DEFORMATION OF THE UNIVERSAL ENVELOPING ALGEBRA OF $\Gamma(\sigma_1, \sigma_2, \sigma_3)$

YI MING ZOU

ABSTRACT. The defining relations for the Lie superalgebra $\Gamma(\sigma_1, \sigma_2, \sigma_3)$ as a contragredient algebra are discussed and a PBW type basis theorem is proved for the corresponding q-deformation.

1. **Introduction.** In this note, we study the q-analog of the universal enveloping algebra of the Lie superalgebra $G = \Gamma(\sigma_1, \sigma_2, \sigma_3)$. This Lie superalgebra is special: as a contragredient algebra, the defining matrix of G over the complex number field $\mathbb C$ depends on a parameter, the algebra itself already admits a one-parameter deformation. To apply the idea of Drinfeld and Jimbo to define the q-analog of the universal enveloping algebra U(G), one needs to work with a non-integer defining matrix. Hence in general, the deformation is defined over some transcendental function field extension of $\mathbb C$ (or just the field $\mathbb C$, if one takes the deformation parameter to be a suitable complex number). The deformation thus defined will actually be a two-parameter family of algebras.

We discuss the defining relations for G as a contragredient algebra in Section 2. Although these defining relations are known to the experts (cf. the discussion in [8]), we are unable to find a suitable reference, so we provide a complete proof for these relations.

In Section 3, we define the deformation \mathcal{U} of U(G) and study its structure. As in the other cases of type II classical contragredient Lie superalgebras (see [4] for the definition of type II Lie superalgebras, see [5] for a definition of the q-deformation of $U(\operatorname{osp}(m,2n))$, the usual Drinfeld-Jimbo deformation of U(G) does not contain a copy of the standard deformation of $U(G_0)$, where G_0 is the even part of G, since there are not enough group like elements in it. However, we show that in our case, one can introduce suitable elements in \mathcal{U} such that a PBW type theorem (Theorem 3.3) holds for \mathcal{U} .

2. The defining relations for G. We use the notation adopted in [9]. Recall that the algebra G is defined as a contragredient Lie superalgebra with three nonzero elements $\sigma_1, \sigma_2, \sigma_3 \in \mathbb{C}$ satisfying $\sigma_1 + \sigma_2 + \sigma_3 = 0$, with generators e_i, f_i, h_i (i = 1, 2, 3) and the defining matrix $(a_{ij})_{3\times 3}$ given as follows:

$$\begin{pmatrix} 0 & 2\sigma_2 & 2\sigma_3 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$$

Received by the editors October 2, 1995.

AMS subject classification: 16W30, 16S80, 22E70.

[©] Canadian Mathematical Society 1996.

The grading on G is given by

$$\deg h_i = 0, i = 1, 2, 3;$$
 $\deg e_i = \deg f_i = 0, i = 2, 3;$ $\deg e_1 = \deg f_1 = 1.$

PROPOSITION 2.1. The defining relations for G as a contragredient Lie superalgebra are

- (1) $[h_i, h_j] = 0$, i, j = 1, 2, 3;
- (2) $[h_i, e_j] = a_{ij}e_j$, $[h_i, f_j] = -a_{ij}f_j$, i, j = 1, 2, 3;
- (3) $[e_i, f_i] = \delta_{ii}h_i$, i, j = 1, 2, 3;
- (4) $(\operatorname{ad} e_i)^{1-a_{ij}}(e_j) = 0$, $(\operatorname{ad} f_i)^{1-a_{ij}}(f_j) = 0$, i = 2, 3, j = 1, 2, 3;
- (5) $[e_1, e_1] = 0$, $[f_1, f_1] = 0$.

Relations (1)–(5) clearly hold in $\Gamma(\sigma_1, \sigma_2, \sigma_3)$, so we assume that G is defined as a contragredient Lie superalgebra by using the given generators and these relations and show that G is isomorphic to $\Gamma(\sigma_1, \sigma_2, \sigma_3)$. The proof will be organized in several lemmas.

