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SINGLETON ARRAYS IN CODING THEORY

TATSUYA MARUTA, Isa0o KikuMasa AND HiTosHI KANETA

We construct all Singleton arrays for the field GF(gq) when g¢ is odd. There exist p(q — 1)
arrays in this case.

INTRODUCTION

Let GF(q) be the finite field of g elements, and let S,(g = 3) denote the triangular

array
1 1 1 1 1 1 1
1 ay as az ... Qg_3 Qg2
1 az as © ... Qg2
1 as
1 ag_3 aq_2
aq—2

where a; € GF(q). We call S, a Singleton array if every square submatrix is nonsingu-
lar. See (2, p.322] for the relation between Singleton arrays and MDS codes. Singleton

arrays exist:

THEOREM 1. [3]. Let ¢ be a primitive element of GF(q). Then the above S,
with a; = 1/(1 — ¢') (1 <i < q-2)is a Singleton array.

We note that Theorem 1 is an easy consequence of Lemma 4 in the next section.

In this paper we shall prove the converse:

THEOREM 2. If the above S, is a Singleton array, then ai = 1/(1 — ¢') for some
primitive element £ of GF(q), provided ¢ is odd.

To our regret, the case ¢ = 2" is still open.
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PROOF OF THEOREM 2

A set K of k points of the projective plane PG(2,GF(q))
(or PG(2,q) for simplicity) is called a k-arc if no three points of K are collinear.
It is well-known that max{k; a k-arc exists} is equal to ¢+ 1 or ¢+ 2 according as
q is odd or even {1, p.164]. A k-arc with maximal k is called an oval. We refer to [1,
p-168] for the proof of the following celebrated theorem.

THEOREM 3 (SEGRE). Let q be odd. Then an oval K of PG(2,q) admits a
projective transformation T such that T(K) = {Y(z¢, z1,%2); Tox1 + 122 + 2239 = 0}
and that TP, = *(1,0,0), TP, = *0,1,0) and TP; = *(0,0,1) for three prescribed
points of K .

Denote by S, (g) the set of (m,n)-matrices with GF(g) entries such that every
square submatrix is nonsingular. An (m,n)-matrix (a;;) is called a Cauchy matrix
if aij = 1/(1 — z;y;) for some z;, y; in GF(q) (for 1 <i < m, 1 <7 < n) with
z;y; # 1. As to the determinant of a Cauchy matrix we have [4, p.202]

LEMMA 4. (Cauchy). The determinant of a square Cauchy matrix is given by the

formula

n n

deg(1/(1 — ziy;)) = D(=1,-- s 20)D(y1,- .., yn)/ H H (1 - =ziy;),

i=1 j=1

where D(z1,...,zn)= [l (zi-—=%;).
1€i<jEn

COROLLARY TO THEOREM 3. Assume that q is odd. If the matrix

1 1 1 ... 1
A= 1 a a2 vee Qg3
1 b by ... by

belongs to S3,4-2(q), then A is a Cauchy matrix with a;,b; € GF(q)—{0,1} (1 <i<
q—3).

PROOF OF COROLLARY: It is evident that a; and b; are equal to neither 0 nor 1.
Let a (3,3)-matrix F; be the unit matrix. Then ¢+1 columns of the (3,¢ + 1)-matrix
(E;,A) make up an oval of PG(2,q). In view of Theorem 3 there exists a diagonal
(3,3)-matrix [1,d;,d2] (di # 0) such that the set of columns of [1,d;,d:](E3, A) is
equal to {¥(zg,%1,%2); ToT1 + T1T2 + 7280 = 0} as a subset of PG(2,q). Thus the set
of columns of [1,d;,d;]A coincides with the set of columns of the (3,¢g — 2)-matrix

1 1 1
B= —¢ _{2 —67_2
-1/(1-€&1) —1/(1-¢%) ... -1/(1-¢7917)
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as a subset of PG(2,q), where ¢ is a primitive element of GF(q). Hence d; = —¢*
and d; = —1(1 — ¢7) for some 1 < k < ¢~2. We shall show that B' = [1,d,,d;]™' B
is a Cauchy matrix. Then it follows that A is a Cauchy matrix, since B’ is equal to A
up to the order of columns. Let *(1,1/(1 —u;),1/(1 — v;)) be the i-th column of the
matrix B'. For 1 <1< j <q¢—-2 and 1,5 # k we have w;v;u;v; # 0. Furthermore,

u;v; — u;v; vanishes, because it equals
(1-n"*) 1= (=) (1=n*)) - (=2 (1= (1=7')/(1 =9*))

where n = £~1. Thus B' is a Cauchy matrix, as desired.

PROOF OF THEOREM 2: Let

1 1 1 ... 1
A= 1 a; Qp cee Qg3
1 sz [eX] e aq_g

be a submatrix of a Singleton array S;. Then the matrix A belongs to S3,4-2(q). We
can write a; = 1/(1 — €%) (1 <n; £ ¢—2,1 <7< ¢g—2). Since A is a Cauchy matrix

by the Corollary, so are the submatrices

(““1 i ) (2<i<q-3)
a; @it

Consequently we get 72;_1 +n;4; = 2n; mod (¢ — 1) (2 <7 < ¢—3). In other words we
have n;y; —n; = n; — n;_; mod (¢ — 1). Hence there exist integers 0 < n', d < ¢-1
such that n; = n' + di mod (¢ —1) (1 <7< ¢g—2). Since {n' +di; 1 i< g—-2}=
{1,2,...9—-2} in Z/(q — 1), the set {di; 1 <i < ¢— 2} must contain ¢ — 2 elements.
It now follows that (d,q—1) =1 and n' = 0. Thus a; = 1/(1 - 7i) , where v = ¢4 is
a primitive element of GF(q). This completes the proof of Theorem 2.
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