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We calculate the disruption scale λD at which sheet-like structures in dynamically
aligned Alfvénic turbulence are destroyed by the onset of magnetic reconnection
in a low-β collisionless plasma. The scaling of λD depends on the order of the
statistics being considered, with more intense structures being disrupted at larger
scales. The disruption scale for the structures that dominate the energy spectrum is
λD ∼ L1/9

⊥ (deρs)
4/9, where de is the electron inertial scale, ρs is the ion sound scale

and L⊥ is the outer scale of the turbulence. When βe and ρs/L⊥ are sufficiently
small, the scale λD is larger than ρs and there is a break in the energy spectrum at
λD, rather than at ρs. We propose that the fluctuations produced by the disruption
are circularised flux ropes, which may have already been observed in the solar wind.
We predict the relationship between the amplitude and radius of these structures and
quantify the importance of the disruption process to the cascade in terms of the filling
fraction of undisrupted structures and the fractional reduction of the energy contained
in them at the ion sound scale ρs. Both of these fractions depend strongly on βe, with
the disrupted structures becoming more important at lower βe. Finally, we predict
that the energy spectrum between λD and ρs is steeper than k−3

⊥ , when this range
exists. Such a steep ‘transition range’ is sometimes observed in short intervals of
solar-wind turbulence. The onset of collisionless magnetic reconnection may therefore
significantly affect the nature of plasma turbulence around the ion gyroscale.
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1. Introduction
Astrophysical plasmas are often turbulent, with power-law spectra over a wide

range of scales. In many situations, a strong background magnetic field B0 can be
assumed, and often the plasma is only weakly collisional. A well-studied example
of such a system is the solar wind, in which the turbulence is directly measured
by spacecraft (Bruno & Carbone 2013; Chen 2016). The nature of the turbulence
depends on how the scale of interest compares to the ion gyroradius ρi = vthi/Ωi,
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where the ion thermal speed vthi=√2Ti/mi and the ion gyrofrequency Ωi= ZeB0/mic.
Regardless of whether the plasma is collisional or collisionless, on length scales
much larger than the ion gyroradius, k⊥ρi � 1, Alfvénically polarised fluctuations
obey the reduced magnetohydrodynamic (RMHD) equations (Kadomtsev & Pogutse
1973; Strauss 1976; Schekochihin et al. 2009), which describe nonlinearly interacting
Alfvén wavepackets (represented by the Elsasser fields z±⊥ = u ± b) propagating up
and down the background magnetic field at the Alfvén speed vA = B0/

√
4πmini. At

smaller, ‘kinetic’ scales, k⊥ρi & 1, the Alfvén waves become dispersive ‘kinetic Alfvén
waves’ (as confirmed in the solar wind: see Chen et al. 2013).

The structure of strong RMHD turbulence at large scales, k⊥ρi�1, is relatively well
understood. First, the fluctuations are ‘critically balanced’ (Goldreich & Sridhar 1995,
1997; Mallet, Schekochihin & Chandran 2015) – their linear time scale τA ∼ l‖/vA
and nonlinear time scale τnl are comparable (here l‖ is the parallel coherence length).
This leads to anisotropic fluctuations with l‖� λ, where λ∼ 1/k⊥ is the perpendicular
coherence scale. Second, at least in numerical simulations (Mason, Cattaneo &
Boldyrev 2006; Perez et al. 2012), the fluctuations dynamically ‘align’ so that the
vector velocity and magnetic field perturbations point in the same direction up
to a small, scale-dependent angle θ (Boldyrev 2006; Chandran, Schekochihin &
Mallet 2015; Mallet & Schekochihin 2017). This causes the fluctuations to become
anisotropic within the perpendicular plane, with scale ξ � λ in the direction of the
vector field perturbations. Together, these two phenomena mean that the turbulent
structures are three-dimensionally anisotropic, with l‖ � ξ � λ. This anisotropy has
been measured both in numerical simulations (Verdini & Grappin 2015; Mallet et al.
2016) and in the solar wind (Chen et al. 2012), and results in the turbulent structures
becoming increasingly sheet-like at smaller scales. We review scalings obtained in a
simple model of this type of Alfvénic turbulence by Mallet & Schekochihin (2017)
in § 2. At smaller scales λ. ρi, the turbulence is also likely to be critically balanced
(Cho & Lazarian 2004; Schekochihin et al. 2009; Boldyrev & Perez 2012; TenBarge
& Howes 2012) and has a steeper perpendicular spectral index of approximately −2.8
(Alexandrova et al. 2009; Chen et al. 2010; Sahraoui et al. 2010).

