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Abstract
In this paper, we establish an asymptotic formula for the twisted second moments of Dirichlet L-functions with one
twist when averaged over all primitive Dirichlet characters of modulus R, where R is a monic polynomial in IF,[T].

1. Introduction

It is well known that the study of moments of the Riemann zeta-function and L-functions is an important
topic in analytic number theory. It can be even argued that a great part of research in analytic number
theory in the last century has been guided and motivated by this topic.

Applications of moments of L-functions appear more notably in the Lindelof hypothesis, but also
when studying proportions of zeros satisfying the Riemann hypothesis and nonvanishing at the central
point of families of L-functions. For some of these applications, it is important to understand not only
the moments of L-functions but also what is known as twisted moments.

Let x be a Dirichlet character modulo p, where p is a prime number. The problem is then to obtain

a formula for
L 1
2 9’ X

where 4 is a fixed prime number and the * indicates a summation over all primitive Dirichlet characters
modulo p. With this notation, Conrey [3, Theorem 10] proved the following.

2

x(h), (1.1)

Sp.hy= >

x(mod p)

Theorem 1.1 (Conrey [3]). For primes p, h with 2 < h < p, we have that

172 1 2
S =" S, —p) + 2 (102 4y ~log (31)) + ¢ (5) e

p1/2
+0<h+logp+mlogp>,

where y is Euler’s constant and ¢ is the Riemann zeta-function.
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In [8], Young extended Conrey’s result as follows.

Theorem 1.2 (Young [8]). For primes p, h with h < p'~¢, we have that

pl/z 172 _pl/z p
iy S0 = 8 —py =5 (log 4y —log (87)
1\2 P2 e 2 U ¢
= 1 -2——1—-p~ 2—(1—-h , h),
+§<2> < <p(p)( P+ go(h)( ))-l- (N0

where @(p) is Euler’s totient function and
Ep, by <hp™' "+ 176,
for all fixed e, C > 0.

Advancing the study of twisted moments of Dirichlet L-functions, Bettin [2] showed that the error
term E(p, h) can be extended to a continuous function with respect to the real topology. In his work,
Bettin extended the known reciprocity results for twisted moments by establishing an exact formula
with shifts.

More recently, there have been some interesting developments on the study of twisted second
moments of Dirichlet L-functions over rational function fields. Let g be the power of an odd prime
number and A =T, [T] the polynomials with coefficients in the finite field IF,. In this setting, Djankovi¢
[4] proved the following.

Theorem 1.3 (Djankovi¢ [4]). Let P, H be irreducible polynomials in F,[T] and

" 1
S(P.H):= Y |L (5, x)

x(mod P)

2

x(H).

If H # P and deg(H) < deg(P), then

P1/2 H1/2 P1/2 1 2
1P S(P,H) il S(H,—P)—| | (deg(P)—deg(H)—{A <§)>

o(P)  ¢(H) T H|2
1 2 |P|l/2 B |H|]/2 B )
) (1-2 1= P +2—— (1—|H|™?) ),
+“(2) ( oy (1P 2 (1= 1HTE)

where L(s, x) is the Dirichlet L-function in function fields associated with the Dirichlet character x mod-
ulo P, with £,(s) being the zeta-function for F,[T], ¢(P) is the Euler’s totient function for polynomials
and |P| = ¢**") denotes the norm of a polynomial P in F [T].

The aim of this note is to extend the above result of Djankovié. In their work, they only consider
Dirichlet characters modulo a monic irreducible polynomial, that is, they only prove results for prime
moduli. In this note, we establish results for general moduli. In particular, we prove the following.

Theorem 1.4. Let H and R be monic polynomials in F,[T] with (H,R)=1 and deg(H) < (% —€)

deg(R), then
L 1
2’ X

W
¢ (R)x(mod R)

where w(R) is the number of distinct prime factors of R, ¢*(R) denotes the number of primitive Dirichlet

characters modulo R and * indicates a summation over all primitive Dirichlet characters modulo R.

