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DEFORMATION OF THE UNIVERSAL 
ENVELOPING ALGEBRA OF T(au a2, <r3) 

YI MING ZOU 

ABSTRACT. The defining relations for the Lie superalgebra F(a\, 02,03) as a con-
tragredient algebra are discussed and a PBW type basis theorem is proved for the cor­
responding ^-deformation. 

1. Introduction. In this note, we study the ^-analog of the universal enveloping 
algebra of the Lie superalgebra G = T(a\, 0-2,0-3). This Lie superalgebra is special: as 
a contragredient algebra, the defining matrix of G over the complex number field C de­
pends on a parameter, the algebra itself already admits a one-parameter deformation. To 
apply the idea of Drinfeld and Jimbo to define the ^-analog of the universal enveloping 
algebra U(G), one needs to work with a non-integer defining matrix. Hence in general, 
the deformation is defined over some transcendental function field extension of C (or just 
the field C, if one takes the deformation parameter to be a suitable complex number). The 
deformation thus defined will actually be a two-parameter family of algebras. 

We discuss the defining relations for G as a contragredient algebra in Section 2. Al­
though these defining relations are known to the experts (cf. the discussion in [8]), we are 
unable to find a suitable reference, so we provide a complete proof for these relations. 

In Section 3, we define the deformation U of U(G) and study its structure. As in 
the other cases of type II classical contragredient Lie superalgebras (see [4] for the 
definition of type II Lie superalgebras, see [5] for a definition of the ^-deformation of 
£/(osp(m, 2«)), the usual Drinfeld-Jimbo deformation of U(G) does not contain a copy 
of the standard deformation of U(Go), where Go is the even part of G, since there are not 
enough group like elements in it. However, we show that in our case, one can introduce 
suitable elements in Zl such that a PBW type theorem (Theorem 3.3) holds for U. 

2. The defining relations for G. We use the notation adopted in [9]. Recall that the 
algebra G is defined as a contragredient Lie superalgebra with three nonzero elements 
ci, 02, 03 E C satisfying o\ + a2 + 0-3 = 0, with generators ehfi, hi (i = 1,2,3) and the 
defining matrix (fl/,)3x3 given as follows: 
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The grading on G is given by 

deghi = 0,/ = 1,2,3; dege, = degfi = 0,/ = 2,3; degei = deg/i = 1. 

PROPOSITION 2.1. 77ze defining relations for G as a contr agréaient Lie superalgebra 

are 
(1) [hi9hj] = 09 ij = 1 , 2 , 3 ; 

(2; [A/,̂ -1 = fl^-, [A;,jÇ] = - ^ , i j = 1,2,3; 

(V [eujj\ = Sijhi9 ij = 1,2,3; 

(4)(3dei)
l-a»(ej) = 09 (*dJi)l-a*Qj) = 09 / = 2,3, y = 1,2,3; 

fl> [*i,ei] = 0, [/i,/i] = 0. 

Relations (l)-(5) clearly hold in T(a 1,0-2,0-3), so we assume that G is defined as a 
contragredient Lie superalgebra by using the given generators and these relations and 
show that G is isomorphic to T(a\, o2,03 ). The proof will be organized in several lemmas. 

Note that by the Jacobi identity, we have 

[ei,[euei]] = 09 \fu[fuf]} = 0, i = 2,3. 

Let 

e0 = (2oi) l |ei,[e3,[^2,^i]] 

= (2ai)~l[[eue3]9[e29ei]]9 

/o = (2o-1r
1[/i,^3,[yr29/i]]] 

= (2alr
l[\flJ3]9\f2Jl]\9 

LEMMA 2.2. The subalgebra (e09fo, h0) of G generated by eo,f0, h0 is isomorphic to 
sl(2), and (ei9f9 ht; i = 0,2,3) ^ sl(2) 0 sl(2) 0 sl(2). 

PROOF. A straightforward computation shows that 

h0 = (2aly
l(2(T2h2 + 2o3/*3 - 2/zj). 

