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SINGLETON ARRAYS IN CODING THEORY

TATSUYA MARUTA, ISAO KIKUMASA AND HITOSHI KANETA

We construct all Singleton arrays for the field GF(q) when q is odd. There exist >p(q - 1)
arrays in this case.

INTRODUCTION

Let GF(q) be the finite field of q elements, and let Sq(q > 3) denote the triangular
array

1 1 1 1 . . . 1 1 1
1 aj O2 03 . . . dq-3 a.q-2

1 0,2 «3 - O-q-2

1 a,_2

1

where a.; 6 GF{q). We call Sq a Singleton array if every square subniatrix is nonsingu-
lar. See [2, p.322] for the relation between Singleton arrays and MDS codes. Singleton
arrays exist:

THEOREM 1. [3]. Let £ be a primitive element of GF(q). Then the above Sq

with di = 1/(1 — £') (I ^ i < q - 2) is a Singleton array.

We note that Theorem 1 is an easy consequence of Lemma 4 in the next section.
In this paper we shall prove the converse:

THEOREM 2. If the above Sq is a Singleton array, then a, = l / ( l - £') for some
primitive element £ of GF(q), provided q is odd.

To our regret, the case q =2h is still open.
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P R O O F OF THEOREM 2

A set K of k points of the projective plane PG(2,GF(q))

(or PG(2,q) for simplicity) is called a fc-arc if no three points of K are collinear.

It is well-known that max{fc; a fc-arc exists} is equal to q + 1 or q + 2 according as

q is odd or even [1, p.164]. A A;-arc with maximal k is called an oval. We refer to [1,

p.168] for the proof of the following celebrated theorem.

THEOREM 3 (SEGRE). Let q be odd. Then an oval K of PG(2,q) admits a

projective transformation T such that T(K) = {'(zo, x^, x2)\ zo^i + x^x2 + x2x0 = 0}

a n d tha t TPi = ' ( 1 , 0 , 0 ) , TP2 = ' ( 0 ,1 ,0 ) and TP3 = ' ( 0 , 0 , 1 ) for three prescribed

points of K.

Denote by Sm<n{q) the set of (ra,n)-matrices with GF(q) entries such that every
square submatrix is nonsingular. An (m,n)-matrix (ciij) is called a Cauchy matrix
if dij = 1/(1 - xiyj) for some xi, yj in GF(q) (for l ^ i ^ m , l < j < n - ) with
XiUj 7̂  1. As to the determinant of a Cauchy matrix we have [4, p.202]

LEMMA 4. (Cauchy). The determinant of a square Cauchy matrix is given by the

formula

=D(x1,...,xn)D{y1,...,yn)/

where D(x1,...,xn)= Y\ (xi-Xj).

COROLLARY TO THEOREM 3. Assume that q is odd. If the matrix

( 1 1 1 . . . 1

1 a j a2 . . . a.q-3

1 6i b2 . . . bq_3

belongs to S3>q-2(q), then A is a Cauchy matrix with ai,bi £ GF(q) — {0,1} (1 ^ i ^

q-3).

PROOF OF COROLLARY: It is evident that O{ and b{ are equal to neither 0 nor 1.
Let a (3,3)-matrix E3 be the unit matrix. Then g + 1 columns of the (3, q + 1) -matrix
(Ei,A) make up an oval of PG(2,q). In view of Theorem 3 there exists a diagonal
(3,3)-matrix [I,<ii,d2] ( d{ ^ 0) such that the set of columns of [\, d\,d2\(E3, A) is
equal to {t(xo)a;i)a;2)i XQX\ + x\x2 + x2xo — 0} as a subset of PG(2, q). Thus the set
of columns of [1, di, d2]A coincides with the set of columns of the (3, q — 2) -matrix

- 1 / ( 1 - r 2 ) ••• - 1 / ( 1 -

https://doi.org/10.1017/S0004972700026940 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026940


[3] Singleton arrays 335

as a subset of PG(2,q), where £ is a primitive element of GF(q). Hence di = —£fc

and d2 = - l ( l - £~fc) for some 1 ^ k ^ q-2. We shall show that B' = [ l , ^ , ^ ] " ^

is a Cauchy matrix. Then it follows that A is a Cauchy matrix, since B' is equal to A

up to the order of columns. Let ' (1,1/(1 — «;), 1/(1 — Vi)) be the i-th column of the

matrix B'. For l < t < j ^ g — 2 and i,j^k we have UiViUjVj ^ 0 . Furthermore,

•itiMj — UjVi vanishes, because it equals

where 77 = £ *. Thus B' is a Cauchy matrix, as desired.

PROOF OF THEOREM 2: Let

/ l 1 1 . . . 1

J 4 = 1 ( I j 0.2 . . . Clg_

\ 1 a2 a3 . . . a?_

be a submatrix of a Singleton array Sq . Then the matrix A belongs to 53W_2(g). We

can write a; = 1/(1 - £"*') (1 < m ^ q - 2,1 < i ^ q - 2). Since A is a Cauchy matrix

by the Corollary, so are the submatrices

Consequently we get n;_i + n ; + i — 2n,( mod (q — 1) ( 2 ^ i < q — 3 ). In other words we

have 7i;+] — rii = n; — n;_j mod (q — 1). Hence there exist integers O ^ n ' , d < q — 1

such that nj = n' + rft mod (g — 1) (1 ^ i. ^ q — 2). Since {n' + di; 1 ^ i ^ q — 2} =

{1 ,2 , . . . 9 — 2} in Z/(g — 1), the set {di; 1 < i < g — 2} must contain q — 2 elements.

It now follows that (d,g - 1) = 1 and n' = 0. Thus a ; = l / ( l - 7') , where 7 = £d is

a primitive element of GF(q). This completes the proof of Theorem 2.
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