2 (H)—L@(de (R) — de (H))+0<Llo w(R)) (1.2)
X “|H|* IR g g |H|? g ' '
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2. A short overview of Dirichlet L-functions over function fields

In this section, we give a short overview of Dirichlet L-functions in function fields, with most of these
facts stated in [6]. Let IF, denote a finite field with g elements, where g is a power of an odd prime
and A =TF[T] be its polynomial ring. Furthermore, we denote by A*, A+ and At the set of all monic
polynomials in A, the set of all monic polynomials in A of degree n and the set of all monic polynomials
of degree at most n in A, respectively. For f € A, the norm of f, |f], is defined to be equal to ¢*&", and
o), u(f) and w(f) denote the Euler-Totient function for A, the Mobius function for A and the number
of distinct prime factors of f.
For M(s) > 1, the zeta-function for A is defined as

;“A(s)—zw ]_[< IP|Y> @.1)

feAt

where the product is over all monic irreducible polynomials in A. Since there are ¢" monic polynomials
of degree n in A, then

La(s) = 1

1—s~

Definition 2.1. Let R € A*. Then, a Dirichlet character modulo R is defined to be a function y : A — C,
which satisfies the following properties:

(1) x(AB)= x(A)x(B), VA,BeA,
(2) x(A+BR)=x(A), VA,BeA,
(3) x(A)#0 < A,R)=1.

A Dirichlet character x is said to be even if x(a) =1 for all a € F;. Otherwise, we say that it is odd.

Definition 2.2. Let R € A, S|R and x be a character of modulus R. We say that S is an induced modulus
of x if there exists a character x, of modulus S such that

xA) if(A,R) =1,
x(A)= _
0 otherwise.

We say x is primitive if there is no induced modulus of strictly smaller norm than R. Otherwise, x is
said to be non-primitive. Let ¢*(R) denote the number of primitive characters of modulus R.

Definition 2.3. Let x be a Dirichlet character modulo R. Then, the Dirichlet L-function corresponding
to x is defined by

L= XV—({) (2.2)
feAt

which converges absolutely for R(s) > 1.

To finish this section, we will state some results about multiplicative functions in function fields,
which will be used throughout this paper. Taking Euler products, we see that for all s € C and all R € A,

we have
M(E)
_ 2.3
“T1(1- ) =
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and differentiating (2.3), we see that for all s € C\ {0}, we have

u(E)deg(E) 1 deg(P)
Lk ailil ) sal Ap 1—— . 2.4
> oD (T ) (02 24

EIR PIR PIR

Lemma 2.4 [1, Lemma 4.5]. Let R € A*. We have that

deg(P)
PZ}; F—1 < log w(R). (2.5)

Lemma 2.5 [7, Lemma A.2.3]. For deg(R) > 1, we have

log, |R|
oR) K ———— (2.6)
log, log, |R|
where the implied constant is independent of q.
Lemma 2.6. We have
20 = |u(E)l. @.7)
EIR
Also, for any € > 0, we have
2°® &« |RJ". (2.8)
Lemma 2.7 [7, Lemma A.2.4]. For deg(R) > g, we have
bR > — N 29)
log, log, |R]|
Lemma 2.8 [7, Lemma A.2.5]. For deg(R) > g, we have
R
¢ (R) > 9B : (2.10)
log, log, |R]
Lemma 2.9 [1, Lemma 3.7]. Let R€ A" and A, B € A. Then,
S yg(e) = | At HERE TABR=1.
(md B) 0 otherwise
As a Corollary, we have the following result.
Corollary 2.10 [1, Corollary 3.8]. For all R € A*, we have that
¢"(R) =Y W(E)(F). @.11)

EF=R

3. Preliminary lemmas

In this section, we state and prove results that will be needed to prove Theorem 1.4. We start by stating
. . . 2
the approximate function equation for |L (%, X) | .
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Lemma 3.1 [5, Lemma 2.5]. Let x be a primitive Dirichlet character of modulus R. Then, we have
L 1
2 b X

The next lemma will be used to obtain the main term of Theorem 1.4.

t X)X (B)
-2 ¥ W+O(|R| ﬁ). 3.1)

A,BeAt
deg(AB)<deg(R)

Lemma 3.2 [1, Lemma 4.12]. Let R be a monic polynomial in F,[T] and let x be a positive integer.

