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Nonlinear differential equations

in reflexive Banach spaces

W.E. Fitzgibbon

Let X be a reflexive Banach space and {A(t) | ¢ € [0, T]} be
a family of weskly continuous operators which map X to X .
Conditions are provided which guarantee the existence and the
uniqueness to the Cauchy initial value problem

u'(t) + A()ul(t) =0 ;3 u(0) =z .

1. Introduction

In this paper we shall be concerned with the existence of solutions to

the Cauchy initial value problem,
(1.1) u'(t) + A(8)u(t) =0 ; u(0) ==z,

where {4(t) | t € [0, T]} 1is a family of operators which map & reflexive
Banach space X +to itself. Basically we require that the operator

A(*) : {0, T] * X > X be weakly continuous and that for each ¢ € [0, T]
the operator A(t) satisfy a modified accretivity condition. 1In [1]
Browder provides a local solution to (1.1) in case X is a complex Hilbert
space. More recently, Diaz and Weinacht [3] and Medeiros [11] discuss the
uniqueness of solutions to (1.1) in Hilbert spaces; Goldstein in [6]
extends their results to general Banach spaces; and Chow and Schuur [2]
guarantee local existence to (1.1) in case X is a separable reflexive,
Banach space. In [5] the author establishes the global existence of

solutions to (1.1) in case A(t) = A is accretive.
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* 2. Preliminaries

Throughout this paper X will denote a Banach space and [*f| will be
its norm. The dual space of X will be X* .

DEFINITION 2.1. Let X be a Banach space, then the duality map
A
F: X~» 2X is defined in the following manner: if «x € X , then
z* € P(z) irf z4(z) = [zI° ana fe*l = =l .

In general the duality map is not single valued; however, in [7],
Kato shows that if X is a Banach space having uniformly convex dual X* ,
then the duelity map is uniformly continuous on bounded subsets of X .

The following definition makes clear our notions of operator

continuity.

DEFINITION 2.2. Let {A(%) | £ € [0, T]} be a family of operators
which map X to X . Then {A(%) | t €lo, T]} 1is said to be weakly

. . i . o
continuous provided that tn-> to and z, :co imply A(tn)xn A(to)xo .

implies A (tn] z, =4 (to) x

If tn-*to' and xn->x 0 , then

0
{a(t) | t € [0, T]} is said to be demi-continuous.

We now define an accretive operator and give two useful character-

izations of accretive operators.

DEFINITION 2.3. Let X ©be a Banach space and A an operator
mapping a subset of X to X ; then 4 is said to be accretive provided
(2.4), |le+Mx-(y+My)ll = llx-yl| vhenever =z, y € D(4) and A =20 .

Although Definition 2.3 is easily stated it is difficult to apply. 1In
[8] Kato shows that an operastor is accretive if f(Az-4y, f) = 0 for
x, y € D(A) and some f € F(x-y) where F is the duality map. An
accretive operator A 1is said to be strongly accretive provided that
(Ax-Ay, f)=2 0 for all f € F(x-y) . It is easily shown that weakly
continuous accretive operators are strongly accretive. Martin [10] shows

that if A 1is strongly accretive, then

(2.4) lim, (llz-y-h(Az-Ay)||-llz-yl) /A <= 0 for all =z, y € D(4) .
h~0

We now meke precise our notion of strong solutions to the Cauchy

problem.
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DEFINITION 2.5. A function wu(*) : [0, T] = X is said to be a

strong selution to the Cauchy problem
(2.6) w'(t) + A(t)u(t) =0 5 u() =z,

provided that u is Lipschitz continuwous on [0, 7] , u(0) =x , u is
strongly differentisble almost éverywhere and u'(%) + A(&)u(t) = 0 for
t € [0, T] almost everywhere.

LEMMA 2.7. Let X be a Banach space and g be a function from the
number interval (a, b) to X . Define p(t) = llg(t}|l for t € [a, b] ;

then if g'+(t) exists, p’+(t) exigts and

p'*(¢) = 11m, llg(t)+hg' " (£)lI-lg(e)ll /n .
h*0

3. Existence of solutions
The following lemma provides & local solution to Definition 2.5.

LEMMA 3.1. Let X be a reflexive Banach space and suppose that
{A(t) | t € [0, T]} is a weakly continuous family of operators which map
X to X ; then there i8 a finite interval [0, TO] such that the Cauchy

problem has a strong solution on [0, TO] .

Proof. Let x € X . By virtue of the weak continuity of
{a(t) | ¢ € [0, T]} there exist T, R and K >0 such that if
0<t=s Tl and y € SR(.'L') *then |l[A(%)yll = XK . Choose
To = min{R/K, Tl} . Let €, + 0 . We shall recursively define a sequence
of functions which solve the approximate equations

! - . = 3
(3.2) w (t) + A(t)un(t-sn) =0 ; u0)==zx;
x if t<o0,
t
u (t) = {z - Jo ,A-('s')un(s-en)ds it t ¢ [jen, (.7'+1)en] .

