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AN ANALOGUE OF KOLMOGOROV’S LAW
OF THE ITERATED LOGARITHM FOR ARRAYS

Soo Hak Sung

This paper is concerned with the almost sure convergence for arrays of indepen-
dent, but not necessarily identically distributed, random variables. We show that
Kolmogorov’s law of the iterated logarithm does not hold for arrays and obtain an
analogue of Kolmogorov’s law.

1. INTRODUCTION

Assume that {X,,n > 1} is a sequence of independent random variables with

EXn =0 and EX] < oo for n > 1. Define S, = ¥ X; and s2 = Y EX?. If

i=1 =1

52 — oo and
52
(1) |Xn| < kny [ —"— almost surely for n > 1,
loglog s2

where {k.} is a sequence of real numbers such that k, — 0, then by Kolmogorov’s law
of the iterated logarithm (LIL)

2) lim su Sn

ﬂ.—wop v/28% loglog s2

Furthermore, it is well known that the LIL does not necessarily hold if (1) is replaced

=1 almost surely.

by the weaker condition

2
Sn

1Xn| <k almost surely for n > 1,

log log 52

where k is a positive constant. If {X,,, n > 1} is a sequence of independent and iden-
tically distributed random variables with EX; = 0 and EX? < co, then by Hartman
and Wintner’s LIL, (2) holds.

Received 4th October, 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 $A2.060+-0.00.

177

https://doi.org/10.1017/50004972700017639 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017639

178 S.H. Sung (2]

Now let {X,;, 1 €1 < m, n > 1} be an array of independent random variables

with EX,; =0 and EX?, < co for 1 < i < n and n > 1. Define S, = 3 Xns

=1
and s2 = 3" EXZ,. In the case of independent and identically distributed Bernoulli
i=1
random variables {X,;} with P(X;; = £1) =1/2, Hu [1] showed that
(3)

lim sup id =1 almost surely and liminf ————— = —1 almost surely.

n—oo /282 log s2 n—oo /252 log 82

Hu and Weber [2] proved the result (3) under the weaker condition that {X,;} is an
array of independent and identically distributed random variables with EX;; = 0

Sn

and E|Xy;|* < o. Qi [3] proved that for an array of independent and identi-
cally distributed random variables {X,;}, (3) holds if and only if EX;; = 0 and

E|Xy, | (Iog+ [X11]) ~2 < 00. Note that from (3) it follows that

S
lim sup i = oo almost surely,

n—oo +/282 loglog s2
so Hartman and Wintner’s LIL can not hold for arrays. Thus it is natural to ask if
Kolmogorov’s LIL holds for arrays. In this paper we show that Kolmogorov’s LIL does
not holds for the arrays and obtain an analogue of Kolmogorov’s LIL.

2. MAIN RESULTS

Throughout this section, {Xni, 1 <i< n, n > 1} will denote an array of rowwise
independent random variables with EX,; = 0 and EX;"“- < oo for1 €72<n and

n n

n > 1. Define S, = Y X,; and s2 = 3 EX2,. Note that rowwise independence plus
1=1 =1

independent rows is equivalent to independence of the variables of the array.

The following example shows that Kolmogorov’s LIL does not hold for arrays.

EXAMPLE 1. Let {Yni, 1 < 7 €< n, n 2 1} be an array of independent Bernoulli

random variables with

P(Yni=1)=loglogn/n=1—P(Yn;=0) forl1<i<nandn>1.

Let Xp; =Yni—EYpifor1<i<nandn>1. Then EX,; =0 and s2 = ZEX;‘:,-:

=1
loglogn(1 — loglogn/n) ~ loglogn. Since |X5i| <1 for 1 <7< n and n > 1, there
exists a sequence {kn} of real numbers such that k, — 0 and

| Xni| € kny/ —="—- almost surely for 1 i< nandn > 1.
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Thus {Xn:} satisfies Kolmogorov’s condition. But, it follows by the Theorem of Ros-

alsky {4] that
> (Yni — loglogn/n)loglogn
lim su Saloglogn = lim sup =2
n—oo logn n—soo logn
_Z Yniloglogn
=limsup =t — =1 almost surely.
n—oo logn

From this result we can easily see that

lim sup Sn

n—oo /252 log log s2

Now we develop an analogue of Kolmogorov’s LIL for arrays. The following lemma,

= oo almost surely.

in contrast with those which follow, does not require independent rows.

LEMMA 1. Let {X,i, 1 €4 < n, n > 1} be an array of rowwise independent
random variables with EXp; =0 for 1 i< n and n > 1. Let {k,} be a sequence of
positive constants such that k, — 0 as n — co. Suppose that the following conditions

hold.

(i) s2<nforn>1.

(i) | Xni|] < kny/n/VIogn almost surely for 1 <i<n and n > 1.
Then
(4) lim sup ———=—— < 1 almost surely.

n—o00 \/2 lgn

PrOOF: Let b, = /2nlogn for n > 1. Then, by the Borel-Cantelli lemma, it
suffices to show that for every ¢ > 0

(5) ;P(f—:—>1+e><oo.

