veins
traversing the exposed lamproite dykes indicate possible post-
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Figure 2. Generalized geological map of the Kawardha lamproite with the study area indicated within the boxes (modified after Lakra & Kujur, 2021). The insets a (Piparadhar
cluster) & b (Maharajpur cluster) show the location and trend of the studied lamproite dykes.

https://doi.org/10.1017/S0016756825100186 Published online by Cambridge University Press


https://doi.org/10.1017/S0016756825100186

o
=
]
e
|
=
-

Figure 3. Representative field photographs (a, b, ¢ & d) of Kawardha lamproite
showing the studied lamproite dykes intruded within the meta-andesite of the
Nandgaon group and occur as isolated bodies. The length of the hammer is 13 inches,
and the width of the hammerhead is 6.4 inches.

magmatic alteration. Field details, which include the trend,
dimensions, coordinates and key field observations, are given in
Supplementary Table SI.

3. Sample preparation and analytical techniques

Whole-rock major and trace element geochemistry of eighteen
representative samples were analyzed at the Geochemistry
Division, Council of Scientific and Industrial Research-National
Geophysical Research Institute (CSIR-NGRI), Hyderabad. X-ray
fluorescence (XRF) spectrometer (Phillips MagiX PRO Model
2440) was used for the major element analysis. The pressed pellets
of the rock powders were used for the analysis. The details of the
analytical methodology, including data gathering, accuracy,
detection limits and equipment calibration, are given in Krishna,
Khanna & Mohan (2016). The trace and rare earth element
concentrations were measured using a High-Resolution-
Inductively Coupled Plasma Mass Spectrometer (HR-ICP-MS).
The techniques used in sample digestion, instrumentation
parameters and data acquisition are in Satyanarayanan et al.
(2018). The representative major and trace element geochemistry
data are presented in Supplementary Table S2. MY-4 (IGEM,
Russia) and SARM-39 (MINTEK, RSA) are the internal standards
for major oxides and trace element analysis, respectively.
Mineral chemistry and back-scattered electron images of
selected silicate and opaque minerals of lamproite dykes were
analyzed using CAMECA SX Five electron microprobe analyzer
(EPMA) with five wavelength-dispersive spectrometers at EPMA
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laboratory of Indian Institute of Technology (IIT), Bombay.
The 15 keV accelerating voltage and a 20 nA beam current were
used by the operating EPMA source. The equipment has a
Ipm beam size, and analysis has a dwell period of around
three minutes for each point. The representative mineral chemistry
data are presented in Supplementary Tables (S3, S4 & S5). The
internal standards, precision, accuracy and detection limits of the
employed geochemical analysis are provided in Supplementary
Table S8.

4. Results
4.a. Petrography and mineral chemistry

The Kawardha lamproites exhibit signs of extensive alteration;
however, primary textural features of the major minerals are well-
preserved. Olivine phenocrysts are completely pseudomorphosed by
calcite and chlorites, potentially indicating secondary alteration
processes such as chloritization and carbonatization. Representative
photomicrographs of Kawardha lamproite are presented in Fig. 4,
showcasing phenocrysts and microphenocrysts of pseudomorphic
olivine, phlogopite and spinel set within a chlorite and carbonate-rich
groundmass. Overall, a porphyritic texture can be observed with
olivine (pseudomorph) as a phenocrystic phase (Fig. 4a). Some of the
important petrographic observations of samples from each lamproite
dyke have been provided in Table 1.

Phenocrysts of phlogopite exhibit straw-yellow with a reddish
undertone, which is commonly observed in Ti-rich micas (Fig. 4b)
(Mitchell & Bergman, 1991; see also Supplementary Table S3). These
grains display extinction parallel to cleavages (Fig. 4c) and exhibit
compositional gradients from the core to the rim (Fig. 4d), as well as
localized signs of chlorite alteration. The groundmass is rich in
carbonate and chlorite, and it may be secondary. It also contains
rutile, acicular apatite and euhedral grains of spinel (Fig. 4e, f). The
mineral compositions of selected mineral grains are presented in
Supplementary Tables S3, S4 and S5, and their geochemical variation
has been discussed as follows:

