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Abstract. In present paper we define a new kind of quantized enveloping algebra
of sl(2). We denote this algebra by Ur,t, where r, t are two non-negative integers. It is
a non-commutative and non-cocommutative Hopf algebra. If r = 0, then the algebra
Ur,t is isomorphic to a tensor product of the algebra of infinite cyclic group and the
usual quantum enveloping algebra of sl(2) as Hopf algebras. The representation of this
algebra is studied.
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1. Introduction. Quantized enveloping algebras for Kac–Moody algebras were
introduced independently by Drinfel’d and Jimbo [1, 3] in studying the quantum
Yang–Baxter equation and two-dimensional solvable lattice models. There is a rich
mathematical theory developed for these objects and their representations with
connections to many areas of both mathematics and physics.

Suppose the Kac–Moody algebra is sl(2). Then the usual quantum enveloping
algebra is generated by E, F, K, K−1. The four generators satisfy some relations.
We obtain the extended quantum enveloping algebra Ur,t of sl(2) by adding new
generators J, J−1. Ur,t is an algebra generated as an algebra over a field by six generators
E, F, K, K−1, J, J−1. They satisfy the following relations:

K−1K = KK−1 = JJ−1 = J−1J = 1, (1.1)

KEK−1 = q2E, (1.2)

KFK−1 = q−2F, (1.3)

EF − FE = K − K−1Jr

q − q−1
, (1.4)

This algebra can be obtained from the weak quantum enveloping algebra of sl(2)
defined in [11]. We can introduce co-multiplication and counit on the Ur,t to make it
into a Hopf algebra. It is a non-commutative and non-cocommutative Hopf algebra.
If r = 0, then the algebra Ur,t is isomorphic to a tensor product of the algebra of
an infinite cyclic group and the usual quantum enveloping algebra of sl(2) as Hopf
algebras. We will study the representation of this algebra in this paper.

Let us outline the structure of this paper. In Section 2, we give the definition of
Ur,t and obtain some properties of Ur,t. For example, we prove that Ur,t is a Noetherian
domain, a Hopf algebra. In Section 3, we study the representation of Ur,t. Using the
theory developed in Section 3, we character the centre of Ur,t in Section 4. Unlike
the representation theory of usual quantum enveloping Uq(sl(2)) of sl(2), there exist
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finite-dimensional non-semisimple Ur,t-modules. But we can prove that the tensor
product of two simple Ur,t-modules is semisimple, in Section 5. We also obtain
a decomposition theory about the tensor product of two simple Ur,t-modules. In
Section 6, we briefly discuss the representation of Ur,t in the case where q is a root
of unity. In Section 7, we use the Ur,t to construct a Hopf algebra with dimension le3

for any positive integers l, e, where e ≥ 2.
Throughout this paper k is a fixed algebraically closed field with characteristic zero;

N is the set of natural numbers; Z is the set of all integers. For the other undefined
terms we refer to [5–7, 9].

2. The definition of Ur,t and its basic properties. In this section, we will define the
extended quantum enveloping algebra Ur,t of the Lie algebra sl(2) and study its basic
properties. Recall that the three matrices E = (0 1

0 0), F = (0 0
1 0) and H = (1 0

0 −1) consist
of a basis of sl(2). Before giving the definition of extended quantum enveloping algebra
of sl(2), we introduce some notations first. Let us fix two indeterminates q, J.

For any integer n, set

[n] = qn − q−n

q − q−1
= qn−1 + qn−3 + · · · + q−n+3 + q−n+1.

We have the following version of factorials and binomial coefficients. For integers
0 ≤ k ≤ n, set [0]! = 1,

[k]! = [1][2] . . . [k],

if k > 0, and [
n
k

]
= [n]!

[k]![n − k]!

With this new notation we can prove the following proposition by induction:

LEMMA 2.1. If x and y are variables subject to the relation yx = q2xy, then

(x + y)n =
n∑

k=0

q(n−k)k
[

n
k

]
xkyn−k

for any positive integer n.

Let k be an algebraically closed field with characteristic zero. We use kq to denote
the fraction field of the domain k[q, q−1].

DEFINITION 2.2. Let r, t be two fixed non-negative integers. We define Ur,t =
Ur,t(sl(2)) as the kq-algebra generated by six variables E, F, K, K−1, J−1, J, where J
and J−1 are in the centre of Ur,t, with the relations

K−1K = KK−1 = JJ−1 = J−1J = 1, (2.1)

KEK−1 = q2E, (2.2)

KFK−1 = q−2F, (2.3)

EF − FE = K − K−1Jr

q − q−1
. (2.4)
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From the definition, we can prove that there is an algebra automorphism ωs of Ur,t

such that ωs(E) = FJs, ωs(F) = EJ−s, ωs(K) = K−1Jr, ωs(K−1) = KJ−r, ωs(J) =
J, ωs(J−1) = J−1 for any integer s. Moreover, we have the following proposition:

PROPOSITION 2.1. There exists a unique algebra anti-automorphism ω of Ur,t such that
ω(E) = KF, ω(F) = EK−1, ω(K) = K, ω(K−1) = K−1, ω(J) = J, ω(J−1) = J−1.

Proof. To show this proposition, we only need to check the following relations:

ω(K)ω(E) = q−2ω(E)ω(K), ω(K)ω(F) = q2ω(F)ω(K),

[ω(F), ω(E)] = ω(K) − ω(K−1)ω(Jr)
q − q−1

= K − K−1Jr

q − q−1
.

The first two relations result directly from definition. We compute the third one as

[ω(F), ω(E)] = EK−1KF − KFEK−1 = EF − FE = K − K−1Jr

q − q−1
,

by relations (2.2) and (2.3). �
LEMMA 2.3. Let m ≥ 0, and n ∈ Z. The following relations hold in Ur,t:

EmKn = q−2mnKnEm, FmKn = q2mnKnFm, (2.5)

EFm − FmE = [m]Fm−1 q−(m−1)K − qm−1K−1Jr

q − q−1

= [m]
qm−1K − q−(m−1)K−1Jr

q − q−1
Fm−1,

(2.6)

EmF − FEm = [m]
q−(m−1)K − qm−1K−1Jr

q − q−1
Em−1

= [m]Em−1 qm−1K − q−(m−1)K−1Jr

q − q−1
.

(2.7)

Proof. The first two relations result trivially from relations (2.2) and (2.3). The
third one is proved by induction on m using

[E, Fm] = [E, Fm−1]F + Fm−1[E, F ].

Similarly, we can prove (2.7). �
THEOREM 2.4. The algebra Ur,t is Noetherian and has no zero divisor. The set

{EiFjKlJs}i,j∈N,l,s∈Z is a basis of Ur,t.

Proof. Let A0 = kq[K, K−1, J, J−1]. Since A0 is a homomorphic image of a
Noetherian algebra, it is a Noetherian algebra. Moreover, the family {KlJs|l, s ∈ Z} is
a basis of A0.
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Consider the automorphism α1 of A0 determined by α1(K) = q2K , α1(J) = J and
the corresponding Ore extension A1 = A0[F, α1, 0]: the latter has a basis consisting of
the monomials {FjKlJs|j ∈ N, l, s ∈ Z}.

It is easy to prove that A1 is the algebra generated by F, F−1, K, K−1, J, J−1 and
the relations

FK = q2KF, FJ = JF.