Hence [Ao,eo] = 2é?0, [Ao,./&] = —2/o, and (eoJo5*o) — sl(2). For the second statement, 
first we note that by the definitions of eo andyo, we have 

[eo,Ji] = 09 [ft>9ei] = 09 i = 2,3. 
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Then we note that 

l>2,e<>] = (2t7i) 1 |e2, [[^l,^3],[^2,^l]]J 

= (2eri)- [[^2, [^1,^3]], [^2,^l] 

= —(2cr1)~
1^[^3, [e2,e{]], [e2,e{] 

= - ( ^ i ) - 1 ^ , [[e2,ei],[e2,ei]] 

«3, [«2, [<?l,|>2,ei]]] 

= 0, 

and similarly 

Now the lemma follows from these identities. 
Let Go = (ei,fi9him

9 i = 0,2,3) (Lemma 2.4 below will show that Go is indeed the 
even part of G and thus justify our notation). 

LEMMA 2.3. Let em = le^, [e2, e\]\ then as a Go-module via the adjoint represen­
tation, the submodule (em) generated by em is isomorphic to C2 <g) C2 <g) C2, where C2 

is the two-dimensional natural representation of sl(2). 

PROOF. By the définition of e\ \\, e\ \ \ ^ 0 . Note that we have [eh e\\ \ ] = 0, 1 = 2,3. 
Note also that [eo, e{\ — 0, so since [e„ ej\ = 0 for ij ^ 1, we see that 

l>o,em] = Uo, [e3,[e2,e\]]I 

= [^3,[^2,N, l̂]]J 

= 0. 

Thus e\ 11 is a highest weight vector. Now since [A/, ein] = em and (ad//)2(eni) = 0 
(/ = 0,2,3), by the representation theory of the semisimple Lie algebras, the lemma 
follows as desired. 

Define the following elements of G: 

e\\2 = 1/3,̂ 111], «ni = [f2,em], 

/212 = fô,/l], f22l=\flM f222=\f3,UlJl]\ 

Then e\9f\, together with the e^ and the /^ form a basis of the Go-module (em). 

LEMMA 2.4. Table I in [9] holds for the elements we defined above, where (ijk) 
corresponds to the e^ or thefijk with (122) <-> e\ and (211) <-»/i. 

PROOF. We only verify that e\n = 0, the other relations can be verified similarly. 
Since [e\,e\] = 0, we have 

[e2,[ei,ei]] = 2[[e2,^i],ei] = 0, 
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and hence by applying ad e2 and using (4) in Proposition 2.1, we have 

[[e2,ei],[e2,ei]] = 0. 

Therefore 

x =: e3,[e2,ei]]9[e29e\]\ = l/2\e3,[[e2,eil[e2,ei]} - 0 , 

and thus 

[eiii,ein] = [e3,x] = 0. 

PROOF OF PROPOSITION 2.1. The proposition follows from Lemma 2.2-Lemma 2.4 
with Go being the even part of T(a\, 02,03), (̂ 111) being the odd part of T(a\, cr2,03) (for 
the structure of T(a\, cr2,0-3), see [9, Section 2]). 

3. Deformation of U(G) and a PBW type theorem. Let q be a variable over C, 
and let q\ = q~l, qt = q2(Ti (i = 2,3) (the qt are well defined complex value functions as 
long as q ^ 0). Let J? = C[q±l ; qf \ i = 2,3], and let 5 be the quotient field of J?. 

We define the algebra 11 to be the Z2-graded associative algebra with 1 over J gen­
erated by the elements Ei9 Fi9 Kfx (i =1 ,2 ,3) , with grading given by 

deg£; = degF, = 0 , i = 2,3; d e g ^ 1 = 0 , i = 1,2,3; 

deg£i = degFj = 1, 

and with the following generating relations: 

(3.1) KiKj = KjKi9 KiKY1 = KT% = 1, 1 < ij < 3, 

(3.2) KiEjKT1 = q?Ej9 KiFjKr' = q. a*Fh 1 < ij < 3, 

(3.3) EiFj-(-ir>FjEi = 6ij 
Kt-K7 

<li - <li 

a = deg£;, b = degFy, 1 < ij < 3. 