4.0.1. Phlogopite

The Mg# (Mg/Mg + Fe'? > 65%; Fig. 6a) suggests that phlogopite
is a prominent mica phase. The compositional variation of TiO,
and AlL,O; in phlogopites ranges from 1.59 to 5.27 wt% and 9.86 to
13.48%, respectively (Supplementary Table S3). The TiO, and
Al,O; concentrations of phlogopite are falling close to lamproite
field rather than alnoite or minette (Fig. 5). Due to their (Si + Al)
composition being less than 8 pfu (Fig. 6b), all of the phlogopites
have a considerable amount of tetra-ferric component.
Furthermore, octahedral site deficiency and Ti contents of the
phlogopite (Fig. 6¢) suggest that two significant Ti-accommodat-
ing substitution processes were involved, which is also noticeable
in micas from the Nuapada lamproite field (Sahu et al. 2013).
When compared to other lamproites from the EBC, micas in the
Kawardha lamproites have much lower TiO, values but show a
similar range of Al,O; concentrations (Fig. 6d).

4.a.2. Spinel

The composition of spinels in Kawardha lamproites shows an
identical ulvo-spinel trend (Fig. 7a), which is analogous to the spinel
trend (T2) of lamproites and orangeites (Mitchell, 1995). The Ti, Cr
and Fer concentrations (see Supplementary Table S4) suggest three
different compositions for the spinel grains, which can be grouped as
ulvo-spinel (high Ti and high Fe), chrome-spinel (Cr and high Fe)
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Table 1. Summary of salient petrographic features of Kawardha lamproite samples

Essential
mineral phase(s)

Accessory mineral

Dyke Sample code phase(s) Key observations

Piparadhar Cluster

KLD-1 1/3, 1/7 Phl Sp, Rt, Ap, Chl, Qtz Extensively chloritized Phl
KLD-2" 2/6, 2/7 Phl Sp, Ap, Chl, Qtz Complete chloritization of Phl, microscopic veins of Qtz.
KLD-3* 3/5, 3/8 Phl Sp, Ap, Chl, Qtz Complete chloritization of Phl, microscopic veins of Qtz.

Maharajpur Cluster

KLD-A Al, A2, A3 Ol, Phl Sp, Ap, C, Chl Complete pseudomorphed Ol by C, mostly fresh Phl

KLD-B B1, B2, B3 Ol, Phl Sp, Rt, Ap, C, Chl, Qtz Complete pseudomorphed Ol by C and Qtz. Extensively chloritized Phl
KLD-C C1,C2,C3 Ol, Phl Sp, Rt, Ap, Il, C, Chl Complete pseudomorphed Ol by C, mostly fresh Phl

KLD-D D1, D2, D3 Phl Sp, Ap, Rt, C, Chl, Qtz Partial Chloritization of Phl.

KLD-F F1, F2, F3 Ol, Phl Sp, Ap, Rt, C, Chl Complete pseudomorphed Ol by C, complete chloritization of Phl.
KLD-G Gl Phl Sp, Ap, C, Chl Complete chloritization of Phl.

Mineral abbreviations: Ol olivine; Phl phlogopite; Sp spinel; Ap apatite; Rt rutile; Il ilmenite; C carbonates; Chl chlorite; Qtz quartz.

*Extremely altered lamproite dykes.

and magnetite (high Fe and low Cr-T1). Concentrations of Mg and Cr
in the chrome-spinel (Fig. 7b) suggest that the Kawardha lamproites
are non-diamondiferous. Fe™/(Fe™+Mg) ratio for the spinel is
nearly equal to 1, which is substantially similar to Sakri lamproites
(Chalapathi Rao et al. 2015). Whereas, Ti /(Ti+Cr+Al) ratio is
highest for ulvo-spinel (> 0.85), moderate for chrome-spinel
(0.2-0.6) and lowest for magnetite (nearly zero).

https://doi.org/10.1017/S0016756825100186 Published online by Cambridge University Press

Figure 4. Representative photomicrographs of Kawardha lamp-
roite, (a) showing the pseudomorphic olivine, (b) phlogopites
under plain-polarized-light (PPL), (c) in crossed-nicols (XN), (d)
backscattered electron (BSE) photomicrograph of phlogopite
grain with TiO, values of core and rim and (e and f) the BSE
images of representative mineral grains of phlogopite, spinel,
rutile, apatite, chlorite and carbonate. Ol (Pseud.): pseudomor-
phic olivine, Phl: phlogopites, Sp: spinel, Rt: rutile, Ap: apatite,
Dol: dolomite, Chl: chlorite.