Since sheet-like structures are generically unstable to the tearing mode and the
onset of magnetic reconnection, the formation of such structures by the large-scale
Alfvénic turbulence immediately suggests that at some scale, the reconnection
process may become faster than the dynamically aligning cascade, and disrupt
the sheet-like structures. In resistive RMHD, the disruption scale was calculated
by Mallet, Schekochihin & Chandran (2017) and Loureiro & Boldyrev (2017a) as
λD ∼ L⊥S−4/7

L⊥ , where SL⊥
.= L⊥δz/η is the outer-scale Lundquist number (equivalently,

the magnetic Reynolds number), η being the ohmic diffusivity (resistivity) . At scale
λD, the sheet-like structures reconnect, and are converted into circularised flux ropes
with radius λD, destroying the dynamic alignment. Below λD, Mallet et al. (2017)
proposed that these flux-rope-like structures realign and are disrupted again in a
recursive fashion, leading to a steeper spectrum of approximately k−11/5

⊥ and a final
dissipative cutoff scale of λη ∼ L⊥S−3/4

L⊥
1. This quantifies the role that reconnection

plays in the dynamics of magnetohydrodynamic (MHD) turbulence, a topic that has
a long history (Matthaeus & Lamkin 1986; Politano, Pouquet & Sulem 1989; Retinò
et al. 2007; Sundkvist et al. 2007; Servidio et al. 2009; Zhdankin et al. 2013; Osman
et al. 2014; Greco et al. 2016; Cerri & Califano 2017; Cerri et al. 2017; Franci et al.
2017).

1Boldyrev & Loureiro (2017) agree with these scalings of the spectrum and the dissipative cutoff but do
not believe that tearing-produced islands can fully circularise.
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Disruption of Alfvénic turbulence by reconnection in collisionless plasma 3

Here, we extend the Mallet et al. (2017) model of the disruption of Alfvénic
turbulence by reconnection to the low-βe collisionless case, where the reconnection
is enabled by electron inertia, rather than resistivity. The nature of the tearing mode
in this regime is reviewed in § 3. Our main conclusion, arrived at in § 4, is that for
sufficiently low electron beta βe = 8πneTe/B2

0 and large enough separation between
the ion sound scale ρs=ρi

√
ZTe/2Ti∼ρi (we are assuming that Te∼Ti) and the outer

scale L⊥, the onset of reconnection may cause the turbulence to be disrupted, inducing
a spectral break at a scale λD larger than the scale

√
ρ2

i /2+ ρ2
s ∼ ρi ∼ ρs at which

the Alfvén waves in this regime become dispersive (Zocco & Schekochihin 2011).
This means that the turbulent structures around the ion scale, which are the starting
point for the kinetic Alfvén wave turbulent cascade at smaller scales, are created by
tearing-induced disruption of the large-scale sheets produced by the RMHD turbulent
dynamics, rather than solely by the change in the dispersion relation governing the
linear wave response (cf. Cerri & Califano 2017; Franci et al. 2017).

In the solar wind at 1 AU, where βe ∼ 1, we predict that only the most intense
sheet-like structures are disrupted and converted into flux ropes. Interestingly, ‘Alfvén
vortices’, which appear to be very similar to the flux-rope structures, have already
been observed even in the solar wind at 1 AU (Lion, Alexandrova & Zaslavsky 2016;
Perrone et al. 2016). The mechanism proposed in this paper is a physical way to
generate these structures. In § 5, we derive the fractional reduction in the volume filled
by and energy contained within undisrupted, sheet-like structures at the ion sound
scale as a function of βe, showing that both these fractions decrease as βe decreases.
We also derive the dependence of the amplitude of the newly formed flux ropes on
their scale – this could be compared with the observed Alfvén vortices. Closer to the
Sun, in the region to be explored by the Parker Solar Probe (Fox et al. 2016), it is
expected that, at least in fast-solar-wind streams, βe ≈ 0.01 (Chandran et al. 2011),
in which case the moderate-amplitude structures that dominate the energy spectrum
may be disrupted. Thus, our results may be especially relevant to the turbulence that
will be observed by this new mission. In § 6, we derive approximate scalings for the
energy spectrum in the (very narrow) range between λD and ρs, and show that it is
somewhat steeper than −3. In the appendix, we derive the disruption scale and the
scalings for the energy spectrum in the ‘semicollisional’ case, where the reconnection
is enabled by resistivity, but the diffusion layer is much thinner than the ion scale
ρs – a situation that is relevant to many laboratory experiments, e.g. TREX (Forest
et al. 2015) and FLARE (Ji et al. 2014), as well as in hybrid kinetic simulations (e.g.
Parashar et al. 2009; Kunz, Schekochihin & Stone 2014; Cerri & Califano 2017; Cerri
et al. 2017).

2. Alfvénic turbulence model
In the theory of intermittent Alfvénic turbulence of Mallet & Schekochihin

(2017), the turbulence is modelled as an ensemble of structures, each of which is
characterised by an Elsasser amplitude δz and three characteristic scales: l‖ (parallel),
λ (perpendicular) and ξ (fluctuation-direction). We normalise these variables by their
values at the outer scale:

δẑ= δz
δz
, λ̂= λ

L⊥
, l̂‖ = l‖

L‖
, ξ̂ = ξ

L⊥
, (2.1a−d)

where δz is the outer-scale fluctuation amplitude, and L⊥ and L‖ are the perpendicular
and parallel outer scales. In the following, we will treat λ̂ as a parameter (i.e. we are
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conditioning on λ̂): the distribution of δẑ depends on λ̂, and ξ̂ and l̂‖ are calculated
from δẑ and λ̂. It is assumed that the turbulence is critically balanced already at the
outer scale. The normalised amplitude is given by