Note that by the Jacobi identity, we have

$$[e_1, [e_1, e_i]] = 0, [f_1, [f_1, f_i]] = 0, i = 2, 3.$$

Let

$$e_0 = (2\sigma_1)^{-1} \Big[e_1, [e_3, [e_2, e_1]] \Big]$$

$$= (2\sigma_1)^{-1} \Big[[e_1, e_3], [e_2, e_1] \Big],$$

$$f_0 = (2\sigma_1)^{-1} \Big[f_1, [f_3, [f_2, f_1]] \Big]$$

$$= (2\sigma_1)^{-1} \Big[[f_1, f_3], [f_2, f_1] \Big],$$

$$h_0 = [e_0, f_0].$$

LEMMA 2.2. The subalgebra $\langle e_0, f_0, h_0 \rangle$ of G generated by e_0, f_0, h_0 is isomorphic to sl(2), and $\langle e_i, f_i, h_i; i = 0, 2, 3 \rangle \cong sl(2) \oplus sl(2) \oplus sl(2)$.

PROOF. A straightforward computation shows that

$$h_0 = (2\sigma_1)^{-1}(2\sigma_2h_2 + 2\sigma_3h_3 - 2h_1).$$

Hence $[h_0, e_0] = 2e_0$, $[h_0, f_0] = -2f_0$, and $\langle e_0, f_0, h_0 \rangle \cong sl(2)$. For the second statement, first we note that by the definitions of e_0 and f_0 , we have

$$[e_0, f_i] = 0$$
, $[f_0, e_i] = 0$, $i = 2, 3$.

Then we note that

$$[e_{2}, e_{0}] = (2\sigma_{1})^{-1} \Big[e_{2}, \big[[e_{1}, e_{3}], [e_{2}, e_{1}] \big] \Big]$$

$$= (2\sigma_{1})^{-1} \Big[\big[e_{2}, [e_{1}, e_{3}] \big], [e_{2}, e_{1}] \Big]$$

$$= -(2\sigma_{1})^{-1} \Big[\big[e_{3}, [e_{2}, e_{1}] \big], [e_{2}, e_{1}] \Big]$$

$$= -(4\sigma_{1})^{-1} \Big[e_{3}, \big[[e_{2}, e_{1}], [e_{2}, e_{1}] \big] \Big]$$

$$= -(4\sigma_{1})^{-1} \Big[e_{3}, \big[e_{2}, [e_{1}, [e_{2}, e_{1}]] \big] \Big]$$

$$= 0,$$

and similarly

$$[e_3, e_0] = 0$$
, $[f_2, f_0] = 0$, $[f_3, f_0] = 0$.

Now the lemma follows from these identities.

Let $G_0 = \langle e_i, f_i, h_i; i = 0, 2, 3 \rangle$ (Lemma 2.4 below will show that G_0 is indeed the even part of G and thus justify our notation).

LEMMA 2.3. Let $e_{111} = [e_3, [e_2, e_1]]$, then as a G_0 -module via the adjoint representation, the submodule (e_{111}) generated by e_{111} is isomorphic to $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$, where \mathbb{C}^2 is the two-dimensional natural representation of sl(2).

PROOF. By the definition of e_{111} , $e_{111} \neq 0$. Note that we have $[e_i, e_{111}] = 0$, i = 2, 3. Note also that $[e_0, e_1] = 0$, so since $[e_i, e_j] = 0$ for $i, j \neq 1$, we see that

$$[e_0, e_{111}] = [e_0, [e_3, [e_2, e_1]]]$$
$$= [e_3, [e_2, [e_0, e_1]]]$$
$$= 0.$$

Thus e_{111} is a highest weight vector. Now since $[h_i, e_{111}] = e_{111}$ and $(\operatorname{ad} f_i)^2(e_{111}) = 0$ (i = 0, 2, 3), by the representation theory of the semisimple Lie algebras, the lemma follows as desired.

Define the following elements of G:

$$e_{112} = [f_3, e_{111}], \quad e_{121} = [f_2, e_{111}],$$

 $f_{212} = [f_3, f_1], \quad f_{221} = [f_2, f_1], \quad f_{222} = [f_3, [f_2, f_1]].$

Then e_1, f_1 , together with the e_{ijk} and the f_{rst} form a basis of the G_0 -module (e_{111}) .

LEMMA 2.4. Table I in [9] holds for the elements we defined above, where (ijk) corresponds to the e_{ijk} or the f_{ijk} with (122) $\leftrightarrow e_1$ and (211) $\leftrightarrow f_1$.

