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NILPOTENT ACTION BY AN AMENABLE
GROUP AND EULER CHARACTERISTIC

by JONG BUM LEE*
(Received 10th January 1997)

We prove two types of vanishing results for the Euler characteristic.

1991 Mathematics subject classification: 57525.

1. Introduction

Let X be a finite connected simplicial complex, I' = ,(X) its fundamental group,
X its universal covering space. Then T acts freely on X as simplicial automorphisms
and on the cohomology group H*(X). In this note we establish the following vanishing
results for the Euler characteristic y(X') of X.

Theorem 1.1. If I' = n,(X) is an amenable group and T" contains an infinite normal
subgroup A which acts nilpotently on H'(X), then the reduced {,-cohomology spaces
H (X :T) are trivial. In particular, the Euler characteristic y(X) of X vanishes.

Theorem 1.2. If T = n,(X) acts nilpotently on H'(X) and contains a normal subgroup
A such that the quotient group T'/A is infinite amenable and A is U-nilpotent, then the
Euler characteristic y(X) of X vanishes.

A discrete group G is called amenable if it admits a left invariant mean for £_(G),
i.e., if there exists a functional m: £_(G) — R satisfying m(y;) =1 and m(¢x) = m(¢)
for all xe G and ¢ € £,(G). For example finite, Abelian, and solvable groups are
amenable groups. A group containing a non-Abelian free subgroup is not amenable A
left invariant mean for a finite group G is obtained by letting m(¢) = L3 e ).
For further details on amenable groups we refer to [9].

If T is infinite amenable and X is aspherical, then Cheeger and Gromov [2] and
Eckmann [5] showed that y(X)=0. If I contains a nontrivial torsion-free Abelian
normal subgroup which acts nilpotently on H*(X), then Eckmann [4] showed that
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2(X)=0. If T is a torsion-free elementary amenable group which acts nilpotently on
H*(X), then Lee and Park [8] showed that y(X)=0. If X is aspherical, then any
subgroup of T acts nilpotently on H*(X). Hence Theorem 1.1 generalizes the results of
Cheeger and Gromov [2] and Eckmann [5]. As elementary amenable groups are
amenable, Theorem 1.1 also generalizes the result of Lee and Park [8]. If I" has finite
virtual cohomological dimension and contains a nontrivial torsion-free elementary
amenable normal subgroup which acts nilpotently on H*(X), then x(X)=0. In fact,
Hillman and Linnell [6] showed that any nontrivial torsion-free elementary amenable
group of finite virtual cohomological dimension contains a nontrivial Abelian
characteristic subgroup. Applying Eckmann’s result [4] yields y(X) = 0. Note that it is
not known whether X = X/I'" being compact implies that T' has finite virtual
cohomological dimension.

The proof of Theorem 1.1 is based on results concerning the von Neumann
dimension of simplicial £,-cohomolgy spaces. Theorem 1.2 is another type of vanishing
result for the Euler characteristic y(X) of X.

2. Simplicial £,-cohomolgy

Let G be a countable group and let £,(G) denote the Hilbert space of real valued square
summable functions on G. A pre-Hilbert space P is called a Hilbert G-module if:

(i) G acts on P by isometries, and

(i) P is G-equivariantly isometric to a subspace of the tensor product £,(G) ® H of
the Hilbert space £,(G) and some Hilbert space H with trivial G-action.

To such a P, following von Neumann and Atiyah (see [1] and [3]), one can attach
a nonnegative extended real number, 0 < dimg;P < oo, called the von Neumann
dimension of P, which is independent of the particular identification with a subspace of
£,(G) ® H (See Remark 2.3). If P # 0, then dimg P > 0. Moreover, the von Neumann
dimension of a pre-Hilbert space is equal to that of its completion. As usual,

dimg(P, ® P,) = dimg P, + dimg P,.

For further background on Hilbert G-modules we refer the reader to [1, 2, 3].

Let G be a countable group and Y a connected simplicial complex on which G
acts freely and simplicially. Denote by Y, the set of all n-simplices of Y. Define
Co(Y)={ce C'(Y,R) | Xy ¢(s)* < oo} and call it the space of £,-cochains. Then
Ci(Y) =2 €,(G) ® H, where H, is a Hilbert space having a set S, of representatives of
Y, mod G as a basis. Hence C(;(Y) is a free Hilbert G-module and dimg C,(Y) =
cardinality |S,| of S,. It is clear that the differentials 6" : Ci(Y) — CE’{;'(Y) commute
with the G-action. We define the simplicial £,-cohomolgy spaces by

Hy(Y:G) =Keré"/Imo",
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and we define the (reduced) simplicial £,-cohomology spaces by
Hpy(Y:G) = Ker§"/Im o™

Note that Cp(Y) D Kerd"=1md, , ® Hy(Y:G), and hence Kerd”, Imé™', and
Im&™"' are Hilbert G-modules. In particular H{,(Y:G) acquires the structure of a
Hilbert G-module and hence its von Neumann dimension is defined, denoted by
h"(Y:G), and called the nth £,-Betti number. Moreover there is a natural G-equivariant
map [2]

p:Hy(Y:G) > H*(Y,R).