δẑ∼Λq, (2.2)

where q is a Poisson-distributed random variable,

P(q)= µ
q

q! e
−µ, (2.3)

with mean µ = −lnλ̂,2 and Λ = 1/
√

2 is a dimensionless constant (which Mallet &
Schekochihin 2017 called β, but which we here rename to avoid confusion with βe).
The scalings of perpendicular structure functions are then given by

〈δẑn〉 ∼ λ̂ζ⊥n , ζ⊥n = 1−Λn. (2.4)

The fluctuation-direction scale ξ̂ is related to the amplitude via

ξ̂ ∼ λ̂1/2Λq, (2.5)

while the parallel scale depends only on λ̂:

l̂‖ ∼ λ̂1/2. (2.6)

Following Mallet et al. (2017), we define the ‘effective amplitude’ of structures that
dominate the nth-order perpendicular structure function:

δẑ[n] ≡ 〈δẑn〉1/n ∼ λ̂ζ⊥n /n. (2.7)

The effective amplitude δẑ[n] is a strictly increasing function of n, and so n may be
used as a convenient proxy for the amplitude of the structures at a given scale. The
scalings for three interesting cases can be immediately obtained from (2.7): first,

δẑ[∞] ∼ 1 (2.8)

describes the ‘most intense’ structures, whose amplitude is independent of scale;
secondly,

δẑ[2] ∼ λ̂1/4 (2.9)

describes the fluctuations that dominate the second-order structure function and the
energy spectrum, and thus determine the spectral index; finally, the ‘bulk’ fluctuations
are described by n→ 0, and their amplitudes scale as

δẑ[n→ 0] ∼ λ̂− lnΛ. (2.10)

We will also need an expression for the (effective) fluctuation-direction scale for the
nth-order fluctuations, given by

ξ̂ [n] ∼ λ̂1/2δẑ[n] ∼ λ̂1/2+ζ⊥n /n, (2.11)

2In the theory of Mallet & Schekochihin (2017), a slightly more complicated distribution is posited, but
we ignore this nuance here and postulate (2.3)
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and for the cascade time,

τC ∼ ξ

δz
∼ L⊥
δz
λ̂1/2. (2.12)

One can easily see from (2.11) that the structures are anisotropic in the perpendicular
plane, with ξ � λ, and that the higher-amplitude structures are more anisotropic,
consistent with numerical evidence (Mallet et al. 2015, 2016).

We now have all the information needed about the turbulent structures to determine
whether they can be disrupted by tearing.

3. Collisionless tearing mode
Scalings for the low-βe collisionless tearing mode are reviewed in appendix B.3 of

Zocco & Schekochihin (2011). Our sheet-like turbulent structures have a width λ and
a length ξ in the perpendicular plane. We will assume that the perturbed magnetic
field reverses across the structure δb ∼ δz. There is also a velocity perturbation δu
associated with the δz. If the situation were that δu > δb, the Kelvin–Helmholtz
instability would disrupt the sheets much faster than the tearing mode. However,
this situation does not typically occur, because the vortex stretching terms for the
different Elsasser fields z±⊥ have opposite sign (Zhdankin, Boldyrev & Uzdensky
2016), meaning that ‘current sheets’ are more common than ‘shear layers’ in RMHD
turbulence, i.e. δu < δb (this is also true in the solar wind; see, e.g. Chen 2016,
Wicks et al. 2013), and the Kelvin–Helmholtz instability is naturally stabilised
(Chandrasekhar 1961). For simplicity, we assume that the velocity fluctuations δu. δb
present in the sheet-like structures do not significantly affect the dynamics that we
will describe in this paper.

The structure of the collisionless tearing mode involves three scales: the perpendicu-
lar scale λ of the turbulent structure, and a nested inner layer, where two-fluid effects
become important at the ion sound scale ρs, while flux unfreezing happens due to
electron inertia in a thinner layer controlled by the electron inertial scale de= c/ωpe�
ρs, where ωpe=

√
4πnee2/me is the electron plasma frequency. The tearing instability’s

growth rates will, therefore, involve all of these scales. The scalings that we use
here will cease to apply if ρs . de (i.e. βe . me/mi), at which point the ion scale
becomes unimportant, and if βe & 1, when the flux unfreezing happens at the electron
gyroradius ρe= de

√
βe, rather than at de. This means that we are restricting ourselves

to ‘moderately’ small beta, 1� βe�me/mi.
We will assume a Harris-sheet-like equilibrium (Harris 1962)3. For long-wavelength

modes (k� 1/λ), the instability parameter ∆′ is given by

∆′λ≈ 1
kλ
. (3.1)

For ∆′δin � 1, where δin is the width of the inner layer, the linear growth rate and
the inner-layer width are

γ> ∼ kδz
deρs∆

′

λ
∼ δzdeρs

λ3
, δin ∼ deρ

1/2
s ∆′1/2. (3.2)

For ∆′δin ∼ 1, they are

γ< ∼ kδz
d1/3

e ρ2/3
s

λ
, δin ∼ d2/3

e ρ1/3
s . (3.3)

