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1, Introduction. In 1957, Mordell [3] proved

THEOREM. If p is an odd prime there exist non-negative

3/4
integers x, y < Ap / log p, where A is a positive absolute
constant, such that

(1.1) ax2 + by2 = c¢(mod p) ,

provided (abc, p) = 1.

Recently Smith [5] has obtained a sharp asymptotic formula for
the sum T{r(n):n < X, n = c(mod k)} where r(n) denotes the
number of representations of n as the sum of two squares. As an
application of the asymptotic formula for this sum, he deduced

THEOREM. If k is an odd integer, containing omly a bounded

3/4
number of factors, there exist non-negative integers x, y < B k / ,

where B is a positive absolute constant, such that

(1.2) x + yz = c(mod k),

provided (c,k) = 1.

This sharpens Mordell's result when a = b =1 and k = p.
It is the purpose of this paper to generalize Smith's result to the case

2 2
of the congruence ax + by = c(mod k). We use an entirely different
method from that of Smith. We apply an idea due to Tietdviinen [7].
We prove

THEOREM. I k is an odd integer there exist non-negative

1
integers x, y < Ck3/4 d(k) /2, where C is a positive absolute

constant and d(k) denotes the number of divisors of k, such that
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(1.3) ax2 + by2 = c(mod k) ,

provided (abc,k) = 1.
Smith's result is the special case a = b = 1, d(k) bounded.

2. Notation. We let

(2.1) b= Dt aw!’? 1,
where D > 0 is defined by
[> o]
1
(2.2) D2 = = 377
d=1 d

Clearly h > 1 and k is supposed to be large enough so that
h < %(k - 1). For any integer x we let N(k,x) denote the number

of solutions (u,v) of

(2.3) u + v = x(mod k),
with
(2.4) 1 < u < h, 1 < v < h.
Clearly
k-1 2
(2.5) =z N(k,x) = h™ .
x=0

For any real number u we write

(2.6) e(u) = exp(2 wiu)

and it is well known that for any integer r we have
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0 (mod k) ,

(2.7) Lo, if r # 0(modk).
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We also define for arbitrary integers r and s :

k-1 er
(2.8) M(k,r) = = N(k,x) e(——)
x=0 \ k
h
(2.9) Alk,r) = = e(}z‘)
k
x=1
k-1 2 +
(2.10) T(k,r,s) = = eLX_k__.fii s
x=0
(2.11) S(k,r) = T(k, r,0),
k-1
(2.12) K(k,r,s) = erx—J“ksLx—’l-‘—] ,
x=1
(x, k)=1

where [x,k] denotes the unique integer m satisfying
(2.13) xm = 1(modk), 1 < m < k -1, for (x,k) =1.
The sum A(k,r) (considered by Tietivlinen [6] when k is prime)
satisfies

k-1

(2.14) z  |Aa@k,r) | = kh.
r=0

The sums T(k,r,s) and S(k,r) are Gaussian sums and it is well
known that (see for example [2])

(0 , if s # 0(mod 4d),
(2.15) T(k,r,s) = J\
{

0 (mod d) ,

o
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where d = (k,r). Alsoif (k,r) =1, with k odd, we have

2
(2.16) T(k,r,s) = e<'fi’k]ks fr’k]> S(k, r)

and (see for example [4])

1

2
7 (k-1)

(2.17) Sk, r) = ( 172

where ('E) is the Jacobi symbol. Finally K(k, r,s) is the Kloosterman
J
sum, which Estermann [1] has shown satisfies

(2.18) | Kk, r,s) | < ak) k7% (x,s,102.

This estimate is a consequence of the work of Weil [8].

3. Idea of proof. The idea of the proof is to show that

k-1
(3.1) = N(k,x) N(k,y) > 0.
x, y=0

ax‘2 + by2 = c(mod k)

This result implies that there exist integers x and y (0 < x,y < k- 1)

such that

(3.2) a.x2 + by2 = ¢ (mod k)
and

(3.3) N(k,x) > 0, N(k,y) > 0 .

The conditions (3.3) imply the existence of integers u, v, u', v' such
that
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(3.4) 1 <u, v, u, v < h < >
and
(3.5) u+v=x,u + v = y(modk).
Hence
[x - (u+v)] < k-1, Jy-@+v) < k-1

and so

3/

2h = z[Dk3/4 d(k)1/2]+2 Ck 4d(k)“z,

f0<x=u+v

A
1A

(3.6)

3/ 1/2

3/4 d(k)i/z] b2 < Ck 40012,

n

0 <y = u+v'< 2h = 2[Dk

for a suitable positive absolute constant C < 2 /3 + 2. This is the
required result.