Then,
wx + O(log w(R)) if x > deg(R)
Z 1 IR|
- 1Al W) '
Achz Mx + O(log w(R)) + O (2 x) if x < deg(R)
(AR)=1 IR| q*

The following lemmas will be used to create a suitable bound for the error term of Theorem 1.4.

Lemma 3.3. Let F, H and R be fixed monic polynomials in I ,[T] where F|R and let z < deg(R). Then,

L g 42

1
2 F
Ageat |AB| |F|
deg(AB)=z
AH=B(mod F)
AH#B
(ABH.R)=1

Proof. We consider three cases, deg(AH) > deg(B), deg(AH) < deg(B) and deg(AH) = deg(B), where
AH #B.

If we first consider the case deg(AH) > deg(B) and suppose that deg(A) =i, then since AH =
B(mod F) and AH # B we have that AH = LF + B for some L € A* with deg(L) =i + deg(H) — deg(F)
and deg(B) = z — deg(A) = z — i. Thus, combining the above, we have

D TETaP VD DR D

ABeAT i=0 LeA AT
deg(AB)=z deg(L)= 1+deg(H) deg(F) deg(B)— —i
deg(AH)>deg(B)
AH=B(mod F)
AH#B
(ABH,R)=1
3 i Z q* |H| q*(z+ D|H|
1
- ‘ || <= |F|
i=0 LeA i=0

deg(L):ierEeg(H)fdeg(F)

Similarly, considering the case deg(AH) < deg(B) and using similar arguments seen previously,
we have
1 5 1
) 4 @+1)
|AB|> |F|

(34)

ABeAt
deg(AB)=z
deg(B)>deg(AH)
AH=B(mod F)
AH#B
(ABH,R)=1

Finally, if we consider the case where deg(AH) = deg(B) =i, then 2i = deg(ABH) = z + deg(H) and
so deg(B) = i = 22 Furthermore, since AH = B(mod F) and AH # B, then AH = LF + B where L €
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A with deg(L) < i — deg(F) = w — deg(F). Thus, combining the above, we have

1
> qu” > > 1

ABeAt BGA:d - —+%E£H)
deg(AB)=z _ ztdegH) deg(L)< BT _deg(F
dcg&gﬂ D i® deg(B) 5 eg(L)< =5 eg(F)
AH=B(mod F)
AH#B
(ABH,R)=1
1 z
< |H|> Z 1_qz|H| (3.5)
|F| ‘ |F|
deg(B)=ZHIEUD
Combining all the cases proves the result. O
Lemma 3.4. For all R € A" and € > 0, we have
1
2°®|R|> deg(R) 1
— <K |R|=. 3.6)

¢*(R)

Proof. For deg(R) < g, we know, by [7, (A.2.3)], that ¢® 5, 1. Thus, for deg(R) < g, we have

IR|
2¢P|R|2deg(R)  2“Pdeg(R)  2°W®
¢*(R) IR|2 R3¢

From Lemma 2.6, we know that 2°® « |R|, thus (3.6) holds for deg(R) < g.
For deg(R) > g, we know by Lemmas 2.7 and 2.8 that

d(R) S IR|
log, log, [R| ~ (log,log, |R|)*’

d*(R) >

Thus, if deg(R) > ¢, then
2¢0|R|1deg(R)  2°®deg(R)(log, log, R|)? k)
¢*(R) R| IR

Finally, from Lemma 2.6, we know that 2“® « |R|¢, then (3.6) holds for deg(R) > ¢ and thus
completes the proof. O

4. Proof of Theorem 1.4

In this section, we use results stated previously to prove Theorem 1.4.