(3.4) E2E3 = E3E2, F2F3 = F3F2, 

(3.5) E]EX - (qi + q^yEtExEi + EXE] = 0, i = 2,3, 

F}F{ - (gi + q^WiFxFi + FxFf = 0, 1 = 2,3, 

(3.6) E2
{=F2

{= 0. 
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The algebra 11 is a Z2 -graded Hopf algebra with comultiplication A, antipode £ and 
counit e defined by 

(3.7) AEi=Ei®l+Ki®Ei9 AFi = Fi®K^l + \®Fh AK; = Kt ® Kt; 

(3.8) SEi = -KrxEi9 SFt = -FtKu SKt = K^1; 

(3.9) £Et = 0, eFt = 09 eKi = \. 

There exists a C-algebra anti-automorphism 0 of 11 given by 

(3.10) 0Et = Fh 0Fi = Ei, 0Ki=Kr\ 0q = q~x 

and 0(uv) = 0(v) 0{u\ for ail u,v e 11. 
The adjoint action of £i on itself is given by 

(3.11) ad^Cy) = XX-l)des<6<>de^VS(&/), 

where Ax = £ fl/ ® 6,-. Note that by using the adjoint action, relations (3.4) and (3.5) can 
be replaced by 

(3.12) ( a d ^ ) 1 _ ^ = 0, i = 2,3, 1 <j < 3. 

Introduce the following elements of 11: 

Em = adgE3(Ei) = E3EX - q3
xExE3, 

Em = BdgE2(Ei) = E2EX - q2XE\E2, 

Em= adqE32LdqE2(El) = a d ^ ^ X ^ i ) , 

(il + q2X)E\Em + (q3 + q3
x)EmE\ + (q3q2

X - q3
lq2)E\2\Em, 

and let 

(3.14) F2\2 = 0E\2\, F22\ = 0E\n, F222 = 0^i n, FQ = OO­

LEMMA 3.1. The following formulas hold in 11: 

(7) £1^121 + <?3£i2i£i = 0, F1F212 + qiF2\2Fx = 0, 

(3) ^1^112+^112^1 = 0, F1F221 + ^ 2 2 1 ^ 1 = 0, 

(4) En2E\U+q3EmEn2 = 0, F22\F222 +^222^221 = 0, 
(5) £i2i£in +^2£in£i2i = 0, F2X2F222 + q2F222F2X2 = 0, 
(tf) ExExn+q-^EmEx +q2EmEm + q3EmEm = 0. 

PROOF. We only need to prove those formulas involving £, those involving F can 
then be obtained by applying 0. Formulas (2) and (3) are clear, (4) and (5) can be verified 

(3.13) 

£0 
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by using En\ = adqE2(E\2\) or Em — a d ^ ^ m ) , (6) can be verified by using (2) and 
(3). To verify (1), note that formulas (3.5) and (3.6) imply that 

EXE]EX = fe + q7l)ExEiExEi = (qt + q7l)EiExEiEx, / = 2,3. 

Thus E2
m = 0, E]n = 0. Similarly, using E2

m = 0 and (ad^3)2^ii2 = 0 instead of 
(3.5) and (3.6), we get 

E2
m = (adqE3(Em))2 = 0. 

The proof of the lemma is now complete. 

The following lemma provides some formulas involving the element OO­

LEMMA 3.2. The following formulas hold in U: 
(1) E0E2 = EÏEÇS, E0E3 = E^Eo, E0F2 — F2E0, EQFI = F^Eo, 
(2) E0EX - q^ExEo = q2{\ - q^)ExExxxEx, 
(3) EQE\2\ = E\2\Eo, EXX2Eo = EoEXX2, EoExxx = ExxxEo. 

PROOF. The proofs for those formulas involving only the Zs's are just direct applica­
tions of Lemma 3.1. To verify the last two formulas in (1), we use the following formulas 

F2E\\2 —E112F2 — E1K2 , 

< 3 1 5 ) F2Em=EmF2, 

EiEm — E\\\F2 = E\2\K2 , 

FT>E\\2 = EXX2F3, 

< 3 1 6 ) F3Em-El2iF3 = ElIC
l
9 

F3E\\\ — E111F3 = E112KÏ . 