PROOF. We only verify that $e_{111}^2 = 0$, the other relations can be verified similarly. Since $[e_1, e_1] = 0$, we have

$$[e_2, [e_1, e_1]] = 2[[e_2, e_1], e_1] = 0,$$

and hence by applying ad e_2 and using (4) in Proposition 2.1, we have

$$[[e_2,e_1],[e_2,e_1]]=0.$$

Therefore

$$x =: [[e_3, [e_2, e_1]], [e_2, e_1]] = 1/2[e_3, [[e_2, e_1], [e_2, e_1]]] = 0,$$

and thus

$$[e_{111}, e_{111}] = [e_3, x] = 0.$$

PROOF OF PROPOSITION 2.1. The proposition follows from Lemma 2.2-Lemma 2.4 with G_0 being the even part of $\Gamma(\sigma_1, \sigma_2, \sigma_3)$, (e_{111}) being the odd part of $\Gamma(\sigma_1, \sigma_2, \sigma_3)$ (for the structure of $\Gamma(\sigma_1, \sigma_2, \sigma_3)$, see [9, Section 2]).

3. **Deformation of** U(G) **and a PBW type theorem.** Let q be a variable over \mathbb{C} , and let $q_1 = q^{-1}$, $q_i = q^{2\sigma_i}$ (i = 2, 3) (the q_i are well defined complex value functions as long as $q \neq 0$). Let $\mathcal{A} = \mathbb{C}[q^{\pm 1}; q_i^{\pm 1}, i = 2, 3]$, and let \mathcal{F} be the quotient field of \mathcal{A} .

We define the algebra \mathcal{U} to be the \mathbb{Z}_2 -graded associative algebra with 1 over \mathcal{F} generated by the elements E_i , F_i , $K_i^{\pm 1}$ (i = 1, 2, 3), with grading given by

$$\deg E_i = \deg F_i = 0, \quad i = 2, 3; \quad \deg K_i^{\pm 1} = 0, \quad i = 1, 2, 3;$$

 $\deg E_1 = \deg F_1 = 1,$

and with the following generating relations:

(3.1)
$$K_i K_j = K_j K_i, \quad K_i K_i^{-1} = K_i^{-1} K_i = 1, \quad 1 \le i, j \le 3,$$

(3.2)
$$K_i E_j K_i^{-1} = q_i^{a_{ij}} E_j, \quad K_i F_j K_i^{-1} = q_i^{-a_{ij}} F_j, \quad 1 \le i, j \le 3,$$

(3.3)
$$E_{i}F_{j} - (-1)^{ab}F_{j}E_{i} = \delta_{ij}\frac{K_{i} - K_{i}^{-1}}{q_{i} - q_{i}^{-1}},$$

$$a = \deg E_{i}, \quad b = \deg F_{j}, \quad 1 \le i, j \le 3.$$

$$(3.4) E_2E_3 = E_3E_2, F_2F_3 = F_3F_2,$$

(3.5)
$$E_i^2 E_1 - (q_i + q_i^{-1}) E_i E_1 E_i + E_1 E_i^2 = 0, \quad i = 2, 3,$$
$$F_i^2 F_1 - (q_i + q_i^{-1}) F_i F_1 F_i + F_1 F_i^2 = 0, \quad i = 2, 3,$$

$$(3.6) E_1^2 = F_1^2 = 0.$$

The algebra $\mathcal U$ is a $\mathbb Z_2$ -graded Hopf algebra with comultiplication Δ , antipode S and counit ε defined by

$$(3.7) \Delta E_i = E_i \otimes 1 + K_i \otimes E_i, \Delta F_i = F_i \otimes K_i^{-1} + 1 \otimes F_i, \Delta K_i = K_i \otimes K_i;$$

(3.8)
$$SE_i = -K_i^{-1}E_i, \quad SF_i = -F_iK_i, \quad SK_i = K_i^{-1};$$

(3.9)
$$\varepsilon E_i = 0, \quad \varepsilon F_i = 0, \quad \varepsilon K_i = 1.$$

There exists a \mathbb{C} -algebra anti-automorphism θ of \mathcal{U} given by

(3.10)
$$\theta E_i = F_i, \quad \theta F_i = E_i, \quad \theta K_i = K_i^{-1}, \quad \theta q = q^{-1}$$

and $\theta(uv) = \theta(v) \theta(u)$, for all $u, v \in \mathcal{U}$.