G=0s s yfe] -1

We argue that un(t) € SR(x) . If t o€ [0, En] then

||un(t)-:c]| =t sup |l4(8)xll = (R/K)X = R . If we assume the desired
g€[o0,T]
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result for t € [O,'jen] and consider t € [0, (j+l)€n] , we have

' t
e ()-zl = | fo Ao, (o-c,)do| = mmax{lia(olue,(s-¢ ) | & € [o, (d+1)e,]} -

. t
By observing that "un(t)-un(T)H < I "A(s)un(s—sn)”ds = |t-t]k we see
T

that the sequence is uniformly Lipschitz continuwous in ¢ .
We now claim that there is a subsequence {un.(t)} of {un(t)} such
that {un,(t)} converges weakly to & Lipschitz continuous function

{u(¢)} . The argument of Lemma 2.1, [5], is directly applicable to

establish this convergence.
. g . - . € Xx*
Since u (t en) =u(t) , Althu(t sn) At u(t) . 1f f we
take limits of the eguation,
t

(100> 1) = o ) = [ atod (omc,) s Ao

to ébtain
t

(3.3)  (u(t), f) = (=, £) - [ (a(e)uls), f)ds for t € [0, 7] .
4]

Applying standard techniques to (3.3) yields

t
u(t) = = - fo A(s)u(s)ds for t € [o, To] ,

and hence that

dul(t)/dt + A(t)u(t) =0 for t € [0, ZEJ almost everywhere.

We now place further conditions on {4(t) | t € [0, T)} which allow
us to extend the local solution of Lemma 3.1.

THEOREM 1. Let X be a reflexive Banach space and suppose that
{a(t) | .t € [0, T)} is a weakly continuous family of operators which maps
X to X . Further assume that for each t € [0, T] the operator
A(t) + (1/t)I 48 acecretive. Then there is a strong solution the Cauchy
initial value problem, Definition 2.5, on [0, T] .
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Proof. From the preceding lemma it is clear that there exists a local

sglution to Definition 2.5 on a maximal interval of existence [0, TO] .

We wish to argue that TO < T leads to a contradiction. Let O < to < TO

and define p(t) = [lu(¢)]l . By virtue of equation (2.4) and Lemmas 2.7 and

3.1 we have

p' M (8) = tim, (lu(e)-na(t)u(t) - u(e)) /n

B0 _
< ;_j;m+ (ute)-nlae)ule)+ (17t u(t)-a(e)) I -lu(e)) /n
0 .
+ (/e + llage)oll
= sup Jla(e)oll + (a/8)ule)ll
t€[0,7)
< (/tMu(E)l + M for some M >0 .
Thus
(3.4) (@ellue) '™ = (/em

integrating on (to, t) we have
(1/t)u(e)l = (l/to)”u(to)” + M' for some M'

Thus there is an N > O such that [u(¢)| < ¥ for ¢ € [0, 7)) . Since

A(*) maps bounded subsets of [0, T] X X to bounded subsets of X , there
t

exists an N, such that f l4(s)ule)llds < Ny for t € [0, TO) . This
o]

t
implies that f Als)u(s)ds exists for ¢t € [O, To) and by virtue of the
0

t
continuity of the integral we can define u(TO) = lim f A(s)u(s)ds - = .

t"To 0
Lemma 3.1 can be applied to continue the solution u(t) past TO and
thereby contradict the definition of T, . In [6] Goldstein insures the

0

uniqueness of the solution u(t) .

If we require that X have uniformly convex dual and that each A(t)
is accretive we can relax the continuity requirement. The following

theorem is an extension of a time independent result of Kato [7].
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THEOREM 2. Let X be a Banach space such that X* is uniformly
convex and let {A(t) | t € [0, T1} be a family of demi-continuous
operators such that all map bounded subsets of [0, T] x X to bounded
subgsets of X . Assume that for each t € [0, T], A(t) <8 accretive;
then there is a unique solution to (2.6) on [0, T] .

Proof. If we provide a local solution to (2.6) we can apply the
argument of Theorem 1 to extend the solution to [0, 7] . Our local

existence argument follows Kato [7]. Let €, ¥+ 0. Choosing R, T.,K>0

0’
as in Lemma 3.1 we define un(t) for t € [0, TO] by equation (3.2). We

observe that
2| _
d/dt(”un(t)-um(t)” ] = -2<A(t)un(t-en)-A(t)um(t_e”), F[un(t)-um(t)))
vhere F is the duality map. Using the accretiveness of A(t) we obtain

2
a/at( I (0 )-1, (2117
< -2<A(t)un(t—en)—A(t)um(t—e"J, F(un(t)-um(t)]—F(un[t-en)-um(t—em))).
Since F is uniformly continuous the arguments of [7] and [8] are directly
applicable to establish the uniform convergence of un(t) to u(t) on

[0, TO] . We apply the argument of Theorem 1 to see that u(%) can be
extended to a solution of (2.6) on [0, T] . The unigueness of the
solution follows from standard methods involving the accretiveness of
A(t) .
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