Define

α(FjKlJs) = q−2lF jKlJs, (2.8)

δ(Kl) = δ(Js) = 0, (2.9)

δ(FjKlJs) =
j−1∑
i=0

Fj−1δ(F)(q−2iK)KlJs, (2.10)

where δ(F)(q−2iK) = q−2iK−q2iK−1Jr

q−q−1 , and j ≥ 1. We claim that δ extends to an α-
derivation of A1. We must check that for all j, m ∈ N, and l1, l2, s1, s2 ∈ Z, we have

δ(FjKl1 Js1 · FmKl2 Js2 ) = α(FjKl1 Js1 )δ(FmKl2 Js2 ) + δ(FjKl1 Js1 )FmKl2 Js2 . (2.11)

Let us compute the right-hand side of the above equation. We have

α(FjKl1 Js1 )δ(FmKl2 Js2 ) + δ(FjKl1 Js1 )FmKl2 Js2

= q−2l1 FjKl1 Js1

m−1∑
i=0

Fm−1δ(F)(q−2iK)Kl2 Js2

+
j−1∑
i=0

Fj−1δ(F)(q−2iK)Kl1 Js1 FmKl2 Js2

=
m−1∑
i=0

q−2l1mFj+m−1δ(F)(q−2iK)Kl1+l2 Js1+s2

+
m+j−1∑

i=m

q−2l1mFj+m−1δ(F)(q−2iK)Kl1+l2 Js1+s2

= q−2l1mδ(Fm+lKl1+l2 Js1+s2 )

= δ(FjKl1 Js1 FmKl2 Js2 ).

We now build an Ore extension A2 = A1[E, α, δ]. Then the following relations hold
in A2:

EK = α(K)E + δ(K) = q−2KE,

EJ = α(J)E + δ(J) = JE,

and

EF = α(F)E + δ(F) = FE + K − K−1Jr

q − q−1
.
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From these one easily concludes that A2 is isomorphic to Ur,t. Then the properties of
Ur,t are warranted by the properties of the Ore extension. �

To make the algebra Ur,t into the Hopf algebra, we define the following three maps

�(E) = J−rt ⊗ E + E ⊗ KJrt, (2.12)

�(F) = K−1Jr(t+1) ⊗ F + F ⊗ J−rt, (2.13)

�(K) = K ⊗ K, �(K−1) = K−1 ⊗ K−1, (2.14)

�(J) = J ⊗ J, �(J−1) = J−1 ⊗ J−1, (2.15)

ε(K) = ε(K−1) = ε(J) = ε(J−1) = 1, (2.16)

ε(E) = ε(F) = 0, (2.17)

and

S(E) = −EK−1, S(F) = −KFJ−r, S(J) = J−1, (2.18)

S(J−1) = J, S(K) = K−1, S(K−1) = K. (2.19)

THEOREM 2.5. Relations (2.12)–(2.19) endow Ur,t with a Hopf algebra.

Proof. (a) We first show that � defines a morphism of algebras from Ur,t into
Ur,t ⊗ Ur,t. It is enough to check that

�(K)�(K−1) = �(K−1)�(K) = 1 ⊗ 1,

�(J)�(J−1) = �(J−1)�(J) = 1 ⊗ 1,

�(K)�(E)�(K−1) = q2�(E),

�(K)�(F)�(K−1) = q−2�(F),

�(E)�(F) − �(F)�(E) = �(K) − �(K−1)�(Jr)
q − q−1

,

and

�(X)�(J) = �(J)�(X),

for X = E, F, K, K−1. We give a sample calculation for �(E)�(F) − �(F)�(E) =
�(K)−�(K−1)�(Jr)

q−q−1 as follows:

[�(E),�(F)] = (J−rt ⊗ E + E ⊗ KJrt)(K−1Jr(t+1) ⊗ F + F ⊗ J−rt)

− (K−1Jr(t+1) ⊗ F + F ⊗ J−rt)(J−rt ⊗ E + E ⊗ KJrt)

= K−1Jr ⊗ K − K−1Jr

q − q−1
+ K − K−1Jr

q − q−1
⊗ K

= �(K) − �(K−1Jr)
q − q−1

.

(b) Next, we show that � is coassociative. It suffices to do it on the six generators. We
give a sample calculation for E. On the one hand, we have

(� ⊗ id)�(E) = (� ⊗ id)(J−rt ⊗ E + E ⊗ KJrt)

= J−rt ⊗ J−tr ⊗ E + J−rt ⊗ E ⊗ KJtr + E ⊗ KJtr ⊗ KJrt.
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On the other hand, we have

(id ⊗ �)�(E) = (id ⊗ �)(J−rt ⊗ E + E ⊗ KJrt)

= J−rt ⊗ J−tr ⊗ E + J−rt ⊗ E ⊗ KJtr + E ⊗ KJtr ⊗ KJrt,

which is the same.
(c) It is easy to prove that ε defines a morphism of algebras from Ur,t to kq and

satisfies the counit axiom.
(d) It remains to see that S defines an antipode of Ur,t. We have first to check that

S is a morphism of algebras from Ur,t into Uopp
r,t , namely the following relations hold:

S(K)S(K−1) = S(K−1)S(K) = 1, S(J)S(J−1) = S(J−1)S(J) = 1,

S(K−1)S(E)S(K) = q2S(E), S(K−1)S(F)S(K) = q−2S(F),

[S(F), S(E)] = S(K) − S(K−1)S(Jr)
q − q−1

, (2.20)

and S(X)S(J) = S(J)S(X) for X = E, F, K, K−1, J−1.
We only give the computation for (2.20). We have

[S(F), S(E)] = KFJ−rEK−1 − EFJ−r

= (FE − EF)J−r

= S(K) − S(K−1)S(Jr)
q − q−1

.

It is easy to check that ∑
(x)

x(1)S(x(2)) =
∑
(x)

S(x(1))x(2) = ε(x)1

holds when x is any of the generators E, F, K−1, K, J, J−1. Since S is an anti-
automorphism of Ur,t, S is an antipode. �

PROPOSITION 2.2. (1) If r = 0, then U0,t is isomorphic to kq[Z] ⊗ Uq(sl(2)) as Hopf
algebras, where kq[Z] is the group algebra of infinite cyclic group Z, Uq(sl(2)) is the usual
quantum enveloping algebra of sl(2).

(2) We have S2(u) = KuK−1 for any u ∈ Ur,t.

Proof. Obvious. �
PROPOSITION 2.3. For all i, j ∈ N and all l, s ∈ Z, we have

�(EiFjKlJs) =
i∑

u=0

j∑
v=0

qu(i−u)+v(j−v)−2(i−u)(j−v)
[

i
u

] [
j
v

]

× (Jr(t+1)v(j−v)−rut+s ⊗ Jrt(i−u−v)+s)

× (Ei−uFvKl−j+v ⊗ EuFj−vKl+i−u).
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Proof. First observe that

�(EiFjKlJs) = �(E)i�(F)j�(K)l�(J)s

= (J−rt ⊗ E + E ⊗ KJrt)i(K−1J−r(t+1) ⊗ F + F ⊗ J−rt)j(KlJs ⊗ KlJs).

Since

(J−rt ⊗ E)(E ⊗ KJrt) = q−2(E ⊗ KJrt)(J−rt ⊗ E),

�(E)i = (J−rt ⊗ E + E ⊗ KJrt)i

=
i∑

u=0

qu(i−u)
[

i
u

]
(J−rt ⊗ E)u(E ⊗ KJrt)i−u

=
i∑

u=0

qu(i−u)
[

i
u

]
(J−rtu ⊗ 1)(Ei−u ⊗ EuKi−u)(1 ⊗ Jr(i−u)t),

by Lemma 2.1. Similarly, we have

�(F)j = (K−1Jr(t+1) ⊗ F + F ⊗ J−rt)i

=
j∑

v=0

qv(j−v)
[

j
v

]
(F ⊗ J−rt)v(K−1Jr(t+1) ⊗ F)j−v

=
j∑

v=0

qv(j−v)
[

j
v

]
(Jr(t+1)(j−v) ⊗ J−rtv)(FvKj−v ⊗ Fj−v).