3In Loureiro & Boldyrev (2017b), a more general class of equilibria is considered, which slightly affects
the resulting scalings for the disruption scales and spectra.
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The wavenumber ktr of the transition between these two regimes can be found by
balancing the two expressions for the growth rate, giving

ktr ∼ d2/3
e ρ1/3

s

λ2
. (3.4)

For k< ktr, the growth rate is γ<, while for k> ktr, it is γ>, which is independent of
wavenumber. This breaks down when k ∼ 1/λ, because (3.1) ceases to apply – but,
since ξ � λ, this only happens for a very large number of islands. Therefore, the
maximum growth rate is attained for all k> ktr, and is given simply by γ>. Thus there
is always a mode with the maximum growth rate and a large enough wavenumber to
fit into a sheet of any length ξ > λ. This is somewhat different from the resistive-
RMHD case studied by Mallet et al. (2017), in which γ RMHD

> ∝ k−2/5, while γ RMHD
< ∝

k2/3, and the maximum growth rate is attained at the transitional wavenumber.
The linear growth stage of tearing ends when the width of the islands reaches δin,

which decreases with increasing k for k> ktr. Thus at the end of the linear stage, the
largest islands are produced by the mode with k∼ ktr, and so, despite the independence
of the linear growth rate on k, we can assume that this transitional mode dominates
the nonlinear dynamics. We assume that the X-points between the islands then collapse
quickly (i.e. on a time scale at most comparable to γ −1

> ), circularising the islands and
forming a set of flux ropes of width λ, as appears to be consistent with numerical
evidence (Loureiro, Schekochihin & Zocco 2013).4 Since these structures are as wide
as the original sheet, the latter should at this point be disrupted and broken up – being
effectively replaced by a set of flux ropes. The scale of these ropes parallel to the
(exact) magnetic field is set as usual by critical balance. Since we assume that the
X-point collapse is at least as fast as the linear tearing stage, we estimate the
disruption time using the linear growth rate (3.2) of the tearing mode:

τD ∼ γ −1
> . (3.5)

It is important to point out that the restriction to low βe limits the applicability
of our conclusions in the solar wind, where, more often than not, βe ∼ 1, but our
results will be more relevant to the turbulence closer to the Sun and in the corona:
indeed, at the perihelion (approximately 10 solar radii) of the upcoming Parker Solar
Probe mission, βe ≈ 0.01, at least in fast solar-wind streams (Chandran et al. 2011).
Moreover, the growth rate scaling (3.2) appears to be quite robust even at moderately
large βe: Numata & Loureiro (2015) showed that, keeping all other parameters fixed,
γ>∝ β−1/2

e ∝ de up to at least βe= 10, in agreement with (3.2), and despite the width
of the reconnecting layer being set by ρe rather than de. Therefore, we expect our
conclusions to be at least qualitatively relevant at βe ∼ 1.

4. Disruption scale
A sheet-like structure will be disrupted if its nonlinear cascade time (2.12) is

longer than its disruption time (3.5). The disruption scale λ̂D is then determined by
demanding

τC

τD
∼ ξ deρs

λ3
& 1. (4.1)

4One can see that this is indeed what happens if, at the end of the nonlinear stage, the islands of width

δin and length k−1
tr circularise at constant area: their width after circularisation is wcirc ∼

√
δink−1

tr ∼ λ.
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Using (2.11) and (2.7), we find that, for nth-order aligned structures, this inequality
is satisfied for

λ̂. λ̂D[n] ∼
(

deρs

L2
⊥

)(2/5)(1−2ζ⊥n /5n)−1

. (4.2)

The scale λ̂D is an increasing function of n. It is largest for the most intense structures,
with n→∞, for which

λ̂D[∞] ∼
(

deρs

L2
⊥

)2/5

. (4.3)

The scale at which the n = 2 structures, which determine the scaling of the second-
order structure function and the energy spectrum, are disrupted is5

λ̂D[2] ∼
(

deρs

L2
⊥

)4/9

, (4.4)

and, finally, the bulk fluctuations (n→ 0) are disrupted at

λ̂D[0] ∼
(

deρs

L2
⊥

)0.46

. (4.5)

The disruption may effectively be thought of as taking place over a narrow range of
scales between λ̂D[∞] and λ̂D[0], with λ̂D[2] as a good representative. The disruption
will only be relevant if any of these scales is larger than the scale at which the waves
become dispersive, i.e.

λD[n]
ρs
∼
(

de

ρs

)(2/5)(1−2ζ⊥n /5n)−1 (
L⊥
ρs

)1−(4/5)(1−2ζ⊥n /5n)−1

,

∼
(

mi

me

βe

Z

)−(1/5)(1−2ζ⊥n /5n)−1 (
L⊥
ρs

)1−(4/5)(1−2ζ⊥n /5n)−1

& 1. (4.6)

This gives us a critical βe for structures at any given n to be disrupted:

βe . β
crit
e [n] ∼ Z

me

mi

(
L⊥
ρs

)1−2ζ⊥n /n

. (4.7)

For the n= 2 structures,

βcrit
e [2] ∼ Z

me

mi

(
L⊥
ρs

)1/2

, (4.8)

while for the most intense fluctuations (n→∞),

βcrit
e [∞] ∼ Z

me

mi

L⊥
ρs
. (4.9)