From the inequality e* € 1+ z + %e"' for all ¢ € R, noting that |X,:| /b, <
kny/n/bnlogn almost surely, we have for ¢ > 0

(P2 5+ 82+ i)

t? /T
1+ 2?””( b @)EX

2
< exp{— 782 ezp( kn v/ )EX2 }.

bn/log
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By independence

E{ezp( )} HE{m(t__)}\ezp{;;jezp(tflﬂ%)},

since s2 < n. Thus, choosing ¢t = 2(1 + ¢)log n, we have

S S,
In < e~ H1te) On
P(bn >1+€)\e E{ezp(tbn)}
nt? knvn
< —
< ””{ tl+e)+ 2b2 282 P (t bn >}
_ n—(1+z)2(2—e::p(\/—(1+s)kn)),

which guarantees (5) since k, — 0 implies that (1 + ¢)? (2 — ezp(V2(1 + €)ka)) > 1
for n sufficiently large. Thus (4) is proved. 0

To obtain the opposite inequality of (4), we need the next lemma, which is well
known (see, Stout [5, Theorem 5.2.2(iii)]).

LEMMA 2. Let X;,---,X, be independent random variables with EX; = 0 for
n n

1<ig<n. SetS, =3 X; and s2 = 3, EX2. Let |X;| < c¢s, almost surely for
=1 =1

1 <i<n andn > 1, where ¢ > 0 is a constant. Then for any ¥ > 0 there exist

constants e(v) and () such that if € > ¢(vy) and ec < w(y), then

P<§ﬁ > e) > e:cp[—%(l +'y)].

Sn
The following theorem establishes a LIL type result for arrays of independent, but
not necessarily identically distributed, random variables.

THEOREM 3. Let {X,:} be as in Lemma 1. If the {X,;} are assumed, in addi-
tion, to have independent rows and s2 =n for n > 1, then

lim sup = 1 almost surely.

Sn
n—oo V2nlogn
PROOF: From Lemma 1, we need only to prove the inequality

lim sup —=——=—= 21 almost surely.

n—ooo V2N log n

By the Borel-Cantelli lemma, it is enough to show that for every § > 0

(6) gP(—\/E:I"_o?>1—5)=oo.
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We apply Lemma 2 with 4 > 0 chosen such that (1 — &)?(1 ++) < 1. Note that

(1 —8)4/2logn — o0

and

(1- 5)\/551?‘% | Xnil /VR < (1= 6)V2kn — 0
as n — co. Thus, by Lemma 2, for n sufficiently large
P( 32 > (1-8)y/2logn) > capl-(1 - §)°(1 +)logn]
- n—(1—6)’(1+7),

and so (6) holds. 0
From Theorem 3, we obtain an analogue of Kolmogorov’s LIL for arrays.

COROLLARY 4. Let {X,;, 1 <7< n, n > 1} be an array of independent

random variables with EX,; =0 and EX2 < oo for 1<i<n and n > 1. Suppose
that
(N | Xnil < almost surely forl i< mnandn > 1,

where {k,} is a sequence of positive constants satisfying k, — 0. Then

8) lim sup Sn

n-—s00 4/ 2.93l log n

PROOF: Let Y,; = /nXni/sn, for 1 i< n and n > 1. Then Z EY? =n and

i=1

=1 almost surely.

|Ynil € kny/n/+/logn almost surely for 1 <i < n and n > 1. Thus {Y,,;} satisfies the
conditions of Theorem 3, and so (8) follows from Theorem 3. 1]

REMARK. Even if the condition (7) of Corollary 4 is replaced by

2

i<
R N

almost surely for1 <zt <mandn >1,

the result (8) can not be replaced by

lim sup Sn

n—oo 4/ 23,21 log 33‘

= 1 almost surely,

as shown in Example 1.
Finally, using an example we show that (8) can fail if condition (7) of Corollary 4

is replaced by the weaker condition |Xn;| < k4/s2/vlogn almost surely for 1 <i< n
and n > 1. To present the example, we restate the following lemma due to Teicher [6].
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LEMMA 5. (Teicher [6]). Let {Yni, 1 <7< n, n > 1} be an array of independent

Bernoulli random variables with

P(Ypi=1)=pn=1—-P(Yi=0)forl1<i<nandn >1.

Let npn, =logn/d. If 1 < d < ezp{e™ !}, then limsup Z Y,i/logn < 1/logd almost

n—oo =1

surely, whereas if d > ezp{1 —e™'}, then lim sup E Yni/logn > 1/logd almost surely.

n—oo i=1

ExAMPLE 2. Let {Yn:, 1 <z € n, n > 1} be an array of Bernoulli random variables
with
P(Yoi=1)=logn/dn=1—-P(Y,;=0)for1<i<nandn>1,

where d = ezp{l—e™'}. Let Xp; = Yn;—EY,;. Then EX,; =0 and 52 = f: EX2, =

i=1
(1 —logn/dn)logn/d ~logn/d. Since [Xp;| <1 for 1 i< n and n > 1, there exists
a positive constant k such that |X,;| < ky/52/+/logn. But, it follows from Lemma 5
that

3" (Yai — log n/dn)

lim sup g = lim sup =

n—oo ,/2s'¢’,logn_ n—oo V252 logn
n

Yo:iVd
B v o
= lim sup

— > —_
n—oo \/ilogn \/2d \/ilogd \/2_d
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