The adjoint action of \mathcal{U} on itself is given by

(3.11)
$$ad_{q}x(y) = \sum_{i=1}^{\infty} (-1)^{\deg(b_{i})\deg(y)} a_{i}yS(b_{i}),$$

where $\Delta x = \sum a_i \otimes b_i$. Note that by using the adjoint action, relations (3.4) and (3.5) can be replaced by

$$(3.12) (ad_a E_i)^{1-a_{ij}} E_i = 0, i = 2, 3, 1 \le j \le 3.$$

Introduce the following elements of \mathcal{U} :

(3.13)
$$E_{121} = \operatorname{ad}_{q} E_{3}(E_{1}) = E_{3} E_{1} - q_{3}^{-1} E_{1} E_{3},$$

$$E_{112} = \operatorname{ad}_{q} E_{2}(E_{1}) = E_{2} E_{1} - q_{2}^{-1} E_{1} E_{2},$$

$$E_{111} = \operatorname{ad}_{q} E_{3} \operatorname{ad}_{q} E_{2}(E_{1}) = \operatorname{ad}_{q} (E_{3} E_{2})(E_{1}),$$

$$E_{0} = (q_{2} + q_{2}^{-1}) E_{1} E_{111} + (q_{3} + q_{3}^{-1}) E_{111} E_{1} + (q_{3} q_{2}^{-1} - q_{3}^{-1} q_{2}) E_{121} E_{112},$$

and let

(3.14)
$$F_{212} = \theta E_{121}, \quad F_{221} = \theta E_{112}, \quad F_{222} = \theta E_{111}, \quad F_0 = \theta E_0.$$

LEMMA 3.1. The following formulas hold in U:

(1)
$$E_{iik}^2 = 0$$
, $F_{iik}^2 = 0$,

(2)
$$E_1E_{121} + q_3E_{121}E_1 = 0$$
, $F_1F_{212} + q_3F_{212}F_1 = 0$,

(3)
$$E_1E_{112} + q_2E_{112}E_1 = 0$$
, $F_1F_{221} + q_2F_{221}F_1 = 0$,

(4)
$$E_{112}E_{111} + q_3E_{111}E_{112} = 0$$
, $F_{221}F_{222} + q_3F_{222}F_{221} = 0$,

(5)
$$E_{121}E_{111} + q_2E_{111}E_{121} = 0$$
, $F_{212}F_{222} + q_2F_{222}F_{212} = 0$,

(6)
$$E_1E_{111} + q^{-2\sigma_1}E_{111}E_1 + q_2E_{112}E_{121} + q_3E_{121}E_{112} = 0.$$

PROOF. We only need to prove those formulas involving E, those involving F can then be obtained by applying θ . Formulas (2) and (3) are clear, (4) and (5) can be verified

by using $E_{111} = \operatorname{ad}_q E_2(E_{121})$ or $E_{111} = \operatorname{ad}_q E_3(E_{112})$, (6) can be verified by using (2) and (3). To verify (1), note that formulas (3.5) and (3.6) imply that

$$E_1 E_i^2 E_1 = (q_i + q_i^{-1}) E_1 E_i E_1 E_i = (q_i + q_i^{-1}) E_i E_1 E_i E_1, \quad i = 2, 3.$$

Thus $E_{121}^2 = 0$, $E_{112}^2 = 0$. Similarly, using $E_{112}^2 = 0$ and $(ad_q E_3)^2 E_{112} = 0$ instead of (3.5) and (3.6), we get

$$E_{111}^2 = \left(\operatorname{ad}_q E_3(E_{112})\right)^2 = 0.$$

The proof of the lemma is now complete.

The following lemma provides some formulas involving the element E_0 .

LEMMA 3.2. The following formulas hold in U:

- (1) $E_0E_2 = E_2E_0$, $E_0E_3 = E_3E_0$, $E_0F_2 = F_2E_0$, $E_0F_3 = F_3E_0$,
- (2) $E_0E_1 q^{2\sigma_1}E_1E_0 = q_2(1 q^{4\sigma_1})E_1E_{111}E_1$,
- (3) $E_0E_{121} = E_{121}E_0$, $E_{112}E_0 = E_0E_{112}$, $E_0E_{111} = E_{111}E_0$.