Hence

�(EiFjKlJs) =
i∑

u=0

j∑
v=0

qu(i−u)+v(j−v)
[

i
u

] [
j
v

]

× (J−rut+r(j−v)(t+1) ⊗ J−vrt+rt(i−u))

× (Ei−u ⊗ EuKi−u)(FvK−(j−v) ⊗ Fj−v)(KlJs ⊗ KlJs)

=
i∑

u=0

j∑
v=0

qu(i−u)+v(j−v)

[
i

u

] [
j

v

]
(J−r(ut−(j−v)(t+1))+s

⊗Jrt(i−u−v)+s)(Ei−uFvK−(j−v)Kl ⊗ EuKi−uFj−vKl)

=
i∑

u=0

j∑
v=0

qu(i−u)+v(j−v)−2(i−u)(j−v)

[
i

u

] [
j

v

]

× (Jr(t+1)v(j−v)−rut+s ⊗ Jrt(i−u−v)+s)

× (Ei−uFvKl−j+v ⊗ EuFj−vKl+i−u).

By now the proof is completed. �
Finally in this section, we give some remarks.

REMARK 2.6. Suppose G is an abelian group, and g, h ∈ G are two fixed elements.
Then we can define a Hopf algebra Ug,h as follows:

(1) As vector spaces Ug,h is isomorphic to the tensor product of k[G], the group
algebra of G over the field k, and Uq(sl(2)), the usual quantum enveloping algebra of
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sl(2), which is generated by four variables E, F, K, K−1. Any element of k[G] is in the
centre of Ug,h. The other generators satisfy the following relations:

K−1K = KK−1 = 1, (2.21)

KEK−1 = q2E, (2.22)

KFK−1 = q−2F, (2.23)

EF − FE = K − K−1g
q − q−1

. (2.24)

(2) The other operations of Hopf algebra Ug,h are defined as follows:

�(E) = h−1 ⊗ E + E ⊗ hK (2.25)

�(F) = K−1hg ⊗ F + F ⊗ h−1 (2.26)

�(K) = K ⊗ K, �(K−1) = K−1 ⊗ K−1, (2.27)

�(a) = a ⊗ a, a ∈ G, (2.28)

ε(K) = ε(K−1) = ε(a) = 1, a ∈ G, (2.29)

ε(E) = ε(F) = 0, (2.30)

and

S(E) = −EK−1, S(F) = −KFg−1, (2.31)

S(a) = a−1, a ∈ G, S(K) = K−1, S(K−1) = K. (2.32)

REMARK 2.7. By using the above method, we can construct extensions of quantum
enveloping algebras of others Lie algebras (or Kac–Moody algebras [4]) by group
algebras.

REMARK 2.8. We can assume that q is an element of k. If q2 �= 1, then Ur,t is a Hopf
algebra over k. In the remainder of this paper we always assume that q is an element
in k and q2 �= 1.

REMARK 2.9. One can study the dual algebra U∗
r,t of Ur,t. In the case r = 0,

U∗
0,t = Homk(U0,t, k) 	 Homk(k[Z], Uq(sl(2))∗),

by Proposition 2.2. Moreover, one can determine whether Ur,t is quasi-triangular or
not.

3. The representation of Ur,t. In this section, let q be an element in the
algebraically closed field k with characteristic zero. Moreover, we assume that q is
not a root of unity. We shall determine all finite-dimensional simple Ur,t-modules in
this section.

For any two elements λ, α ∈ k and any Ur,t-module V , we denote by

Vλ,α = {v ∈ V |Kv = λv, Jv = α2v}.
The pair (λ, α) is called a weight of V if Vλ,α �= 0.
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LEMMA 3.1. We have EVλ,α ⊆ Vq2λ,α and FVλ,α ⊆ Vq−2λ,α.

Proof. For any v ∈ Vλ,α, we have

{
KEv = q2EKv = q2λEv

JEv = EJv = α2Ev
,

and

{
KFv = q−2FKv = q−2λFv

JFv = FJv = α2Fv
.

So this lemma holds. �

DEFINITION 3.2. Let V be a Ur,t-module and (λ, α) is a pair of scalars. An element
v �= 0 of V is the highest weight vector of weight (λ, α) if Ev = 0, Kv = λv and
Jv = α2v. A Ur,t-module is the highest weight module of highest weight (λ, α) if it is
generated by the highest vector v of weight (λ, α).

PROPOSITION 3.1. Any non-zero finite-dimensional Ur,t-module contains a highest
weight vector. Moreover the endomorphisms induced by E and F are nilpotent.

Proof. Since k is algebraically closed, V is finite-dimensional and JK = KJ, there
exists a non-zero vector w and (μ, α) such that

Kw = μw, Jw = α2w.

If Ew = 0, then the vector w is the highest weight vector and we are done. If not, let
us consider the sequence of vectors Enw, where n runs over the non-negative integers.
According to Lemma 3.1, it is a sequence of eigenvectors with distinct eigenvalues.
Consequently, there exists an integer n such that Enw �= 0 and En+1w = 0. The vector
Enw is the highest weight vector.

In order to prove that the action of E on V is nilpotent, it suffices to check that 0
is the only eigenvalue of E. Now, if v is a non-zero eigenvector for E with eigenvalue
λ �= 0, then so is Knv with eigenvalue q−2nλ. The endomorphism E would then have
infinitely many distinct eigenvalues which is impossible. The same argument works
for F . �

LEMMA 3.3. Let v be a highest weight vector of weight (λ, α). Set v0 = v and
vp = 1

[p]! F
pv for p > 0. Then

Kvp = q−2pλvp, Jvp = α2vp, Fvp−1 = [p]vp,

and

Evp = q−(p−1)λ − qp−1λ−1α2r

q − q−1
vp−1. (3.1)
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Proof. We only check equation (3.1). By Lemma 2.3, we have

Evp = 1
[p]!

(
FpE + [p]Fp−1 q−(p−1)K − qp−1K−1Jr

q − q−1

)
v0

= q−(p−1)λ − qp−1λ−1α2r

q − q−1
vp−1.

�
THEOREM 3.4. (a) Let V be a finite-dimensional Ur,t-module generated by the highest

weight vector v of weight (λ, α). Then
(i) λ = εqnαn, where ε = ±1 and n is the integer defined by dimV = n + 1.
(ii) Setting vp = 1

[p]! F
pv, we have vp = 0 for p > n and in addition the set {v =

v0, v1, . . . , vn} is a basis of V.
(iii) The operator K acting on V is diagonalizable with (n + 1) distinct eigenvalues

{εqnαr, εqn−2αr, . . . , εq−n+2αr, εq−nαr},
and the operator J acts on V by a scalar α2.

(iv) Any other highest weight vector in V is a scalar multiple of v and is of weight
(λ, α).

(v) The module is simple.
(b) Any simple finite-dimensional Ur,t-module is generated by the highest weight

vector. Two finite-dimensional Ur,t-modules generated by highest vectors of the same
weight are isomorphic.

Proof. According to Lemma 3.3, the sequence {vp|p ≥ 0} is a sequence of
eigenvectors for K with distinct eigenvalues. Since V is finite-dimensional, there is
an integer n such that vn �= 0 and vn+1 = 0. Then from the formulas

Evp = q−(p−1)λ − qp−1λ−1α2r

q − q−1
vp−1,

we obtain vm = 0 for all n > m and vm �= 0 for all m ≤ n. Moreover,

0 = Evn+1 = q−nλ − qnλ−1α2r

q − q−1
vn.

Hence λ2 = q2nα2r, which is equivalent to λ = εqnαr. The rest of the proof of (i)–(iii)
is easy. So we omit it.

(iv) Let v′ be another highest weight vector. It is an eigenvector for the action of
K and J; hence it is a scalar multiple of some vector vi. But the vector vi is killed by E
if and only if i = 0.

(v) Let V ′ be a non-zero Ur,t-submodule of V and let v′ be the highest weight
vector of V ′. Then v′ also is the highest weight vector for V . By (iv), v′ has to be a
non-zero scalar multiple of v. Therefore v is in V ′. Since v generates V , we must have
V = V ′, which proves that V is simple.