50pum

4.a.3. Apatite

CaO content in apatites from Kawardha lamproite ranges from
53.23 wt% to 56.57wt%, and P205 is up to 40.83 wt%. Apatites are
enriched in fluorine (up to 3.68 wt%; supplementary Table S5b)
and are classified as fluorapatites. These fluorine-rich apatites are
commonly observed in lamproites and/or lamprophyres (Edgar &
Charbonneau, 1991; Mitchell & Bergman, 1991; Edgar, Pizzolato &
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Figure 5. TiO, (wt%) vs. Al,O3 (wt%) plot showing the compositional variation of
phlogopite in the studied Kawardha lamproite. Compositional fields and trends for
micas from kimberlite, lamproite, orangeite and minette are taken from Mitchell &
Bergman (1991).

Sheen, 1996). The concentration of total FeO (0.1-1.17 wt%), MgO
(0-0.9 wt%) and Na20 (0.04-0.4 wt%) is low, possibly suggesting
the enrichment of incompatible trace elements like Sr, La and Ce
(see Talukdar et al. 2018).

4.a.4. Carbonate

Carbonate is not an essential mineral phase in lamproites (Mitchell
& Bergman, 1991), but is sometimes present as accessory phases
(Chalapathi Rao et al. 2010). Our samples show calcite, ankerite
and dolomite phases in the groundmass. CaO contents in calcites
are high (up to 58.6 wt%) and contain negligible FeO, MgO and
MnO. Whereas other carbonate phases are characterized by their
high concentrations of FeO, MgO and MnO, which range from
4.14 to 8.4 wt%, 12.62 to 17.8 wt% and 0.3 to 0.95 wt%, respectively
(see supplementary Table S5d).

4.a.5. Other groundmass phases

The rutile is mainly iron-bearing and contains FeO up to 1.28 wt%.
The chlorites are dominantly pycno-chlorite (Si=5.4-6.4 apfu)
and subsidiary diabantite (Si> 6.4 apfu) in composition.

4.b. Whole-rock major element geochemistry

The bulk rock geochemistry of Kawardha lamproites is presented
in Supplementary Table S2. Kawardha lamproites are silica
undersaturated (SiO, = 22.14-39.91 wt%) with MgO ranging from
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12.46 to 20.29 wt%. Their Mg# value (34-50%) suggests an evolved
nature, while concertation of other major oxides is highly variable
such as Fe,O3; (10.6-25.12 wt%), CaO (1.74-22.75 wt%), TiO,
(3.8-7.48 Wt%), P,Os (0.99-3.9 wt%), ALO; (2.42-5.64 wt%) and
loss on ignition (LOI = 2-17.1 wt%). The K,O concentration in rock
samples is very low (<0.71 wt%), which is ascribed to post-magmatic
hydrothermal alteration processes (Sahu et al. 2013; Santosh et al.
2018). Low K,O content of the samples can also be attributed to
chloritization of phlogopites, which is perceptible in the petrography.

4.c. Whole-rock trace element geochemistry

Kawardha lamproites are enriched in rare earth elements
(REE = 406-1596 ppm), compatible trace elements such as Ni
(206-824 ppm), Cr (160-1184 ppm) and V (215-503 ppm), and
incompatible trace elements like Zr (296-635 ppm), Hf (6-13 ppm),
Nb (113-260 ppm) and Ta (5.5-17 ppm). In the chondrite
normalized diagram (Fig. 8a), Kawardha lamproites exhibit
enrichment in lighter rare earth elements (LREE) relative to heavier
rare earth elements (HREE) with (La/Yb)y, and value ranges
between 50 and 159. However, it is noticeably depleted in several
incompatible trace elements with negative anomalies at Rb, K, Ba,
Pb, Sr and Zr in the primitive mantle diagram (Fig. 8b). The negative
anomalies may have been somewhat influenced by the fluid-mobile
behaviour of some of these elements, especially Rb, K, Ba and Pb
(e.g., Mirnejad & Bell, 2006; Davies et al. 2006; Tappe et al. 2008).