4. Proof of theorem. From (2.7) we have

r 2 2
- . | : -
kz1 e}(ax2+b2-ctj\‘_ "k, if ax 4+ by = c(modk),
L k J - ? 0, otherwise ,
t=0
so that
k-1
k = N(k, x) N(k,y)
x, y=0
ax2 + by2 = c(mod k)
k-1 k-1 2 2
= £ N(k,x) Nk,y) = e{(ax +ka = C)t}
x, y=0 t=0
k-1 2 k-1 ot
= [ = N(k,x)} + e(%) M(k, at) M(k, bt) ,
b x=0 t=1
315
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on picking out the term with t = 0. Thus from (2.5) we have

k-1 4 k-1 ¢
(4.1) kK T N(k,x) N(k,y) - h |= e(:kC—\M(k, at) M(k, bt)

x, y=0 t=1
2
ax2+by = ¢(mod k)

Now
k-1 at XZ
M(k,at) = = N(k,x) e ——-——>
k
x=0
k-1 h k-1 2
- L 5 eé(u+v-;{)+atx
x=0 u,v=1 r=0
g 2
= % {A(k, r)} T(k, at, ~-r) ,
r=0
so that
k-1 -ct\
b2 e("——./ M(k, at) M(k, bt)
t=1
k-1 k-1 ,
- —1-2 = T Ak 1)) % {A(k s)} ° T(k, at, -r) T(k, bt, -s) e(:l‘{EE)
k™ dlk t=1  r,s=0
(t, k)=d
k-1 k-1 :
1 2 -
=5 = = {A(k 1)} {A(k, s)} 2 = e‘\-—i—t\i T(k, at, -r) T(k, bt, -s),
Kk dlk r,s=0 t=1 /
d|r,d|s (t, k)=d

as T(k,at,-r) T(k,bt,-s) is zero (see (2.15)) unless -r = 0 (mod(k, at))
and -s = 0 (mod(k,bt)), thatis, unless dlr and dls , since (ab,k) =1.
In this case

T(k,at,-r) = d T(E at '?r>
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and

k bt -
T(k,bt,-s) = d T(d, q’ d>

so that the sum becomes

k-1 k-1
1 - - -
(4.2) 2, 5 a® = (a0 {aks)® = e(—i—t)T(-:-%fj)T(%:—t %)
kK~ d|k r, $=0 t=1
d|r;d|s (t, k)=d

We next change the summation over t in (4.2) into summation over u,
where u =t/d, which gives:

k4
4.3) ¥ 5 4° k; (Al )} (Al 9} d>: e(‘ﬂ)T(‘—‘ au ‘—-)T(‘i bu ‘—)
12 d|k r, s=0 usq LK/ d) \d d
dir, IS (u,%):i
From (2.16) and (2.17) the sum over u in (4.3) is
k
L
d 2
p) \ 2 A Lk 4 1/2
=1 o [—Cun -[4,k/d] (-r/d)” [au, k/d]) /au) .4\d s
“g (k/d/‘ ¢ k/d (k/d)J1 a
<u,d— =1
2
, 1k
e<~[4,k/d](-s/d)2 [bu,k/d]\/ﬁ} i4<d'1>(5)“2
Kk/d /‘\k/d ; 3
- E{-_al_‘a) K(}s e, -e)
d \k/d/; ar e Te
where
2 2

e = [4a, k/d] (f;) + [4b,k/d](§—) .
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From (2.18)

1/2 1/2 1/2
[K(k/d, -c, -e)| < d(k/d) (%) (e, me, K/A) = A(</A) =,
d

as (c,k) =1.

Hence

k-1 et
= e<°> M(k, at) M(k, bt)

t=1 k
1 2 K1 2 2 k Kt/?
< £ = d = a1 ]ak )% =-dk/d) =
= .2 d 1/2
k” dlk r, s=0 d
dlr,d|s
. L2
[ k-1 ,
i 2
= iii1‘1{7)2 = a5 Jaxon?
k dlk S r=0 f
Ll J
{5—1 12
1/2 z‘,
S TR RN NG
k dlk ©t=0 J
2
d(k) 1/2 [k
Y S I
k d|k
= d(k)k3/2 h2 3;/2
dlk 4
2
< d(k) R
Thus from (4.1)
318
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k=1
2
k = N(k,x) N(k,y) > hz (h" - d(k)k3/
x, y=0

2D2)> 0,

ax2 +by2 = c(mod k)

3/4 3/4

1
as h=[Dk d(k) /2]+1>Dk
proof of the theorem.

1
d(k) /2 . This completes the

5. Conclusion. As remarked by Smith [5] it would be of great
interest to know if the exponent 3/4 of the theorem can be lowered.
It would also be of interest to know if the method of this paper could be
adapted to give a corresponding result for the congruence

(5.1) ax? + by™ = c(mod k) ,

where £ > 2, m > 3 and (abc, k)=1.
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