(b) By Proposition 3.1, any simple finite-dimensional Ur,t-module V contains a
highest weight vector v. Let V ′ be the submodule of V generated by v. Since V is
simple, V = V ′ and hence V is generated by the highest weight vector v. The rest
results of (b) follow from (a). �
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We denote the (n + 1)-dimensional simple Ur,t-module-generated highest weight
vector v by Vε,n,α, where v satisfies

Ev = 0, Jv = α2v, Kv = εqnαrv.

Let ρε,n,α be the corresponding morphism of algebras from Ur,t to End(Vε,n,α).
Observe that the formulas of Lemma 3.3 may be rewritten as follows for Vε,n,α:

Kvp = εqn−2pαrvp, Jvp = α2vp, Fvp−1 = [p]vp,

and

Evp = ε
qn−(p−1)αr − qp−1−nαr

q − q−1
vp−1 = εαr[n − p + 1]vp−1. (3.2)

As a special case, we have Vε,0,α = k. The morphism ρε,0,α is given by

ρε,0,α(K) = εαr, ρε,0,α(E) = ρε,0,α(F) = 0, ρε,0,α(J) = α2.

LEMMA 3.5. There exists an element C of the centre of Ur,t acting by 0 on Vε,0,α and
by a non-zero scalar on Vε′,n,α when n is an integer greater than zero, and ε, ε′ = ±1.

Proof. Define C = Cp − ε
αr(q+q−1)
(q−q−1)2 , where Cp = EF + q−1K+qK−1Jr

(q−q−1)2 . First we show
that Cp is in the centre of Ur,t. Let us calculate KCpK−1 and ECp.

KCpK−1 = KEFK−1 + q−1K + qK−1Jr

(q − q−1)2

= EF + q−1K + qK−1Jr

(q − q−1)2

= Cp.

Since

[E, F ] = K − K−1Jr

q − q−1
, Cp = FE + qK + q−1K−1Jr

(q − q−1)2
.

Hence

ECp = EFE + E
qK + q−1K−1Jr

(q − q−1)2

= EFE + q−1K + qK−1Jr

(q − q−1)2
E

= CpE.

Similarly we can prove FCp = CpF . So Cp is in the centre of Ur,t. Consequently C is in
the centre of Ur,t.

C acts on Vε,0,α by

qεαr + q−1εαr

(q − q−1)2
− ε

qαr + q−1αr

(q − q−1)2
= 0.
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Since C acts on Vε′,n,α by

β = qn+1ε′αr + q−1−nε′αr

(q − q−1)2
− ε

qαr + q−1αr

(q − q−1)2
= 0,

we have to show that β �= 0 when n > 0. If β = 0, we would have (qn+2 − εε′)(qn −
εε′) = 0, which would be contrary to the assumption, that q is not a root of unity. �

THEOREM 3.6. When q is not a root of unity, any two-dimensional Ur,t-module
V is isomorphic to either Vε,0,α ⊕ Vε′,0,β , or Vε,1,α, or a module V (α, ε, y) with basis
{v1, v2} such that ρ(E) = ρ(F) = 0, and ρ(J) = (α

2 y
0 α2), ρ(K) = (εα

r ry
2 εαr−2

0 εαr ), where ρ is
the algebra homomorphism determined by V (α, ε, y).

Proof. Suppose V is simple. Then V is isomorphic to Vε,1,α by Theorem 3.4.
Otherwise there exists a proper submodule V ′ of V . Since the dimension of V ′ is equal
to one, we can assume that {v1, v2} is a basis of V satisfying

Kv1 = εαrv1, Kv2 = ε′βrv2 + xv1,

Jv1 = α2v1, Jv2 = β2v2 + yv1.

Since ε′βr(β2v2 + yv1) + xα2v1 = JKv2 = KJv2 = β2(ε′βrv2 + xv1) + yεαrv1, x(α2 −
β2) = y(ε′βr − εαr).

If εαr �= ε′βr and α2 �= β2, then v1, v
′
2 = v2 + x

ε′βr−εα
v1 = v2 + y

β2−α2 v1 is another
basis of V . Since Kv′

2 = ε′βv′
2 and Jv′

2 = β2v′
2, V = kv1 ⊕ kv′

2 is a direct sum of Ur,t-
modules.

If α2 = β2 and ε′βr �= εαr, then y = 0. Let v′
2 = v2 + x

ε′βr−εαr v1. Then Jv′
2 = β2v′

2

and Kv′
2 = ε′βrv′

2. Consequently V = kv1 ⊕ kv′
2 is a direct sum of Ur,t-modules.

If α2 �= β2 and ε′βr = εαr, then x = 0. Let v′
2 = v2 + y

β2−α2 v1. Then Jv′
2 = β2v′

2

and Kv′
2 = ε′βrv′

2. Consequently V = kv1 ⊕ kv′
2 is a direct sum of Ur,t-modules.

Next we assume that εαr = ε′βr, and α2 = β2. Since Ev1 is an eigenvector for K
with eigenvalue εq2αr �= εαr, it is zero. Let us prove that Ev2 is zero too. Indeed, writing
Ev2 = λv1 + μv2, we have

εαrλv1 + μ(εαrv2 + xv1) = KEv2 = q2EKv2 = q2E(εαrv2 + xv1) = q2εαr(λv1 + μv2).

Hence {
εαrλ + xμ = q2εαrλ

μεαr = q2μεαr.
(3.3)

Since q2 �= 1, we obtain λ = μ = 0 from (3.3). One can show in a similar way that F
acts as zero on V . Since [E, F ] acts as zero, we have K = K−1Jr on V . In particular,
since K−1v2 = εα−rv2 − xα−2rv1,

JrK−1v2 = εα−rJrv2 − xεαrv1 = εαrv2 + (εryαr−2 − x)v1.

Hence εryαr−2 − x = x and x = ry
2 εαr−2. So ρ(E) = ρ(F) = 0, and ρ(J) =

(α
2 y

0 α2), ρ(K) = (εα
r ry

2 εαr−2

0 εαr ), where ρ is the algebra homomorphism determined by
V (α, ε, y). �

REMARK 3.7. If y �= 0, then V (α, ε, y) is not a semisimple Ur,t-module.
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REMARK 3.8. Suppose that the submodule V ′ of a module V is simple of dimension
greater than 1 and the dimension of V/V1 is 1. Then there exists a one-dimensional
module V2 such that V = V1 ⊕ V2. In fact, let the one-dimensional quotient module
V/V ′ has weight (εαr, α). Let us consider the operator

C = Cp − ε
qαr + q−1αr

(q − q−1)2
,

it acts by zero on V/V ′. Consequently, we have CV ⊆ V ′. On the other hand, C acts
on V ′ as multiplication by a scalar y �= 0. It follows that 1

y C is the identity on V ′.
Therefore the map 1

y C is a projector of V onto V ′. This projector is a Ur,t-linear since

C is central. Let V2 = ker( 1
y C). Then V = V ′ ⊕ V2.

THEOREM 3.9. The dual module V∗
ε,n,α of the simple Ur,t-module Vε,n,α is a simple

module, and V∗
ε,n,α 	 Vε,n,α−1 .

Proof. Since Ur,t is a Hopf algebra, the dual of any Ur,t-module is still a Ur,t-module.
First we prove that V is a simple module if and only if V∗ := Homk(V, k) is a simple
module. Since V is finite dimensional, V 	 V∗∗. We only need to verify the implication
that V∗ is simple if V is simple. Let L be a non-zero submodule of V∗. If L �= V∗,
then W = {x ∈ V |f (x) = 0 for all x ∈ L} �= 0. For any x ∈ W and any f ∈ L,
we have f (Kx) = (K−1f )(x) = 0, f (Jx) = (J−1f )(x) = 0, 0 = (−Ef )(Kx) = f (Ex) and
0 = (−FKf )(Jrx) = f (Fx) = 0. Hence W is a submodule of V . Consequently, W = V .
So L = 0. This is contrary to our original assumption. Hence V∗ is simple. Now
suppose Vε,n,α is spanned by {v0, . . . , vn} with relations

Kvp = εqn−2pαrvp, Jvp = α2vp, Fvp−1 = [p]vp,

and

Evp = ε
qn−(p−1)αr − qp−1−nαr

q − q−1
vp−1 = εαr[n − p + 1]vp−1.