5. Discussion
5.a. Lamproitic nature of Kawardha dykes

Potassic minerals such as K-feldspar, and/or kalsilite are not
preserved in the Kawardha lamproites, resulting in low K nature,
which is similar to other lamproite occurrences of Bastar craton
(Sahu et al. 2013; Chalapathi Rao et al. 2015; Santosh et al. 2018).
However, the presence of pseudomorphic olivine, Ti-rich phlogo-
pite, ulvo-spinel and fluor-apatite with minor ilmenite and rutile
indicates their lamproite affinity. Presence of fluor-apatite (F > 3 wt
%) in Kawardha dykes is similar to other lamproite occurrences
worldwide (see Jaques, Lewis & Smith, 1986; Edgar and
Charbonneau, 1991) and also suggests alkaline nature of the
parental melt (Wagner and Velde, 1986; Matchan et al. 2009). The
alumina content in mica from our samples provides further evidence
of their lamproite affinity, with an average Al,O; of 11.74 wt%. This
value aligns more closely with the global range of lamproites (5-12
wt%) than lamprophyres, which typically exceed 13 wt% (Rock,
1991). Different geochemical characteristics, including mica
compositional trends, spinel trends and the enrichment of
incompatible and compatible trace elements, especially high levels
of LREEs (up to 1534 ppm) and TiO, (up to 6.94 wt%), clearly
indicate the lamproitic nature of Kawardha dykes.

5.b. Alteration and crustal contamination

Crustal contamination is a salient process in the modification of
the melt chemistry, and it can be estimated by using isotopic and
trace element-based geochemical proxies (DePaolo, 1981;
Thompson et al. 1982; Dostal & Dupuy, 1984). The incompatible
trace element ratios such as Ce/Pb and Nb/U are important
parameters to access the crustal contamination of the mantle-
derived mafic-magmas (Xu, Xu & Zeng, 2017). The Ce/Pb and Nb/
U ratios of the mid-oceanic ridge basalts and oceanic island basalts
(Ce/Pb =25 + 5 and Nb/U =47 + 10; Hofmann et al. 1986) are
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significantly higher than the continental crust (average Ce/
Pb=3.9 and Nb/U =6.2; Rudnick & Gao, 2003). The average
Ce/Pb and Nb/U ratios of the Kawardha lamproites (46.9 and
61.08, respectively) indicate no significant effect of crustal
contamination. In general, crustally contaminated magmas exhibit
negative Nb and positive La-Th spikes on the primitive mantle
normalized diagrams. Significant enrichments in Rb, Th, K and
LREE values (Thompson et al. 1982) can also be observed. The
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Kawardha lamproite exhibits positive anomalies at Nb-Ta-Ti in the
primitive mantle normalized diagram (Fig. 8b), contrary to the lavas
that have experienced crustal contamination (Nelson, 1992; Murphy,
Collerson & Kamber, 2002). Highly fractionated REE pattern on
chondrite normalized diagram (Fig. 8a) depleted HREE and Y with
the absence of positive anomaly at Eu and Pb, which also precludes
the significant crustal contamination (see Nelson, 1992; Murphy,
Collerson & Kamber, 2002; Davies et al. 2006; Mirnejad & Bell 2006).
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et al. 2018).

Post-magmatic alterations are more commonly accountable for
the compositional modification of potassic-ultrapotassic rocks
(Altherr et al. 2004; Mirnejad & Bell, 2006; Davies et al. 2006;
Tappe et al. 2008). Elevated CaO (up to 22.3 wt%) and LOI values
(up to 17.1 wt%; see Supplementary Table S1) in our samples
indicate the formation of secondary carbonates and other hydrous
minerals (e.g., calcite, dolomites and chlorites) through alteration.
The Kawardha lamproites also exhibit low and/or highly variable
contents of mobile elements like K (< 0.7wt%), Rb (1.4-51 ppm),
Sr (126-577 ppm) and Ba (100-1400 ppm), suggesting alteration
of samples. Alteration of olivine can be inferred from the lack of
good correlation between MgO and Ni (Fig. 9a). Whereas a good
correlation between immobile trace elements such as Hf vs. Zr
(Fig. 9b), U vs. Th (Fig. 9¢), Nb vs. Ta (Fig. 9d), and Cr vs. V
(Fig. 9e) suggests that the concentration of immobile trace
elements is appreciably not influenced by alteration processes and
can be used to evaluate the petrogenetic processes.