REMARK. Compare with the corresponding formulas in U(G), one would like to 
have a vector E$ which satisfies (1) in Lemma 3.2 and has a better commutation relation 
with E\, but this does not seem to be possible, since a search along this line will lead to 
the left hand side of (6) in Lemma 3.1, which is 0. 

Let U& be the -#-subalgebra of Zl generated by Eh Fh Kfx and 

[Ki;0] = Ki~Ki
l, i = l , 2 , 3 . 

9i - 97 

For e G Cx , let ^ = U^jiq — e)£/#. Then the algebra U\ is an associative algebra 
over C with generators Eiy Fh Kt, Ht = [Kt\ 0] (/ = 1,2,3) and the defining relations 
(which can be verified easily): 

(3.17) Kt are central elements with Kj = 1, 
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(3.18) [EhFj] = 6tjHh [Hi9Ej] = a^Ej, [HuFj\ = -a^Fj, 

(3.19) (adtf/)1-*^) = 0, (*dFi)
l-a«(Fj) = 09 i = 2,3, y = 1 , 2 , 3 , 

(3.20) £Î = 0, F? = 0. 

Therefore, <Zi1 /(AT,- — 1; / = 1,2,3) =̂  U(G), the universal enveloping algebra of G. 
Note that the image of EQ in U(G) is 2e0, where eo is defined in Section 2. 

Let lt9lT9ZP be the subalgebras of î i generated by the Eh the F,-, and the Kfx 

(i = 1,2,3) respectively. Then just as in the Lie algebra case (see [7]), one can show that 
Zl = Zl~ Zf Zt and (use the comultiplication) that Zl = ZT <8> ZJ° (g) tf" as J-vector 
spaces. 

Foré = (01,62,63,64X61 = Oor l;m = (m\9m2,mi)9mi € Z+, let 

c<<5,m) _ E ^ I 17S2 c^3 p1>4 p*ii p**2 umi 
( 3 2 1 ) ~~ H I 121^112^1 ^ 0 ^ 2 ^ 3 ' 

r ~r222/212/221/l ^ 0 *2 ^ 3 ' 

Forf = (/i,fe,ft),/i€Z,let 

(3.22) K* = Kt
l
lK%K$. 

Then the A? form a basis of 'Zi0, and we have the following theorem: 

THEOREM 3.3. The elements of the form Et6/n) (resp. F^^)form a basis of "it (resp. 
Zl~\ and the elements of the form 

form a basis ofZl. 

PROOF. We only need to prove that the elements of the form ES8^ form a basis of 
Zt 9 since the statement about ZT will follow from symmetry and the statement about 
Zl will follow from the fact that Zl = Zl~ ® ZJ° ® Zt. We first show that these elements 
span ZJt 9 that is, by using the commutation relations in Zt we can express any monomial 
of Zt as a linear combination of these elements. In fact, Lemma 3.1 and Lemma 3.2 
along with the defining relations of Zl provide the commutation relations we need. In 
particular, to bring the terms F112F121 and FiFm to the right order, we use formula (6) 
in Lemma 3.1 together with the definition of Eo. Then, we show that these elements are 
linearly independent over f. Note that by (3.13), these elements are in fact in Z1&. So if 
we have a linear relation 

(3.23) Y/ciB<^mi) = 0, 
i=\ 
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with 0 ^ Cj G f (1 < / < r), then by multiplying a suitable element from A, we 
may assume that ct G Si. Now if there exists a Q such that c/(l) ^ 0, then the image of 
the right hand side of (3.20) gives a nontrivial linear relation in U(G). But by the PBW 
theorem of U(G), the images of the £<M) j n JJ{G) form a basis of U{G), and we have a 
contradiction. If c/(l) = 0 for all \ < i < r, then by the results in [1, Ch. 3, Section 3], 
we may assume that the order of 1 for ct is «/, and set n — min{«/ : 1 < / < r}. Then 
lim^iC//(# — l)n ^ 0 for some /, hence by (3.20) we have 

^iV(^-i)^tt ' ètV^i(^-i)W 

which provides a nontrivial linear relation in U(G) contradicting the PBW theorem for 
U(G). Hence the elements of the form E^^ are linearly independent, and the proof of 
the theorem is now complete. 
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