PROOF. The proofs for those formulas involving only the E's are just direct applications of Lemma 3.1. To verify the last two formulas in (1), we use the following formulas

(3.15)
$$F_{2}E_{112} - E_{112}F_{2} = E_{1}K_{2}^{-1},$$

$$F_{2}E_{121} = E_{121}F_{2},$$

$$F_{2}E_{111} - E_{111}F_{2} = E_{121}K_{2}^{-1},$$

(3.16)
$$F_{3}E_{112} = E_{112}F_{3},$$

$$F_{3}E_{121} - E_{121}F_{3} = E_{1}K_{3}^{-1},$$

$$F_{3}E_{111} - E_{111}F_{3} = E_{112}K_{3}^{-1}.$$

REMARK. Compare with the corresponding formulas in U(G), one would like to have a vector E_0 which satisfies (1) in Lemma 3.2 and has a better commutation relation with E_1 , but this does not seem to be possible, since a search along this line will lead to the left hand side of (6) in Lemma 3.1, which is 0.

Let $\mathcal{U}_{\mathcal{A}}$ be the \mathcal{A} -subalgebra of \mathcal{U} generated by $E_i, F_i, K_i^{\pm 1}$ and

$$[K_i; 0] = \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}, \quad i = 1, 2, 3.$$

For $\epsilon \in \mathbb{C}^{\times}$, let $\mathcal{U}_{\epsilon} = \mathcal{U}_{\mathcal{A}}/(q-\epsilon)\mathcal{U}_{\mathcal{A}}$. Then the algebra \mathcal{U}_{1} is an associative algebra over \mathbb{C} with generators E_{i} , F_{i} , K_{i} , $H_{i} = [K_{i}; 0]$ (i = 1, 2, 3) and the defining relations (which can be verified easily):

(3.17)
$$K_i$$
 are central elements with $K_i^2 = 1$,

(3.18)
$$[E_i, F_j] = \delta_{ij}H_i, \quad [H_i, E_j] = a_{ij}K_iE_j, \quad [H_i, F_j] = -a_{ij}K_iF_j,$$

(3.19)
$$(\operatorname{ad} E_i)^{1-a_{ij}}(E_i) = 0$$
, $(\operatorname{ad} F_i)^{1-a_{ij}}(F_i) = 0$, $i = 2, 3$, $j = 1, 2, 3$,

$$(3.20) E_1^2 = 0, F_1^2 = 0.$$

Therefore, $U_1/(K_i-1; i=1,2,3) \cong U(G)$, the universal enveloping algebra of G. Note that the image of E_0 in U(G) is $2e_0$, where e_0 is defined in Section 2.

Let \mathcal{U}^+ , \mathcal{U}^- , \mathcal{U}^0 be the subalgebras of \mathcal{U} generated by the E_i , the F_i , and the $K_i^{\pm 1}$ (i=1,2,3) respectively. Then just as in the Lie algebra case (see [7]), one can show that $\mathcal{U} = \mathcal{U}^- \mathcal{U}^0 \mathcal{U}^+$ and (use the comultiplication) that $\mathcal{U} \cong \mathcal{U}^- \otimes \mathcal{U}^0 \otimes \mathcal{U}^+$ as \mathcal{F} -vector spaces.

For
$$\delta = (\delta_1, \delta_2, \delta_3, \delta_4)$$
, $\delta_i = 0$ or 1; $m = (m_1, m_2, m_3)$, $m_i \in \mathbb{Z}_+$, let

(3.21)
$$E^{(\delta,m)} = E_{111}^{\delta_1} E_{121}^{\delta_2} E_{112}^{\delta_3} E_1^{\delta_4} E_0^{m_1} E_2^{m_2} E_3^{m_3},$$
$$F^{(\delta,m)} = F_{222}^{\delta_2} F_{212}^{\delta_2} F_{221}^{\delta_3} F_1^{\delta_4} F_0^{m_1} F_2^{m_2} F_3^{m_3}.$$

For $t = (t_1, t_2, t_3), t_i \in \mathbb{Z}$, let

$$(3.22) K^t = K_1^{t_1} K_2^{t_2} K_3^{t_3}.$$

Then the K^t form a basis of \mathcal{U}^0 , and we have the following theorem:

THEOREM 3.3. The elements of the form $E^{(\delta,m)}$ (resp. $F^{(\delta,m)}$) form a basis of U^+ (resp. U^-), and the elements of the form

$$F^{(\delta,m)}K^tE^{(\delta',m')}$$

form a basis of U.