5.c. Correlations with other lamproites of Bastar craton

The porphyritic texture, liquidus mineralogy (pseudomorphic
olivine grains, Ti-phlogopites, prominent ulvospinel trend and
abundance of apatite) and distinctive whole-rock chemistry
(extremely silica undersaturated, enrichment of incompatible trace
elements and REE fractionation patterns) are the chief character-
istics of Kawardha lamproites. Regardless of modification in their
whole-rock compositions, the mineral chemistry of phlogopite and
spinel (Figs. 6, 7) and the overall trace element patterns (chondrite
and primitive mantle normalized diagrams; Fig. 8) indicate the
Kawardha lamproites are comparable to other lamproite occur-
rences of Bastar craton such as Sakri and Darlimunda lamproites
(Sahu et al. 2013; Chalapathi Rao et al. 2015; Santosh et al. 2018).
Moreover, similar trace element variations can be observed in
Krishna lamproites (Reddy et al. 2003; Chalapathi Rao et al. 2010) of
Dharwar craton and West Kimberly lamproites (Jaques, Lewis &
Smith, 1986; Mitchell & Bergman, 1991).

Compared with other lamproite occurrences of the Bastar craton,
the Kawardha lamproites are broadly similar to the Sakri lamproites
(Figs. 6-8). The lamproites in the Darlimunda, Kalmidadar,
Amlidadar and Parkom areas of the Nuapada field (Sahu et al
2013; Chalapathi Rao et al. 2015; Santosh et al. 2018) exhibit relatively
higher silica contents. Furthermore, the mica mineral chemistry of
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Darlimunda, Kalmidadar, Amlidadar and Parkom lamproites (Fig. 6)
is closely related to West Kimberly lamproites, whereas the Sakri and
Kawardha lamproites have geochemical similarities with the Krishna
lamproites from the Eastern Dharwar craton in southern India
(Chalapathi Rao et al. 2010). Micas from the Kawardha lamproites
have lower Ti values (0.25-0.5 apfu; supplementary Table S3) than
those of other lamproites reported from the Bastar craton (Ti= 0.5
0.9 apfu; Fig. 6b, ¢). Based on the mica composition and whole-rock
elemental variations, Kawardha lamproites exhibit distinct similarities
with Sakri lamproites. However, Kawardha lamproite samples have
high LREEs (400-1100 times of chondrites) in contrast to Sakri
lamproites (LREEs=400-500 times of chondrites). Whereas,
Darlimunda lamproites (Santosh et al. 2018) have appreciably higher
HREE (10-40 times of chondrites) contents as compared to
Kawardha lamproites (10-20 times of chondrites) and Sakri
lamproites (20-30 times of chondrites). The concentrations of
LREEs and HREEs in the Bastar lamproites suggest an enriched
mantle source. Nevertheless, the LREE contents and (La/YD) y ratio of
the Kawardha lamproites are higher than that of Sakri lamproite but
have considerably similar contents of HREEs (Fig. 8). However,
Darlimunda lamproites have slightly higher HREEs compared to
Kawardha and Sakri lamproites. The initial bulk rock Sr (0.705865-
0.709024) and Nd (0.511063-0.511154) isotopic ratios of Sakri
lamproites also point out the enriched source (Chalapathi Rao
et al. 2015).

Previously, Lakra & Kujur (2021) suggested both orogenic and
anorogenic origins for the Kawardha lamproites. However, the data of
Lakra & Kujur (2021) show low REEs ( REE = 59-98 ppm) in the
lamproite samples, which are not consistent with other lamproite
occurrences. Our new analysis from the Kawardha lamproites shows
significantly higher REEs ( REE = 406-1596 ppm), which can be
correlated with other lamproite occurrences in the Bastar craton. The
studied samples (Supplementary Table S9) contain normative olivine
(up t028%), cpx (up to 38%) and leucite (< 1%), which suggests a close
affinity towards olivine lamproites rather than leucite lamproites.