It is interesting to note that, despite the fact that the dependence of λ̂D[n] on n does
not appear to be very strong [the exponents in (4.3), (4.4) and (4.5) are close together,

5This scaling has also been independently derived by Loureiro & Boldyrev (2017b).
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at 0.40, 0.44 and 0.46 respectively], the dependence of βcrit
e on L⊥/ρs is a strong

function of n.
In the solar wind, typically L⊥/ρs≈ 103 (Chen 2016), and so βcrit

e [2] ∼ 10−2, which
is rare at 1 AU but should be rather common closer to the Sun in the region to be
explored by the Parker Solar Probe (Fox et al. 2016; Chandran et al. 2011). On the
other hand, βcrit

e [∞]∼1, and so one might expect the most intense sheet-like structures
to become unstable to the onset of reconnection even at moderate βe. Flux-rope-like
‘Alfvén vortex’ structures extended in the parallel direction were indeed observed at
ion scales in the solar wind by Perrone et al. (2016) and Lion et al. (2016). It is
tempting to identify the structures produced by the disruption due to tearing with
these observations6. We will study the structures produced by the disruption process in
the next section, quantifying the relationship between their amplitude and scale, and
further examining their importance as a function of βe and of ρs/L⊥.

Finally, let us set aside for a moment the precise values of βcrit
e for which we predict

that disruption happens, and focus instead on the scaling of the break in the energy
spectrum, λ̂D[2], with physical parameters, i.e. the dependence of λ̂D[2] on β. Chen
et al. (2014) observed that at low βi, the break scale of solar-wind turbulence appeared
to scale as di∝ ρi/

√
βi, in contradiction with expectations based on the linear physics

of low-β plasmas (Schekochihin et al. 2009). Here we predict (ignoring the factor of
(L⊥/ρs)

1/9, which barely changes with the relevant physical parameters)

λD[2]
ρs
∝ β−2/9

e ⇒ λD[2]
di
∝
(
βi

Te

Ti

)5/18

. (4.10)

For disruption due to reconnection to explain the anomalous break scale observed by
Chen et al. (2014), there would therefore have to be correlations between βi and Te/Ti
in their chosen intervals (namely, Ti/Te ∝ βi to match precisely). Encouragingly, in
their data it does appear that the lower-βi intervals are associated with markedly higher
Te/Ti.

5. Statistical properties of flux ropes

The dependence (4.2) of λ̂D on n is one way of quantifying the scales at which
the disrupted structures appear. In this section, we recast our calculation, treating
the amplitude of the fluctuation as a random variable, i.e. we return to (2.2), and
determine what fraction of the aligned structures remain undisrupted at any given
scale, in terms of q (we remind the reader that this is an integer distributed as a
Poisson random variable with mean 〈q〉 =µ=− ln λ̂). For a structure to be disrupted,
we again demand (4.1) and, using (2.5), find that

λ̂−5/2Λq deρs

L2
⊥

& 1. (5.1)

This is satisfied for

q . qD = (5/2) ln λ̂− ln
(
deρs/L2

⊥
)

lnΛ

= (5/2) ln λ̂− 2 ln (ρs/L⊥)+ (1/2) ln (βemi/Zme)

lnΛ
. (5.2)

6Cerri & Califano (2017) and Franci et al. (2017) observed reconnection onset and the formation of chains
of multiple islands in their hybrid simulations of two-dimensional kinetic turbulence. It is tempting to identify
the island chains in their simulations with the structures that we predict here, but it should be noted that their
simulations are two-dimensional, and do not model electron inertia (or Ohmic resistivity), so the reconnection
mechanism is quite different, and only a qualitative comparison can be made.
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5.1. Filling factor of aligned turbulence
At any given scale, the filling factor of sheet-like, aligned structures that have not
been affected by the disruption process (i.e. the probability of encountering them) is
given by

f0(λ̂)= P(q> qD)= 1−
bqDc∑
q=0

P(q), (5.3)

where the distribution of q is given by (2.3). Similarly, the disruption causes a
fractional reduction of energy contained in aligned sheet-like structures that is, using
(2.4) and (2.2),

f2(λ̂)= 1− 1
〈δẑ2〉

bqDc∑
q=0

δẑ2P(q)= 1− 1

λ̂1/2

bqDc∑
q=0

2−qP(q). (5.4)

Obviously, (5.3) and (5.4) can only be considered quantitatively good estimates if f0
and f2 are close to unity, i.e. if the overall ‘RMHD ensemble’ (described in § 2) is
not significantly altered.

Using (5.2), both f0 and f2 may be calculated numerically, as functions of λ̂,
ρs/L⊥, and βe. A particularly interesting case is λ = ρs, since this quantifies the
cumulative effect of reconnection on the turbulence at the ion scale. Figure 1
shows the dependence of f0(ρs/L⊥) and f2(ρs/L⊥) on βe. The effect of disruption
becomes more important at smaller βe. Note that the amount of energy in the
undisrupted structures at the ion scale is significantly reduced for values of βe
somewhat larger than βcrit

e [2] given by (4.8). This suggests that, in practice, the
turbulence is significantly affected by the disruption at only moderately small βe:
e.g. for βe ∼ 0.1, only around half of the energy that would be in sheets without
disruption actually makes it to the ion scale, despite only approximately 10 % by
volume of the turbulence being disrupted.