PROOF. We only need to prove that the elements of the form $E^{(\delta,m)}$ form a basis of \mathcal{U}^+ , since the statement about \mathcal{U}^- will follow from symmetry and the statement about \mathcal{U} will follow from the fact that $\mathcal{U} \cong \mathcal{U}^- \otimes \mathcal{U}^0 \otimes \mathcal{U}^+$. We first show that these elements span \mathcal{U}^+ , that is, by using the commutation relations in \mathcal{U}^+ we can express any monomial of \mathcal{U}^+ as a linear combination of these elements. In fact, Lemma 3.1 and Lemma 3.2 along with the defining relations of \mathcal{U} provide the commutation relations we need. In particular, to bring the terms $E_{112}E_{121}$ and E_1E_{111} to the right order, we use formula (6) in Lemma 3.1 together with the definition of E_0 . Then, we show that these elements are linearly independent over \mathcal{F} . Note that by (3.13), these elements are in fact in $\mathcal{U}_{\mathcal{A}}$. So if we have a linear relation

(3.23)
$$\sum_{i=1}^{r} c_i E^{(\delta_i, m_i)} = 0,$$

with $0 \neq c_i \in \mathcal{F}$ ($1 \leq i \leq r$), then by multiplying a suitable element from \mathcal{A} , we may assume that $c_i \in \mathcal{A}$. Now if there exists a c_i such that $c_i(1) \neq 0$, then the image of the right hand side of (3.20) gives a nontrivial linear relation in U(G). But by the PBW theorem of U(G), the images of the $E^{(\delta,m)}$ in U(G) form a basis of U(G), and we have a contradiction. If $c_i(1) = 0$ for all $1 \leq i \leq r$, then by the results in [1, Ch. 3, Section 3], we may assume that the order of 1 for c_i is n_i , and set $n = \min\{n_i : 1 \leq i \leq r\}$. Then $\lim_{g \to 1} c_i/(g-1)^n \neq 0$ for some i, hence by (3.20) we have

$$\lim_{q \to 1} \left(\frac{1}{(q-1)^n} \sum_{i=1}^r c_i E^{(\delta_i, m_i)} \right) = \sum_{i=1}^r \left(\lim_{q \to 1} \frac{c_i}{(q-1)^n} \right) E^{(\delta_i, m_i)} = 0,$$

which provides a nontrivial linear relation in U(G) contradicting the PBW theorem for U(G). Hence the elements of the form $E^{(\delta,m)}$ are linearly independent, and the proof of the theorem is now complete.

REFERENCES

- 1. J. B. Conway, Functions of one complex variable, GTM 11, Springer-Verlag, 1978.
- 2. V. G. Drinfeld, Quantum groups, Proc. ICM, Berkeley, 1986, 798-820.
- 3. M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10(1985), 63–69.
- 4. V. G. Kac, Lie superalgebras, Adv. in Math. 26(1977), 8-96.
- 5. R. Floreanini, D. A. Leites and L. Vinet, On the defining relations of quantum superalgebras, Lett. Math. Phys. 23(1991), 127-131.
- **6.** R. Floreanini, V. P. Spiridonov and L. Vinet, *q-Oscillator realizations of the quantum superalgebras* $sl_q(m, n)$ and $osp_q(m, 2n)$, Comm. Math. Phys. **137**(1991), 149–160.
- 7. M. Rosso, Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117(1988), 581–593.
- **8.** M. Scheunert, *The presentation and q deformation of special linear Lie superalgebras*, J. Math. Phys. **34**(1993), 3780–3808.
- **9.** Y. M. Zou, Finite dimensional representations of $\Gamma(\sigma_1, \sigma_2, \sigma_3)$, J. Algebra (3)**169**(1994), 827–846.

Department of Mathematical Sciences University of Wisconsin-Milwaukee, Milwaukee, WI USA 53201 e-mail: ymzou@csd.uwm.edu