Let {v∗
0 , . . . , v

∗
n} be the dual basis of {v0, . . . , vn}. Then

(Ev∗
n )(vi) = −v∗

n (EK−1vi) = εαrq2i−n[n − i + 1]v∗
n (vi−1) = 0,

(Kv∗
n )(vi) = v∗

n (K−1vi) = q2i−nεα−rv∗
n (vi) = qnεα−rv∗

n (vi)

and

(Jv∗
n )(vi) = v∗

n (J−1vi) = α−2v∗
n (vi).

Thus, v∗
n is the highest weight vector with weight (qnα−r, α−1) of V∗

ε,n,α and hence
V∗

ε,n,α 	 Vε,n,α−1 . �
Finally in this section, for any given finite-dimensional semisimple Ur,t-module V ,

we construct a scalar product, i.e. a non-degenerated symmetric bilinear form (, ) on
V such that

(xv, v′) = (v, ω(x)v′) (3.4)
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for all x ∈ Ur,t and v, v′ ∈ V . The linear map ω has been defined in Proposition 2.1.
This is done in the following theorem:

THEOREM 3.10. On the simple Ur,t-module Vε,n,α generated by the highest weight
vector v, there exists a unique scalar product such that (v, v) = 1. If we define the vectors
vi := 1

[i] F
iv for all i ≥ 0, then they are pairwise orthogonal and we have

(vi, vj) = qi(i+1−n)
[

n
i

]
δij.

Proof. Let us first assume that there exists a scalar product on Vε,n,α such that
(v, v) = 1. Next we will show that (vi, vj) = qi(i+1)−ni[ni ]δij. By definition and (3.4) we
have

(vi, vj) = 1
[i]!

(Fiv, vj) = 1
[i]!

(v, ω(Fi)vj) = 1
[i]!

(v, (EK−1)ivj).

By (2.5) we can prove that (EK−1)i = qi(i+1)K−iEi for any i > 0. Consequently, the
vector ω(Fi)vj is a scalar multiple of Eivj, which is equal to zero as soon as i > j.
Therefore (vi, vj) = 0 if i > j. By symmetry, we also have (vi, vj) = 0 if i < j.

We need the formula

Eivj = (εαr)i [n − j + i]
[n − j]

vj−i

to compute (vi, vi). We have

(vi, vi) = 1
[i]!

qi(i+1)(v, K−iEivi)

= (εαr)iqi(i+1) [n]!
[i]![n − i]!

(v, K−iv)

= qi(i+1)−ni [n]!
[i]![n − i]!

.

This proves the uniqueness of the scalar product. Let us now prove its existence.
Clearly, there exists a non-degenerate symmetric bilinear form such that

(vi, vj) = qi(i+1−n)
[

n
i

]
δij. (3.5)

We have to check that it satisfies relation (3.4). It is enough to check this for
x = E, F, K, K−1, J and J−1. We shall do this for x = E and x = F , since the other
computations are easy.

For the case x = E. On the one hand, we have

(Evi, vj) = εαr[n − i + 1](vi−1, vj) = εαrq(i−1)(i−n) [n]!
[i − 1]![n − i]!

δi−1j.
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One the other hand, by Proposition 2.1 and by (3.4), we have

(vi, ω(E)vj) = (vi, KFvj)
= [j + 1](vi, Kvj+1)

= εαrqi(i+1−n)+n−2(j+1)[j + 1]
[n]!

[i]![n − i]!
δij+1

= εαrq(i−1)(i−n) [n]!
[i − 1]![n − i]!

δij+1

= (Evi, vj).

For the case x = F . On the one hand, we have

(Fvi, vj) = [i + 1](vi+1, vj) = q(i+1)(i+2−n) [n]!
[i]![n − i − 1]!

δi+1j.

One the other hand, by Proposition 2.1 and by (3.4), we have

(vi, ω(F)vj) = (vi, EK−1vj)
= εα−rq2j−n(vi, Evj)
= q2j−n[n − j + 1](vi, vj−1)

= qi(i+1−n)+2(i+1)−n[n − i]
[n]!

[i]![n − i]!
δij−1

= q(i+1)(i+2−n) [n]!
[i]![n − i − 1]!

δij−1

= (Fvi, vj).

This completes the proof of this theorem. �

4. The Harish-Chandra homomorphism and the centre of Ur,t. Our objective in
this section is to describe the centre Z of Ur,t in case q is not a root of unity. We assume
this throughout this section.

Let us fix (λ, α), where αλ �= 0. Consider an infinite-dimensional vector space
V (λ, α) with denumerable basis {vi|i ∈ N}. For p ≥ 0, set⎧⎨

⎩
Kvp = q−2pλvp, Jvp = α2vp,

Evp+1 = q−pλ−qpλ−1α2r

q−q−1 vp,

Ev0 = 0, Fvp = [p + 1]vp+1.

(4.1)

K−1vp = q2pvp, J−1vp = α−2vp. (4.2)

LEMMA 4.1. Relations in (4.1) and (4.2) define a Ur,t-module structure on V (λ, α).
The element v0 generates V (λ, α) as a Ur,t-module and is the highest weight vector of
weight (λ, α).

Proof. Immediate computation yield

K−1Kvp = KK−1vp = vp, J−1Jvp = JJ−1vp = vp,

KEK−1vp = q2Evp, KFK−1vp = q−2Fvp,

https://doi.org/10.1017/S0017089509005096 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509005096


456 WU ZHIXIANG

[E, F ]vp = ([p + 1]
q−pλ − qpλ−1α2r

q − q−1
− [p]

q−p+1λ − qp−1λ−1α2r

q − q−1
)vp

= q−2pλ − q2pλ−1α2r

q − q−1
vp

= K − K−1Jr

q − q−1
vp.

(4.3)

This show that the relations in (4.1) and (4.2) define a Ur,t-module structure on V (λ, α).
The proof is complete. �

Let UK be the subalgebra of Ur,t of all elements commuting with K .

LEMMA 4.2. An element of Ur,t belongs to UK if and only if it is of the form∑
i≥0

FiPiEi,

where P0, P1, . . . are elements of k[K, K−1; J, J−1].

Proof. This is a consequence of the fact that {FiKlJsEj|i, j ∈ N, l, s ∈ Z} is a basis
of Ur,t and that

K(FiKlJsEj)K−1 = q2(j−s)FiKlJsEi.

�
LEMMA 4.3. We have I = Ur,tE ∩ UK = FUr,t ∩ UK and

UK = k[K, K−1; J, J−1] ⊕ I.

Proof. Let u = ∑
i≥0 FiPiEi ∈ Ur,t be an element of UK . If u also lies in Ur,tE, then

P0 = 0. Hence u belongs to FUr,t ∩ UK and conversely. Since the form
∑

i≥0 FiPiEi is
unique for any element of UK , we get the desired direct sum. �

It results from I = Ur,tE ∩ UK = FUr,t ∩ UK that I is a two-sided ideal and the
projector ϕ from UK onto k[K, K−1; J, J−1] is a morphism of algebras. The map ϕ is
called the Harish-Chandra homomorphism. It permits one to express the action of the
centre Z on the highest weight module.

PROPOSITION 4.1. Let V (λ, α) be the highest weight module of Ur,t with highest
weight (λ, α). Then, for any central element z ∈ Z and any v ∈ V, we have

zv = ϕ(z)(λ, α2)v.

Recall that ϕ(z) is a Laurent polynomial in K, J, and ϕ(z)(λ, α2) is its value at K = λ

and J = α2.