5.2. Amplitude of flux ropes
We have proposed that the sheet-like structures with q ∼ qD disrupted by tearing at
the scale λ are converted into circular flux ropes, with perpendicular scale λ. We will
assume that, just after they are created, they have the same amplitude as the sheet-like
structure that produced them:

δẑfr ∼ΛqD . (5.5)

The flux ropes will not stay around for long: they will interact with each other and
the remaining sheet-like structures, cascade, align, and form smaller, more sheet-like
structures: this process will be studied in the next section. However, we can predict
the relationship between the amplitude δzfr and radius λ of the newly created flux
ropes: upon inserting (5.2) into (5.5), we get

δẑfr ∼ λ̂5/2

(
L⊥
ρs

)2 (
βe

Z
mi

me

)1/2

. (5.6)

It is important to note that this is not a prediction for the scaling of any structure
function or the spectrum of the disrupted turbulence (which will be worked out in
the next section); rather, this is a relationship describing individual flux ropes upon
their formation within an aligned structure.
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FIGURE 1. The filling factor of the aligned (i.e. undisrupted) structures at the ion sound
scale f0(ρs/L⊥) (blue) and fraction f2(ρs/L⊥) of energy in them (red), plotted as a function
of βe. We have taken ρs/L⊥ = 10−3, a reasonable value for the solar wind. Since q is an
integer but qD is not, the sums (5.3) and (5.4) are performed up to bqDc, resulting in the
discontinuities shown in the plot. In reality, of course, f0 and f2 will be smooth.

Thus, provided that βe and ρs/L⊥ are small enough that qD > 0 before the cascade
reaches ρs, i.e. βe < βcrit

e [∞] given by (4.9), there should be a strong relationship
between the amplitude and radius of the structures at scales between λ̂D[∞], given
by (4.3) and ρs: indeed, the scaling (5.6) is very steep with λ and the flux ropes with
the largest radius λD[∞] also have the largest amplitude, δzfr ∼ δz. The scaling (5.6)
could in principle be tested against observations such as those reported by Perrone
et al. (2016), who observed 12 ‘Alfvén vortices’ with diameters between 5ρi and 17ρi

(as part of a sample of over 100 coherent structures of different types).

6. Disruption range turbulence

In a realistic situation relevant to coronal or solar-wind turbulence, the separation
between λD and ρs is so small that it would be challenging to establish a robust
distinction between these two scales. It is nonetheless interesting to speculate on the
nature of the turbulence in the interval λD � λ� ρs in the asymptotic case where
L⊥→∞.

As described in § 3, we expect the disruption process to convert the sheet-like
structures just above λD into flux-rope-like structures just below λD. These are roughly
circular in the perpendicular plane, with radius λD, but extended in the parallel
direction due to critical balance. In order to treat this ‘disruption range’ properly,
we would need to account for the intermittency of both sheets and flux ropes. We
do not attempt such a treatment in this paper. Instead, we develop a simpler model,
in which we take the sheets and flux ropes to be effectively volume filling, and the
sheets to have the properties of the n = 2 structures of § 2 (since we would like to
explore the scaling of the energy spectrum below λD). For simplicity of notation, we
will drop the ‘[n= 2]’ argument of all relevant quantities. A ‘characteristic fluctuation
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amplitude’ δz1,− for the turbulence just below λD may be defined by assuming that
there is negligible dissipation during the disruption process, so that the energy flux
stays constant across the disruption scale7. Further assuming (radically) that the
turbulence just below λD loses all its dynamic alignment, the scale ξ is no longer
relevant and the only perpendicular scale in the problem is λD:

ε ∼ δz
3

L⊥
∼ δz

3
1,−
λD

, (6.1)

giving
δẑ1,− ∼ λ̂1/3

D . (6.2)

Note that this is smaller than the amplitude of the aligned turbulence at the same scale:

δẑ1,+ ∼ λ̂1/4
D . (6.3)

The definition (6.2) might appear to be in contradiction with our earlier assumption
(5.5) that the flux ropes should be formed with the same amplitude as their ‘mother
sheet’. Indeed, if one took (5.5), (6.2) and (6.3) together, they imply that the flux
ropes created by a disrupting sheet fill only a fraction of the mother sheet’s volume,
contradicting our supposition above. However, (6.2) is not meant to be the amplitude
of any individual structure, but rather an effective estimate that would on average give
(6.1). In this sense, there is no difference between (6.2) or (6.3) and the usual ‘twiddle’
relations in Kolmogorov-style turbulence phenomenologies relying on constant energy
flux and ignoring intermittency and local imbalance: the amplitude (6.2) is an estimate
that effectively absorbs within itself the filling fraction (probability of occurrence) of
energetic structures that contribute to averages, as well as the (unknown) details of
how precisely the nonlinear interactions within or between flux ropes (and between
flux ropes and ambient turbulence) actually occur. In the case of flux ropes, it is clear
that to make a connection between (5.5) and any average quantity, one would need to
take into account the fact that they are clearly less volume filling than their mother
sheets, have shorter lifetimes, and might mainly cascade due to interactions between
different types of structures. We leapfrog these issues with the aid of the requirement
(6.1) that energy flux should stay the same. This will allow us to make progress and
develop a simple model in this section: (6.2) will define the ‘outer scale amplitude’