Remark 2.1. If Y is a connected simplicial complex on which G acts freely and
simplicially so that the quotient Y/G is compact, then

K(Y/G) =Y (=1)IS,| = Y _(~1)"dimg Cp(Y)
=) (=1)"dimgH"(Y:G) = Y (—1)"K(Y:G).

The first equality follows from the fact that Y/G is a finite complex and the third
equality follows from the fact that the cochain complex {C,(Y)} of Hilbert G-modules
is finite.

Proposition 2.2. For an infinite subgroup A of G, any Hilbert G-module with trivial
A-action is the zero module.

Proof. Let P be a Hilbert G-module with trivial A-action and a G-equivariant
embedding P < £,(G) ® H. We may assume that P is a Hilbert space. Let {h;} be a
Hilbert basis of H and let p, : £,(G) ® H — ¢,(G) be the projection 1 ® rh; — r- 1. With
P, = P, we define inductively P, and I, to be the kernel and the closure of the image,
respectively, of p,,0j,: P> £,(G)® H — £,(G). l.e., P,=kerp,N...Nkerp,N P and
then I, is the closure of the image of P, in £,(G). Then P =) I; and I, is a Hilbert G-
module with a G-equivariant embedding I; — £,(G) ([3]). Since p,, o j; is G- and so
A-equivariant, the A-action on [, is trivial.

Note that £,(G) = £,(4) ® H where H is the Hilbert space having G/A as its Hilbert
basis. By the same argument as above each Hilbert G-module /; has a decomposition
I;=3J, by Hilbert A-modules such that J, C €,(A4) with trivial A-action. Now it
suffices to show that each J, =0.

Let J C £,(A) with trivial A-action. Every element of J is of the form ), _, a.x where
Yores la,|* < 00. If a, #0 for some x € 4, then because of the trivial action by A
a,=a,#0. For any ye A, a,=a, #0. Hence }_,.,a,x=3 __,ax, so 3., lal =
3 culal? = co. This implies ¥ __, a,x = 0. Hence J = 0. 0

x€A
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Remark 2.3. As in the proof of Proposition 2.2, any Hilbert G-module P which is
a Hilbert space is isomorphic to }_ I, where I; <> £,(G). Write 1 = ¢; + (1 — ¢;) where
e;€l,and 1 —¢ € I. Then ¢, =Y, (e, x)x where (,) is the inner product on £,(G).
The trace of ¢, (e;, 15), i.e., the coefficient of the identity 1; of G, is the von Neumann
dimension of I,. The von Neumann dimension of P is then dimg P = }_ dimg [,.

3. Nilpotent modules

Definition 3.1. Let 4 be a subgroup of G and let M be a ZG-module. Then we say
that 4 acts nilpotently on M if there exists a finite filtration 0 = M@ c MY ...
c MM c M% = M by ZA-modules such that 4 acts trivially on the associated graded
module Gr M = {(MO/M% |i=1,... k).

Remark 3.2. The M® in Definition 3.1 can be chosen such that M®/M“" consists
of all elements of M/M%" fixed under the action of A.

Proposition 3.3 [4, Proposition 1.1]. Let M be a ZG-module. Suppose a subgroup A
of G acts nilpotently on M so that a filtration {M® |i=0,...,k} of M is chosen as in
Remark 3.2. If A is a normal subgroup of G, then the M® are ZG-submodules of M.

Proof. This is trivial for i=0, and we assume that it holds for i—1
(i=1,2,...,k). For any he M?, ac A, and x€ G, as 4 is normal in G we have
x7'ax € A, and as A acts trivially on MO/M“ D we have axh = x(x'ax)h = x(h + K
with i € M“Y Since xh' € M, axh = xh + h" with i” € M*". Thus a € A fixes the
element xh + MY in M/M®", and hence xh € M?. 0

Theorem 3.4, Let G be a countable group and let Y be a connected simplicial complex
on which G acts freely and simplicially so that the quotient Y /G is compact. If G contains
an infinite normal subgroup A which acts nilpotently on H*(Y), then the natural G-
equivariant map p : Hy (Y :G) — H*(Y, R) is trivial.