Proof of Theorem 1.4. Using the approximate function equation Lemma 3.1, we have
1 . 1 2 2 * x(A)x(B)x (H) “lie
R L(E’X> = Y 3 S ro (k)@

- T
x(mod R) ¢ (R) |AB| :
Using the orthogonality relation Lemma 2.9, we have

x(modR) A BeAt
deg(AB)<deg(R)

2 * X(A)x(B)x (H) 2 1
RIS ARl S a® A MERR ) (4D
x(modR)  ABeA™ IAB|> EF=R ABeAt |AB|
deg(AB)<deg(R) deg(AB)<deg(R)
AH=B(mod F)
(ABH,R)=1
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For the second sum on the right-hand side of (4.2), we will consider the contribution of the diagonal,
AH = B, and the off-diagonal, AH # B, terms separately. Thus, we write

1 1
E E H(E)$(F) §
* 1
¢ (R) EF=R spear AB E 9 (R) EF=R apenr  ABIZ
deg(AB)<deg(R) deg(AB)<deg(R)
AH=B(mod F) AH=B(mod F)
(ABH,R)=1 AH=B
(ABH,R)=1
> =
-
2
¢ (R) — wote |ABI2
deg(AB)<deg(R)
AH=B(mod F)
AH#B
(ABH.R)=1

Considering the contribution of the diagonal, AH = B, the double sum over all A,B € A" with
deg(AB) < deg(R), AH =B and (ABH,R) =1 becomes a single sum over all A € A* with deg(A) <

2(deg(R) — deg(H)) and (AH, R) = 1. Therefore, using the arguments stated above and Corollary 2.10,
we have
1 2 1
= —. 4.3)
¢ <R> e 2,; Bz |H|} Z Al
deg(A'B)<deg(R) deg(A)< w
B R=1 (AH.R)=1

Since the condition (AH, R) = 1 holds if and only if (A, R) =1 and (H, R) = 1, then since we have
already assumed that (H, R) = 1, then, in the sum, we only need to consider the condition (A, R) = 1.

Thus,
1 1
— = —. (4.4)
LowT Lo
deg(A)< dcg(k);dcg(H) deg(d)< dcg(R);dcg(H)
(AH.R)=1 (AR)=1
Using Lemma 3.2 with x = w — 1, we have
Y = " Wieaw) —destny +0 ( Ly (R)) 45)
— eg eg — logw . .
\H]|: ~ JAl ]} IR |H|?
ng(A)< deg(R)—deg(H)
(AH,R)=21
For the contribution of the off-diagonal terms, we use Lemma 3.3 to give
y _‘“% ‘ 3 J%l Hg G+ 1) |HIRdeg®) o
A,BeAt |AB|7 A,BeAt |AB|% =0 |F| |F|
deg(AB)<deg(R) deg(AB)=z
AH=B(mod F) AH=B(mod F)
AH#B AH#B
(ABH.R)=1 (ABH.R)=1
Thus using (4.6), we have
1 |H||R|? deg(R) ¢(F)
n > - < m > HE) 4.7)
¢( ) o wae  |ABI2 R = |F]
deg(AB)<deg(R)
AH=B(mod F)
AH#B
(ABH.R)=1
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Combining (4.7) with Lemmas 2.6, 3.4 and the fact that % <1, we have

2
¢*(R)

3 1 2°®|H||R|deg(R)

1 < |H||R| 2. (4.8)
|AB|: ¢*(R)

E W(E)P(F)
EF=R ABeAt
deg(AB)<deg(R)
AH=B(mod F)
AH#B
(ABH.R)=1

Since H is a monic polynomial in F,[7T] with (H,R)=1 and deg(H) < (%—e)deg(R),
then |H ||R|’%+E < L logw(R) as deg(R) — oo. Combining the above completes the proof of
H|2

Theorem 1.4. O
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