7The same assumption is made in the treatment of recursive disruptions in § 6.1. This assumption may
appear questionable (although, for a collisionless plasma, not necessarily impossible, since the reconnection itself
is mediated by electron inertia and does not require dissipation), especially if the reconnection process were
to proceed literally all the way to saturation, reconnecting all of the available flux and generating vigorous
outflows, which can be Landau damped (Loureiro et al. 2013; TenBarge & Howes 2013; Bañón Navarro et al.
2016). Since the nonlinear cascade time, the linear tearing time, and the time for the islands to grow to the
same width as the aligned structure that spawned them and thus disrupt it, are all of the same order, how
much dissipation is likely to happen before this disruption may be a quantitative issue contingent on the precise,
order-unity relationships between these times (note that Loureiro et al. 2013 report peak dissipation nearly 10
Alfvén times after peak reconnection). Boldyrev & Loureiro (2017) and Loureiro & Boldyrev (2017b) resolve
this by assuming that the tearing mode can disrupt its mother sheet without needing to produce a perturbation
of the magnetic field comparable in size to the fields associated with the sheet – and thus without dissipating
much energy. We do not see how, dynamically, this can happen, since the process of disruption is presumably
the very same nonlinear process that leads to islands perturbing the sheet finitely. Two further observations
regarding dissipation in reconnection events are that (i) it is not necessarily the case that dissipation of energy
caused during the disruption of a sheet of scale λ can be viewed as happening at scale λ, rather than as
being part of the overall energy transfer towards smaller scales, where the dissipation actually occurs; (ii) how
effective Landau damping is in dissipating energy in a truly collisionless, turbulent plasma is an open question
(Schekochihin et al. 2016).
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for the Alfvénic cascade below λD. Intermittency is known to be of crucial importance
in Alfvénic turbulence (Chandran et al. 2015; Mallet & Schekochihin 2017), and so a
more rigorous model incorporating intermittency should be the subject of future work.

Following Mallet et al. (2017), the turbulence just below λD should behave just
like the usual Alfvénic turbulence described in § 2 (since λD�ρs): the flux ropes will
interact with each other and the rest of the turbulence, causing a cascade to smaller
scales8. In the course of this secondary cascade, the turbulence will again start to
dynamically align and form sheet-like structures, and may eventually be disrupted by
the onset of reconnection at a secondary disruption scale λD,2, at which the whole
process repeats – provided that λD,2 > ρs. Therefore, the turbulence between the first
disruption scale λD (which we will now rechristen λD,1) and ρs is characterised by a
sequence of disruptions, between which the turbulence realigns. We will now show
that this recursive disruption process is unlikely to be fully realised, and usually
terminates after only one disruption.

6.1. Recursive disruption?
The sequence of disruptions described above may be understood in terms of a
recursion relation. After the (i − 1)st disruption, the turbulence undergoes the ith
‘mini-cascade’, with ‘outer-scale’ values of the relevant quantities given by the values
just below the (i− 1)st disruption scale λD,i−1:

δz→ δzi−1,−, L⊥→ λD,i−1. (6.4)

Substituting this into (4.4) and normalising by L⊥, we obtain the ith disruption scale

λ̂D,i ∼ λ̂1/9
D,i−1

(
deρs

L2
⊥

)4/9

∼
(

deρs

L2
⊥

)(1/2)(1− 1
9i )

. (6.5)

Unlike in the resistive case (Mallet et al. 2017), this sequence will always terminate
after a finite number of disruptions, because ρs > de and so eventually λD,i < ρs. The
number of disruptions is given by the greatest i= imax for which

λD,i

ρs
∼
(

de

ρs

)1/2(1−(1/9i)) (L⊥
ρs

)1/9i

> 1. (6.6)

It is obvious from the exponent of L⊥/ρs in (6.6) that, for there to be more than one
disruption, L⊥/ρs must be unrealistically large. Namely, (6.6) may be solved for imax,
showing an extremely weak dependence on L⊥/ρs:

imax =
ln
[

1+ 2 ln(L⊥/ρs)

ln(ρs/de)

]
2 ln 3

. (6.7)

With de/ρs kept constant as L⊥/ρs→∞, the number of disruptions grows extremely
slowly, so, in a moderately low-βe situation where de/ρs < 1, it is very unlikely that
more than one disruption will occur.