In summary, our geochemical comparison of lamproite
occurrences in the Bastar craton reveals that Kawardha lamproites
share significant geochemical similarities with the Sakri lamproites
and other lamproites of the Bastar craton. This suggests, despite the
differences in emplacement ages, a common petrogenetic and
tectonic process can be inferred for the Precambrian lamproites of
Bastar craton.
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Figure 10. Relative HFSE abundance in the Kawardha
lamproite samples, (a) Nb/Y vs. Zr/Y plot (after Fitton
etal. 1997). (b) Th/Y vs. Nb/Y plot interpreted as evidence
for within-plate enrichment. Average N-MORB, E-MORB
and OIB compositions from Sun & McDonough (1989).

Darlimunda (Santosh et al. 2018) and Sakri (Chalapathi 1
Rao et al. 2015) are also plotted for comparison.

5.d. Melting conditions of a heterogeneous mantle source
and petrogenesis of Kawardha lamproites

The primitive mantle normalized multi-element diagram (Fig. 8a)
of Kawardha lamproites exhibits negative anomalies of Rb, Sr and
Zr, which indicates the fractionation of various phases. The Rb in
multi-element plot signifies residual amphibole or phlogopite
(Sato, Katsura & Ito, 1997), Sr marks the fractionation of
clinopyroxenes (Tappe et al. 2004) and Zr accounts for zirconium
silicate in the residuum (Mitchell & Edgar, 2002). The primitive
mantle signatures (positive Nb, Ta and Ti anomaly) of the
Kawardha lamproite rule out the subduction-related origin.

The high MgO, compatible (Ni, Co, Cr) and incompatible (Ba,
Zr, Hf, Nb, LREEs) trace element concentrations and low Al,O; are
comparable to other anorogenic lamproites worldwide (Jaques
Lewis & Smith, 1986; Mitchell & Bergman, 1991; Sahu et al. 2013;
Chalapathi Rao et al. 2010, 2015; Santosh ef al. 2018). Enrichment
of LREE over HREE, high La/Yb (50-159) and Dy/Yb (5.1-7.6)
ratios, together with a high concentration of compatible trace
elements (such as Ni, Cr, Co), suggests the presence of a garnet-
bearing source (Mitchell & Bergman, 1991; Mirnejad & Bell, 2006;
Davidson et al. 2013). The ratios of highly and moderately
incompatible trace elements (average La/Nb=0.93 and average
Sm/Yb = 13.34) indicate low-degree partial melting of the mantle
peridotite sources within the garnet stability field and mixing of
heterogeneous melts. (Stracke & Bourdon, 2009). Kawardha
lamproites exhibit high values of Zr/Hf ratio (37.35-55.17) along
with enrichment in LREE, which suggests low degree partial
melting of the mantle source (Fraser et al. 1985; Foley, 1992; Hart &
Dunn, 1993; Tainton & McKenzie, 1994; Weyer et al. 2003).
Similar enrichment of incompatible and compatible trace elements
in the melt often involves cryptic and/or modal metasomatism and
the development of metasomatic veins (Foley, 1992). The
dehydration reactions or partial melting of the subducted crust
also induce metasomatic reactions in the lithospheric mantle. Low-
degree partial melting of this heterogeneous mantle source can lead
to the formation of lamproite magma (Davies et al. 2006; Prelevic,
Foley & Cvetkovic, 2007; Akal 2008). The positive anomalies of
Nb-Ta on the primitive mantle normalized plot (Fig. 8b) together
with Zr/Y, Th/Y and Nb/Y ratios (Fig. 1la, b) suggest that
asthenospheric mantle was involved in their genesis (Tainton &
McKenzie, 1994; Choukroun et al. 2005; Mirnejad & Bell 2006).
Earlier researchers (Mitchell & Bergman, 1991; Miller et al. 1999)
postulated that the lamproite magma originates from the low
degree of partial melting of the phlogopite-bearing metasomatized
mantle source. Partial melting of phlogopite-bearing mantle source
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Figure 11. Trace element ratios of the Kawardha lamproite samples (a) La vs. La/Yb,
and (b) La/Yb vs. Yb. Non-modal batch melting curves for phlogopite-bearing spinel
and garnet lherzolites. Phlogopite-spinel and phlogopite-garnet lherzolites are from
Miller et al. (1999). The sources are (i) phlogopite-spinel lherzolite: 0-55 ol, 0-25 opx,
0-11 cpx, 0-03 sp, 0-08 phl; and (ii) phlogopite-garnet lherzolite: 0-55 ol, 0-19 opx, 0-07
cpx, 0-11 gt, 0-08 phl. E-MORB (after Sun & McDonough, 1989), Darlimunda (Santosh
et al. 2018) and Sakri (Chalapathi Rao et al. 2015) are also plotted for comparison.