Proof. Let v0 be the highest weight vector generating V (λ, α) and z a central
element of Ur,t. The element z can be written in the form

z = ϕ(z) +
∑
i>0

FiPiEi.
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Since {
Ev0 = 0, Jv0 = α2v0,

Kv0 = λv0,

we get zv0 = ϕ(z)(λ, α2)v0. If v is an arbitrary element of V (λ, α), we have v = xv0 for
some x ∈ Ur,t, hence zv = xzv0 = ϕ(z)(λ, α2)v. �

LEMMA 4.4. Let z ∈ Z. If ϕ(z) = 0, then z = 0.

Proof. Let z be an element in the centre such that ϕ(z) = 0. Assume z �= 0.
Since z ∈ UK , we can assume that z = ∑l

i=k FiPiEi ∈ FUr,t for some k ≥ 1, where
Pk, Pk+1, . . . , Pl are non-zero Laurant polynomials in K and J. Consider a Verma
module V (λ, α), The relations in (4.1) and (4.2) show that Evp = 0 if and only if p = 0.
Let us apply z to the vector vk of V (λ, α). On the one hand

zvk = ϕ(z)(λ, α2)vk = 0.

On the other hand, we get

zvk = FkPkEkvk = cPk(λ, α2)vk,

where c is a non-zero constant. It follows that P(λ, α2) = 0 for any non-zero λ and α.
Thus Pk = 0. This is impossible. �

THEOREM 4.5. When q is not a root of unity, the centre Z of Ur,t is a polynomial
algebra generated by the element Cp over the algebra k[J, J−1]. The restriction of Harish-
Chandra homomorphism to Z is an isomorphism onto the subalgebra of k[K, K−1, J−1, J]
generated by qK + q−1K−1Jr.

Proof. For any integer n > 0, consider the Verma module V (qn−1αr, α) for any
non-zero element α. By (4.1) we have Evn = 0. Thus vn is the highest weight vector
of weight (q−n−1αr, α). By Proposition 4.1 a central element z acts on the module
generated by vn as the multiplication by scalar ϕ(z)(q−(n−1)αr, α2); but since vn is in
V (qn−1αr, α), the element z also acts as the scalar ϕ(qn−1αr, α2). Thus

ϕ(z)(qn−1αr, α2) = ϕ(z)(q−(n+1)αr, α2) (4.4)

for any α �= 0 and any n > 0. Suppose ϕ(z) = P(K, K−1, J, J−1). Then (4.4) implies

P(qn−1αr, q−(n−1)α−r, α2, α−2) = P(q−(n+1)αr, qn+1α−r, α2, α−2). (4.5)

Let

ψα(x) = P(q−1αrx, qαrx−1, α2, α−2).

Then ψα(qn) = ψα(q−n) for any integer n by (4.5). Hence

ψα(x) =
∑
i≥0

ai(α)(x + x−1)i,

where ai(α) ∈ k[α, α−1]. Therefore

ψα(qKα−r) =
∑
i≥0

ai(α)(qKα−r + q−1K−1αr)i = P(K, K−1, α2, α−2), (4.6)
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for any non-zero α. Since

P(K, K−1, (−α)2, (−α)−2) = P(K, K−1, α2, α−2),

∑
i≥0

ai(α)α−ri(qK + q−1K−1α2r)i =
∑
i≥0

ai(−α)α−ri(qK + q−1K−1α2r)i.

Hence ai(α) = αirbi(α2). So∑
i≥0

bi(α2)(qK + q−1K−1α2r)i = P(K, K−1, α2, α−2). (4.7)

Consequently,

ϕ(z) =
∑
i≥0

ci(J, J−1)(qK + q−1K−1Jr)i.

Since ϕ(Cp) = qK+q−1K−1Jr

(q−q−1)2 , ϕ(J) = J and ϕ(J−1) = J−1, ϕ is a surjective map from Z to

the subalgebra of k[K, K−1, J−1, J] generated by qK + q−1K−1Jr. Using Lemma 4.4,
we obtain the proof of the remaining results of this theorem. �

5. The generalized quantum Clebsch–Gordan formula. We now prove a
generalized quantum Clebsch–Gordan formula for the finite-dimensional simple Ur,t-
modules. Since

Vε,n,α 	 Vε,0,α ⊗ V1,n,1,

and V1,n,1 can view a module over Ur,t/(J − 1) 	 Uq(sl(2)), we get the following lemma
by using the quantum Clebsch–Gordan formula for the usual quantum enveloping
algebra Uq(sl(2)) of sl(2).

LEMMA 5.1. Let n ≥ m be two non-negative integers. There exists an isomorphism
of Ur,t-modules

Vε,n,α ⊗ Vε′,n,β 	 Vεε′,n+m,αβ ⊕ Vεε′,n+m−2,αβ ⊕ · · · ⊕ Vεε′,n−m,αβ .

Proof. It is obvious that Vε,0,α ⊗ Vε′,0,β 	 Vεε′,0,αβ . Thus this lemma follows from
the above remark. �

In the remainder of this section, we always assume that n ≥ m and ε = ε′ = 1. In
the case αr = 1, we can determine the all highest weight vectors of Vε,n,α ⊗ Vε′,n,β in
the following lemma.

LEMMA 5.2. Let v(n) be the highest weight vector of weight (qnαr, α) in V1,n,α and v(m)

be the highest weight vector of weight (qmβr, β) in V1,m,β . Let us define v
(n)
p = 1

[p]! F
pv(n),

v
(m)
p = 1

[p]! F
pv(m), for all p ≥ 0. Suppose αr = 1. Then

v(n+m−2p) =
p∑

i=0

(−1)i [m − p + i]![n − i]!
[m − p]![n]!

q−i(m−2p+i+1)β2rt(n−i)v(n)
i ⊗ v

(m)
p−i

is the highest weight vector of weight (qn+m−2pβr, αβ).
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Proof. It is clear that v
(n)
i ⊗ v

(m)
p−i has weight (qn+m−2pβr, αβ). Let us check that

Ev(n+m−2p) = 0. Recall that

�(E) = J−rt ⊗ E + E ⊗ KJrt.

It follows that

Ev(n+m−2p) =
p∑

i=0

(−1)i [m − p + i]![n − i]!
[m − p]![n]!

q−i(m−2p+i+1)[m − p + i + 1]

×β2rt(n−i)+rv
(n)
i ⊗ v

(m)
p−i−1

+
p∑

i=0

(−1)i [m − p + i]![n − i]!
[m − p]![n]!

q−i(m−2p+i+1)+(m−2p+2i)[n − i + 1]

×β2rt(n−i+1)+rv
(n)
i−1 ⊗ v

(m)
p−i

=
p∑

i=0

(−1)i [m − p + i]![n − i + 1]!
[m − p]![n]!

q−(i−1)(m−2p+i)(β2rt(n−i+1)+r

−β2rt(n−i+1)+r)v(n)
i ⊗ v

(m)
p−i

= 0.

Thus this lemma is true. �
We wish to go one step further and address the following problem. We now have

two bases of V1,n,α ⊗ V1,m,β at our disposal. They are of different natures, the first one,
adapted to the tensor product, is the set

{v(n)
i ⊗ v

(m)
j |0 ≤ i ≤ n, 0 ≤ j ≤ m};

the second one, formed by the vectors

v
(n+m−2p)
k = 1

[k]!
Fkv(n+m−2p)

with 0 ≤ p ≤ m and 0 ≤ k ≤ n + m − 2p, is better adapted to the Ur,t-module structure.
Comparing both bases leads us to the so-called generalized quantum Clebsch–Gordan
coefficients {n m n + m − 2p

i j k } defined for 0 ≤ p ≤ m, and 0 ≤ k ≤ n + m − 2p by

v
(n+m−2p)
k =

∑
0≤i≤n;0≤j≤m

{
n m n + m − 2p
i j k

}
v(n)

i ⊗ v
(m)
j .