Proof. Let K be the kernel of p, and let M = H,(Y:G) and M = H'(Y, R). Take a
filtration {M®}%, of M given by the nilpotent action of 4 on M as in Remark 3.2. By
Proposition 3.3, the M? are RG-modules. Let M? = p~'(MP) fori =0, 1, ..., k. Then we
have exact sequences 0 > K - M@ - M@ and MO/M*Y =~ (MY/K)/(M*"/K) —
MD /M 50 A acts trivially on M?/M¢; by assuming that each M@ is a Hilbert space,
if it is necessary, we obtain a decomposition of M by £,(G)-modules:

M = M® ® [M(k)]l =.-..=K& K* @ [H(l)]l D - ['M(k)]l’
where A acts trivially on the factors K*, [M®}*,--., and [M®]*. By Proposition 2.2,
M = K. Hence p is a trivial map. a
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Proof of Theorem 1.1. Let Y =X and G = n,(X). Since G is an infinite amenable
group and Y/G is a finite complex, by Lemma 3.1 of [2] the natural G-equivariant map
p :ﬁ(‘z)(Y:G) — H'(Y, IR)_is injective. On the other hand, by Theorem 3.4, p is the
trivial map. this implies H{,(Y:G) = 0 and in particular y(X) = 0. O

Corollary 3.5. If I = n,(X) is an infinite amenable group and if X is homotopic to an
even dimensional sphere S*, then y(X) = 0. If, in addition, T has finite virtual cohomological
dimension ved(I'), 0o, then the rational Euler characteristic y(I') of T vanishes.

Proof. Since H*(X)=Z, the kernel I of the induced action homomorphism
I' - Aut(H, (X)) = Aut(Z) = Z, has index at most 2 in I and acts trivially, and hence
nilpotently, on H*(X). By Theorem 1.1 x(X/I") =0. Thus x(X)=0. If ved(I') < o0,
then y(I') is defined and y(X) = x(I") - x(X) (See [7, 8]). Hence x(I") = 0. O

4. Proof of Theorem 1.2

Let IT be a group and let G be a [I-group, i.e., a group with y-action ¥ : I1 — Aut(G).
If G is a normal subgroup of IT we take y(x)g = x - g - x~'. By I1,G we mean the normal IT-
subgroup of G generated by all elements of the form (¥(x)g)-g~', where x € IT and
g € G. Inductively we define I1,G = I1,(I1,_,G). The II-group G is called II-nilpotent if
I1,G = 0 for some n. A nilpotent group G is a G-nilpotent group.

Let X, denote the covering space of X corresponding to the normal subgroup 4 of
I' = ,(X). Then I'/4 acts on X, freely and simplicially with quotient X, and hence I'
acts on X, by composition with the quotient map I' — I'/4. Consider the cohomology
spectral sequence corresponding to the fibration X — X, — K(4, 1);

E5' = H?(A4; HY(X)) = H"(X,).

We will first show that T acts nilpotently on E;* = H’(4; H(X)) and hence on
H'(X,). o

Given an element a € T, let h: X, — X, be the associated deck transformation. This
h is not necessarily base point preserving, but it can be homotoped to a map k" which
preserves base point so that K, : m,(X,) — m,(X,) is conjugation by «. Then k' can be
lifted to a map h” : X — X which preserves base point and is freely homotopic to the
deck transformation of X associated with a. Also there is an associated based map
K : K(A,1) - K(A4,1) so that h, : n,(K(4, 1)) = A > n,(K(4, 1)) = A is conjugation by
. This is how I' acts on the fibration

X — X, — K@,
lh” lhl 1hl
X — X, — KA1
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each square commuting up to based homotopy, in such a way that the induced actions
by I' on H*(X) and H*(X,) are the natural actions. Hence I" acts on the E, term of
the spectral sequence corresponding to the fibration X — X, - K(4,1) and the
boundary maps d, are I'-module maps. Since A is T-nilpotent, I" acts nilpotently on
H?(A; T) for any trivial A-module T. Since T acts nilpotently on H*(X), we take a
finite filtration 0 = M@ c M c ... ¢ M® = HYX) by I'-submodules so that I" acts
trivially on {M@/M%"}% In the long cohomology exact sequence of 4 associated with
the exact sequence of coefficient modules 0 > MY — M@ — M@P/MY - 0, T acts
nilpotently on H?(4; M) and H(4; M®/M®). Hence I acts nilpotently on
H?(4; M®). By induction, T acts nilpotently on E}? = H?(4; H*(X)), and hence on the
abutment H”*(X,) of the sequence.

In all, we have shown that the infinite amenable group I'/A acts freely and
simplicially on X, with compact quotient X and acts nilpotently on H*(X,). By
Theorem 3.4, the reduced ¢,-cohomology spaces Hy,(X,; T'/A) are trivial and hence
x(X) = x(X,/(T'/ 4)) = 0.
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