can be accomplished by peritectic melting under the water-
saturated condition (Foley, 1993). The non-modal partial melting
curves for phlogopite-bearing spinel and garnet lherzolites were
generated to estimate the degree of partial melting. The
composition of phlogopite-spinel and phlogopite-garnet lherzolite
sources is from Miller et al. (1999). The La vs. La/Yb (Fig. 11a) and
La/Yb vs. Yb (Fig. 11b) exhibit that the Kawardha lamproites can
be formed by the small degree of partial melting (0.1-2%) of the
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Figure 12. Zr vs. Nb diagram depicting the arc and non-arc setting. The dotted line
represents the field of rocks with very low Nb (< 50 ppm), which are considered to be
subduction-related tectonic settings (Sheppard & Taylor, 1992). The field of Krishna
lamproites (Paul et al. 2007; Chalapathi Rao et al. 2010), West Kimberly province olivine
lamproites, West Kimberly province leucite lamproites and Aries kimberlites (Foley
et al. 1987; Altherr et al. 2004) is shown for comparison. Darlimunda (Santosh et al.
2018) and Sakri (Chalapathi Rao et al. 2015) are also plotted for comparison.
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Figure 13. Hfvs. Th vs. Nb/2 ternary tectonic discrimination diagram (after Krmicek
etal. 2011) representing anorogenic geodynamic setting for the Kawardha lamproites.
Darlimunda and Sakri lamproites are plotted for comparison. Sakri lamproites
(Chalapathi Rao et al. 2015) and Darlimunda lamproites (Sahu et al. 2013; Santosh
et al. 2018) are shown for comparison.

phlogopite-bearing lherzolite in which melt contribution is from
both garnet and spinel stability fields.

5.e. Tectonic setting of Kawardha lamproites

The high field strength elements (HFSEs) such as Zr and Nb are
widely used to distinguish between intra-cratonic ultrapotassic
alkaline rocks and other arc-related rocks because of their
immobile behaviour during various low-grade post-magmatic
alterations (Paton et al. 2009). In the Zr vs. Nb diagram (Fig. 12),
the Kawardha lamproites do not show any arc signatures. An
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Figure 14. (a) Nb/U vs. Nb, (b) Ce/Pb vs. Ce and (c) Ta/Yb vs. Th/Yb plots for the
Kawardha lamproites. The mantle array includes constructive plate boundary
magmas (normal midocean ridge basalts: N-MORB; enriched midocean ridge basalts;
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components, crustal contamination, within-plate fractionation and fractional
crystallization, respectively (after Pearce, 2008). Fore arc, arc and back-arc fields of
recent convergent margins are from Metcalf and Shervais (2008). Various fields of
lamproites are taken from Davies et al. (2006), Yilmaz (2010), Paul et al. (2007) and
Chalapathi Rao et al. (2010). Plots of Sakri lamproites (Chalapathi Rao et al. 2015) and
Darlimunda lamproites (Sahu et al. 2013; Santosh et al. 2018) are also shown for
comparison. Data symbols are the same as in Figure 6.
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anorogenic tectonic setting can also be inferred from the Th-Hf-
Zr/2 diagram (Fig. 13).

In the Nb/U vs. Nb (Fig. 14a), Ce/Pb vs. Ce (Fig. 14b) and Ta/Yb
vs. Nb/Y (Fig. 14¢) plots, the lamproite samples from the present
study fall very close to oceanic island basalts (OIB) within the
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Figure 15. La/Yb vs. Nb/La diagram depicts an asthenosphere magma source and
interaction of lithospheric and asthenospheric mantle components for the Kawardha
lamproites and other lamproites from eastern Baster Craton (modified after Smith
et al. 1999). Darlimunda (Santosh et al. 2018) and Sakri (Chalapathi Rao et al. 2015) are
also plotted for comparison. The average OIB composition was taken from Fitton,
James & Leeman (1991).