In particular,{
n m n + m − 2p
i j 0

}
= (−1)i [m − p + i]![n − i]!

[m − p]![n]!
q−i(m−2p+i+1)β2rt(n−i)

=
[

n m n + m − 2p
i j 0

]
β2rt(n−i),
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where [n m n + m − 2p
i j 0 ] is the usual quantum Clebsch–Gordan coefficients, is also called

quantum 3j-symbols in the physics literature.

PROPOSITION 5.1. Fix p and k. The vector v
(n+m−2p)
k is a linear combination of vectors

of the form v
(n)
i ⊗ v

(m)
p−i+k. Therefore we have {n m n + m − 2p

i j k } = 0 when i + j �= p + k. We
also have the induction relation{

n m n + m − 2p
i j + 1 k + 1

}
= [j + 1]q2i−n

[k + 1]

{
n m n + m − 2p
i j k

}

+ [i]
[k + 1]

{
n m n + m − 2p

i − 1 j + 1 k

}
β−2rt.

Proof. This goes by induction on k. The assertion holds for k = 0 by Lemma 5.2.
Supposing

v
(n+m−2p)
k =

∑
i

xiv
(n)
i ⊗ v

(m)
p−i+k,

we have
[k + 1]v(n+m−2p)

k+1 = Fv
(n+m−2p)
k

=
∑

i

xi(Jr(t+1)K−1v(n)
i ⊗ Fv

(m)
p−i+k + Fv(n)

i ⊗ J−rtv
(m)
p−i+k)

=
∑

i

xi([p − i + k + 1]q2i−nv(n)
i ⊗ v

(m)
p−i+k+1

+ [i + 1]β−2rtv
(n)
i+1 ⊗ v

(m)
p−i+k)

=
∑

i

(xi[p − i + k + 1]q2i−n + xi−1[i]β−2rt)

× v(n)
i ⊗ v

(m)
p−i+k+1.

The rest follows easily. �
We now prove some orthogonality relations for the generalized quantum Clebsch–

Gordan coefficients. Let us equip V1,n,α and V1,m,β with the scalar product (, ) defined
in Section 4. Consider the symmetric bilinear form on V1,n,α ⊗ V1,m,β given by

(v1 ⊗ v′
1, v2 ⊗ v′

2) = (v1, v2)(v′
1, v

′
2),

where v1, v2 ∈ V1,n,α and v′
1, v

′
2 ∈ V1,m,β .

PROPOSITION 5.2. (a) We have

v
(n+m−2p)
k = 1

[k]!

p∑
i=0

k∑
s=0

(−1)i [m − p + i]![n − i]![s + i]![p + k − i − s]!
[m − p]![n]![i]![p − i]!

× q−i(m−2p+i+1)+(k−s)(s+2i−n)β2rt(n−i−s)v
(n)
i+s ⊗ v

(m)
p+k−i−s.

(b) (v(n+m−2p)
k , v

(n+m−2q)
l ) = 0 whenever p + k �= q + l.
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Proof. Since �(F) = Jr(t+1)K−1 ⊗ F + F ⊗ J−rt,

�(Fk) =
k∑

s=0

qs(k−s)
[

k
s

]
(Jr(t+1)(k−s)FsK−(k−s) ⊗ J−rtsFk−s).

Hence

v
(n+m−2p)
k = 1

[k]!

p∑
i=0

k∑
s=0

(−1)i
[

k
s

]
[m − p + i]![n − i]!

[m − p]![n]!

× q−i(m−2p+i+1)+(k−s)sβ2rt(n−i)

× FsK−(k−s)v
(n)
i ⊗ J−rtsFk−sv

(m)
p−i

= 1
[k]!

p∑
i=0

k∑
s=0

(−1)i
[

k
s

]
[m − p + i]![n − i]!

[m − p]![n]!
×

q−i(m−2p+i+1)+(2i−n+s)(k−s)β2rt(n−i)−2rtsFsv
(n)
i ⊗ Fk−sv

(m)
p−i

= 1
[k]!

p∑
i=0

k∑
s=0

(−1)i
[

k
s

]
[m − p + i]![n − i]![i + s]![p + k − i − s]!

[m − p]![n]![i]![k − s]!

× q−i(m−2p+i+1)+(2i−n+s)(k−s)β2rt(n−i−s)v
(n)
i+s ⊗ v

(m)
p+k−s−i.

By Theorem 3.10, (v(n)
i+s, v

(n)
j+u)(v(m)

p+k−i−s, v
(m)
q+l−j−u) = 0 either i + s �= j + u or p + k −

i − s �= q + l − j − u. If i + s = j + u and p + k − i − s = q + l − j − u, then p + k =
q + l. Hence (v(n+m−2p)

k , v
(n+m−2q)
l ) = 0 whenever p + k �= q + l. �

REMARK 5.3. Similarly to [3], one can study the categorification of tensor products
of arbitrary finite-dimensional irreducible modules over the Ur,t.

6. In the case q is a root of unity. Our main aim is to find all finite-dimensional
simple Ur,t in the case when the parameter q is a root of unity �= ±1. Denote by d the
order of q, i.e. the smallest integer greater than 1 such that qd = 1. Since we assume
q2 �= 1, d > 2. Define

e =
{

d if d is odd
d
2 when d is even.

It is easy to check that [n] = 0 if and only if n ≡ 0(mod e).

LEMMA 6.1. The elements Ee, Fe and Ke belong to the centre of Ur,t.

Proof. Ke commutes with E and F because q2e = 1. So Ke is in the centre of Ur,t.
Since [e] = 0,

[Ee, F ] = [e]
q−(e−1)K − qe−1K−1Jr

q − q−1
Ee−1 = 0.

Moreover KEeK−1 = (KEK−1)e = (q2E)e = E. So Ee belongs to the centre of Ur,t.
Similar arguments can be applied to Fe. �

LEMMA 6.2. There is no simple finite-dimensional Ur,t module of dimension greater
than e.
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Proof. Let us assume that there exists a simple finite-dimensional module greater
than e. We shall prove that V has a non-zero submodule of dimension less than or
equal to e. Hence, a contradiction.

(a) Suppose there exists a non-zero vector v ∈ V such that Kv = λv, Jv = α2v and
Fv = 0. We claim that the subspace V ′ spanned by v, Ev, . . . , Ee−1v is a submodule of
dimension less than or equal to e. It is enough to check that V ′ is stable under the action
of generators E, F, K, J. This is clear for K, J. Let us prove that V ′ is stable under the
action of E. The vector E(Epv) = Ep−1v belongs to V ′ if p < e − 1. If p = e − 1, then
the action of Ee on the irreducible module V is given by a scalar c, as Ee is in the centre
of Ur,t. So E(Ee−1)v = cv belongs to V ′. Finally, V ′ is stable under the F by Fv = 0
and Lemma 2.3.

(b) Suppose there is no common eigenvector v of K and J satisfying Fv = 0.
We claim that the subspace V ′ spanned by v, Fv, . . . , Fe−1v is a submodule of V ,
where v satisfies Kv = λv, Jv = α2v. Since Fe is in the centre of Ur,t, Fev = cv
for some c ∈ k and c �= 0. Thus V ′ is stable under the action of F . It is easy to
prove that V ′ is stable under the actions of J, K . Let us show that V ′ is stable
under the action of E. Recall that Cp = EF + q−1K+qK−1Jr

(q+q−1)2 = FE + qK+q−1K−1Jr

(q+q−1)2 is in
the centre of Ur,t. Hence there exists a ∈ k such that Cpw = aw for any vector

w ∈ V . Hence Ev = 1
c EFev = 1

c (Cp − q−1K+qK−1Jr

(q+q−1)2 )Fe−1v = 1
c (a − qλ+q−1λ−1α2r

(q+q−1)2 )Fe−1v.

For any p ≥ 0, EFp+1v = ([p + 1] qpK+q−pK−1Jr

q−q−1 Fp + Fp+1E)v = ( q−pλ+qpλ−1α2r

q−q−1 [p + 1] +
a − qλ+q−1λ−1α2r

(q+q−1)2 )Fpv. From the above computation, we show that V ′ is stable under the
action of E. Hence V ′ is a submodule of V . �

THEOREM 6.3. Any non-zero simple finite-dimensional Ur,t is isomorphic to a module
of the form

(i) Vε,n,α with 0 ≤ n < e − 1,
(ii) Vλ,α,a, where Vλ,a has a basis {v0, v1, . . . , ve−1} such the action of the generators

of Ur.t given by

Kvp = q2pvp, 0 ≤ p ≤ e − 1, (6.1)

Jvp = α2vp, 0 ≤ p ≤ e − 1, (6.2)

Fvp+1 = q−pλ−1α2r − qpλ

q − q−1
[p + 1]vp, 0 ≤ p < e − 1, (6.3)

Evp = vp+1, 0 ≤ p < e − 1, (6.4)

Fv0 = 0, Eve−1 = av0, (6.5)

(iii) Vλ,α,a,b, where b �= 0 and Vλ,α,a,b has a basis {v0, v1, . . . , ve−1} such the action
of the generators of Ur.t given by

Kvp = q−2pvp, 0 ≤ p ≤ e − 1, (6.6)

Jvp = α2vp, 0 ≤ p ≤ e − 1, (6.7)

Evp+1 =
(

qpλ − q−pλ−1α2r

q − q−1
[p + 1] + ab

)
vp, 0 ≤ p < e − 1, (6.8)

Fvp = vp+1, 0 ≤ p < e − 1, (6.9)

Fve−1 = bv0, Ev0 = ave−1, (6.10)
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Proof. Suppose the simple module V with dimV < e. Then we can prove V is
isomorphic to Vε,n,α, as we have done in the proof of Theorem 3.4.

Suppose the simple module V with dimV = e. Then we can obtain that V is
isomorphic to either Vλ,α,a, or Vλ,α,a,b from the proof of Lemma 6.2 �

REMARK 6.4. In Sections 3 and 6, we describe the irreducible representations of
Ur,t. An irreducible representation of the quantum group Uq(sl(2)) can be realized
in terms of the space of functions on some algebraic varieties [2]. We will study the
representations of Ur,t on some spaces of functions, and establish the relations between
the representations of Ur,t and hypergeometric series as in refs. [7, 10] in the future
paper.

7. Finite-dimensional Hopf algebra. The basic problem in the theory of Hopf
algebras is to classify finite-dimensional Hopf algebras (see [8] and references therein).
So one need to construct various Hopf algebras. Our main aim in this section is to
construct a kind of finite-dimensional Hopf algebras by using the algebra Ur,t. We
assume that the parameter q is a root of unity �= ±1. The definitions of e and q were
given in Section 6.

LEMMA 7.1. Let U ′ = Ur,t/(Ee, Fe). Then U ′ has a basis {EiFjKmJn|0 ≤ i, j ≤ e −
1, m, n ∈ Z}.

Proof. From Theorem 2.4, we know that U ′ is generated by {EiFjKmJn|0 ≤
i, j ≤ e − 1, m, n ∈ Z}. We only need to prove the elements in {EiFjKmJn|0 ≤ i, j ≤
e − 1, m, n ∈ Z} are linearly independent. Suppose

Z =
∑

0≤i,j≤e−1,r1≤m≤s1,r2≤n≤s2

aijmnEiFjKmJn = 0.

Let V be a Ur,t-module with basis {v0, v1, . . . , ve−1} such that Eve−1 = 0, Evi =
vi+1 for 0 ≤ i < e − 1, Fvp+1 = q−pλ−1α2r−pqλ

q−q−1 [p + 1]vp for 0 ≤ p < e − 1, and Fv0 = 0,
Kvp = q2pλvp, Jvp = α2vp, where λ is neither zero nor a root of unity. Then

Zve−1 =
∑

1≤i≤e−1,r1≤m≤s1,r2≤n≤s2

aie−1mnα
2nλmvi = 0.

Hence

∑
r1≤m≤s1

( ∑
r2≤n≤s2

aie−1mnα
2r

)
λm = 0, (7.1)

for any 0 ≤ i ≤ e − 1. Writing (7.1) for s1 − r1 + 1 distinct elements λ ∈ k, we get a
linear system whose determinant is not equal to zero. Consequently,∑

r2≤n≤s2

aie−1mnα
2n = 0, (7.2)

for any m. Similarly we can prove aie−1mn = 0 for any n from (7.2).
Next, we apply Z to the vector ve−2. We get aie−2mn = 0 for all i, m, n by the same

argument as above. Applying Z successively to the vector ve−2 down to v0, one shows
that all coefficients aijmn vanish. �
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LEMMA 7.2. Let U ′′ = Ur,t/(Ee, Fe, Ke − 1). Then U ′′ has a basis {EiFjKmJn|0 ≤
i, j, m ≤ e − 1, n ∈ Z}.

Proof. We use d(Z) (resp. δ(Z)) to denote the degree in K (resp. K−1) of the element
Z ∈ U ′. It is clear that the set {EiFjKmJn|0 ≤ i, j, m ≤ e − 1, n ∈ Z} span the algebra
U ′′. It remains to check that they are linearly independent. If

Z =
∑

0≤i,j,m≤e−1,r1≤n≤s1

aijmnEiFjKmJn = 0

in U ′′, then in U ′

Z = (Ke − 1)Y

=
∑

0≤i,j≤e−1,m,n∈Z

bijmnEiFjKm+eJn

−
∑

0≤i,j≤e−1,m,n∈Z

bijmnEiFjKmJn,

(7.3)

where Y = ∑
0≤i,j≤e−1,m,n∈Z bijmnEiFjKmJn. Since

Z =
∑

0≤i,j,m≤e−1,r1≤n≤s1

aijmnEiFjKmJn,

0 ≤ δ(Z) ≤ d(Z) < e. From (7.3) we obtain d(Z) = d(Y ) + e and δ(Z) = δ(Y ). Thus
d(Y ) = d(Z) − e < 0 ≤ δ(Z) = δ(Y ). This is impossible, hence Z = 0 in U ′. Therefore
all coefficients aijmn vanish. �

LEMMA 7.3. Let Ur,t,l = Ur,t/(Ee, Fe, Ke − 1, Jl − 1). Then Ur,t,l has a basis
{EiFjKmJn|0 ≤ i, j, m ≤ e − 1, 0 ≤ n ≤ l − 1}.

Proof. The proof is similar to that of Lemma 7.2. �
THEOREM 7.4. Let Ur,t,l = Ur,t/(Ee, Fe, Ke − 1, Jl − 1). Then Ur,t,l has a unique

Hopf algebra structure such that the canonical projection from Ur,t to Ur,t,l is a morphism
of Hopf algebras. Moreover the dimension of Ur,t,l is equal to le3.

Proof. We only need to check that

�(Ee) = �(Fe) = �(Ke) − 1 = �(Jl) − 1 = 0, (7.4)

ε(Ee) = ε(Fe) = ε(Ke − 1) = ε(Jl − 1) = 0, (7.5)

S(Ee) = S(Fe) = S(Ke) − 1 = S(Jl) − 1 = 0. (7.6)

The only non-trivial computations concern the vanishing �(Ee) = �(Fe) = 0.
Following Proposition 2.3,

�(Ee) =
e∑

u=0

qu(e−u)
[

e
u

]
(J−rtuEe−u ⊗ Jrt(e−u)Eu).

Since [e
u] = 0 for 0 < u < e, �(Ee) = Ee ⊗ Jrte + J−rte ⊗ Ee. Thus �(Ee) = 0 as Ee = 0.

One can prove that �(Fe) = 0 in a similar way.
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By Lemma 7.3, we obtain a Hopf algebra Ur,t,l with dimension le3. �
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