Figure 16. Schematic diagram showing the emplace-
ment of Kawardha lamproites in the WBC. The possible
formation conditions of Pitepani and Bijli volcanic rocks,
Dongargarh and Kanker granitic intrusions of WBC are
also shown.
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mantle array, which implies a deep mantle source for the primary
magma (Santosh et al. 2018). However, to evaluate the degree of
enrichment or depletion of mantle source, Zr/Y vs. Nb/Y (Fig. 10a;
after Fitton et al. 1997) and Th/Y vs. Nb/Y (Fig. 10b; after Sun &
McDonough, 1989) ratios were employed in the present study. The
high values of Zr/Y (5.8-12.8), Nb/Y (3-5.2), Th/Y (0.2-0.5), Nb/
Yb (71-110) and Ta/Yb (3.5-8.3) ratios suggest enriched or fertile
mantle domains like OIBs.

Lamproite and other ultrapotassic magmatism reported from
several parts of the Bastar craton have been correlated with intra-
continental rifting (Yellappa, Chalapathi Rao & Chetty, 2010;
Lehmann et al. 2010; Sahu et al. 2013; Chalapathi Rao et al. 2015;
Santosh et al. 2018). We noticed that most of the lamproitic
samples of Kawardha, Darlimunda (Santosh et al. 2018) and Sakri
(Chalapathi Rao et al. 2015) from Bastar craton plot in the
asthenosphere and lithosphere-asthenosphere interaction array on
La/Yb vs. Nb/La diagram (Fig. 15). This further points out that the
melting might have initiated at the asthenospheric sources beneath
Bastar craton and the melt possibly interacted with the
metasomatized lithospheric mantle domains (Fig. 16). In the
Bastar craton, active subduction and arc magmatism have been
noticed from the Mesoarchean to the Neoarchean (Santosh et al.
2020, Manu Prasanth et al. 2018). The Paleoproterozoic granites
and layered gabbro-anorthositic complexes in the central part of
the craton are proposed to have formed in a post-collisional
tectonic regime (Manu Prasanth et al. 2023). The recycling of early
crustal domains might have significantly contributed to the
metasomatism of the previously depleted SCLM. Santosh et al.
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(2018) postulated that the melt source for the eastern Bastar
lamproites (Sakri and Darlimunda) was derived from the
asthenospheric mantle, and further interactions with the litho-
sphere caused variable enrichments in the source. Such enrichment
in the deep mantle melts occurs due to assimilating the earlier
formed metasomatic veins in the lithospheric mantle source (Pilet,
Baker & Stolper, 2008; Pilet et al. 2011; Niu, 2008). The Kawardha
lamproite magmatism is possibly related to the Archean
subduction-related metasomatic modification of the SCLM along
the eastern margin of the WBC. The interactions with the
asthenospheric melts and metasomatized and phlogopite-rich
SCLM domains further lead to the formation of the parental melts
of Kawardha lamproites. The observed geochemical variations and
comparisons with other lamproite occurrences in the EBC further
imply that Kawardha lamproites were placed in an intra-cratonic
rift setting in the Bastar craton.

6. Conclusions

1. The ultrabasic lamproite dykes from the Kawardha area are
compositionally equivalent to olivine-phlogopite lamproites
and are characterized by phenocrysts and microphenocrysts
of pseudomorphic olivine, phlogopite, spinel within chlorite -
and carbonate-rich groundmass together with rutile and
apatite as accessory phases.

2. The Kawardha lamproite dykes are generated by low degree
(up to 2%) partial melting of the mixed phlogopite-spinel and
phlogopite-garnet lherzolite source. The melt possibly
originated within the asthenospheric mantle; further
asthenosphere-lithosphere interaction causes the enrichment
of incompatible trace elements.

3. The subduction-related crustal recycling in the Archean and
Paleoproterozoic Bastar craton has led to the metasomatic
enrichment of the SCLM domains. The Mesoproterozoic
rifting events in the craton caused the asthenospheric mantle
melts to interact with the metasomatized domains of SCLM,
which created the parental melts of the Kawardha lamproites.
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found at https://doi.org/10.1017/50016756825100186
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