8The nonlinear evolution of the flux ropes is likely to be more complex than simply pairs of them
merging into a single larger flux rope (Fermo, Drake & Swisdak 2010). First, once the sheet is disrupted, the
islands are not forced to stay at the location of the original sheet and so are not constrained to interact in a
quasi-one-dimensional setting, moving along the sheet (cf. Uzdensky, Loureiro & Schekochihin 2010; Loureiro
et al. 2012), or, indeed, to interact only with each other, rather than with the ambient turbulence. Secondly,
since all this happens in three dimensions, they can cross, shear each other, or break up in more ways than
are available to two-dimensional plasmoids in a one-dimensional sheet.

https://doi.org/10.1017/S0022377817000812 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000812


Disruption of Alfvénic turbulence by reconnection in collisionless plasma 13

6.2. Effective spectral index below λD: many disruptions
Nevertheless, in the spirit of asymptotic fantasising, let us determine the effective
spectral index in a scale range featuring many disruptions. With the substitutions (6.4),
the characteristic fluctuation amplitude just below each disruption scale is [cf. (6.2)]

δẑi,− ∼ λ̂1/3
D,i . (6.8)

Therefore, the fluctuation amplitude associated with the ith aligning ‘mini-cascade’
between disruption scales λ̂D,i−1 and λ̂D,i is

δẑi ∼ δẑ−,i−1

(
λ̂

λ̂D,i−1

)1/4

∼ λ̂1/3
D,i−1

(
λ̂

λ̂D,i−1

)1/4

. (6.9)

The characteristic aspect ratio of the turbulence (equivalently, the inverse alignment
angle) between disruptions is then

ξi

λ
∼
(
λ̂

λ̂D,i−1

)−1/4

, (6.10)

which is much smaller than the value (λ̂−1/4) that would have been attained without
the disruptions. The ‘coarse-grained’ fluctuation amplitude calculated at the scale just
above the ith disruption is [cf. (6.3)]

δẑi,+ ∼ λ̂1/3
D,i−1

(
λ̂D,i

λ̂D,i−1

)1/4

∼ λ̂D,i

(
deρs

L2
⊥

)−1/3

, (6.11)

where we have used (6.5) to obtain the second expression. Since (6.11) is larger than
(6.8), our model spectrum looks like a sloping staircase, with (6.11) providing an
upper envelope for the true scaling of the fluctuation amplitude (the true spectrum
and structure function will not, of course, have discontinuities). Thus, δz+,i∝ λD,i, and
so the effective scaling exponent of the fluctuation amplitudes is αeff= 1. This implies
a spectral index of −1− 2αeff =−3, slightly steeper than the observed spectral index
≈ −2.8 below the ion scales in strong kinetic Alfvén wave turbulence in the solar
wind (Alexandrova et al. 2009; Chen et al. 2010; Sahraoui et al. 2010).

Exactly the same scaling is (of course) found by observing that τC ∼ γ −1
> on the

coarse-grained points λ̂D,i: then, constancy of energy flux through all scales implies
that (cf. Boldyrev & Loureiro 2017)

ε ∼ δz
2
i,+
τC
∼ γ>δz2

i,+ ∝
δz3

i,+
λ3

D,i
∼ const. ⇒ δz+,i ∝ λD,i. (6.12)

6.3. Effective spectral index below λD: one disruption
For realistic values of L⊥ and ρs, there is only one disruption, i.e. imax = 1. The
aligning cascade below λD then gives an amplitude at ρs of

δẑρs ∼ λ̂1/3
D

(
ρs

λD

)1/4

, (6.13)
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using (6.9). The characteristic aspect ratio of the turbulence at ρs is, using (6.10),

ξ1

ρs
∼
(
ρs

λD

)−1/4

∼
(

mi

me

βe

Z

)−1/18 (
ρs

L⊥

)−1/36

, (6.14)

which is approximately unity for any realistic set of parameters. Therefore, the
turbulence at the ion scale, i.e. at the largest scales in the kinetic Alfvén wave
cascade, will be very different depending on the presence or absence of the disruption:
namely, it will either be nearly isotropic (in the perpendicular plane), as per (6.10),
or highly anisotropic (aligned) with aspect ratio (ρs/L⊥)−1/4, respectively. In reality,
there may be a mixture of both types of structures, as is suggested by the discussion
in § 5.1 – so the reduction in the alignment may not be as drastic as suggested by
the extreme estimate (6.14).

The effective scaling of the fluctuation amplitudes between λD and ρs will be steeper
than αeff = 1 derived in § 6.2, because the recursive disruptions are cut off by the
presence of the ion scale ρs. The effective scaling in this case is given by

αeff = log(δẑ1,+/δẑρs)

log(λD/ρs)
. (6.15)

This ranges between 1 6 αeff < ∞, increasing the closer ρs gets to λD. Thus the
effective spectral index in a ‘realistic’ short range of scales between λD and ρs, with
only one disruption, may be somewhat steeper than −3, and may depend on βe (i.e.
it is not universal). Here again, the caveat that disruption does not in fact occur at
a single scale or in every aligned structure implies that the spectrum should not be
as dramatically steepened as (6.15) suggests. A spectrum slightly steeper than −3 is
probably a reasonable expectation.

Short intervals of steep spectra are indeed sometimes observed near the ion scales
in the solar wind: Sahraoui et al. (2010) and Lion et al. (2016) report a spectral index
close to −4 in a small ‘transition range’ of scales near the ion gyroradius. Lion et al.
(2016) attribute this spectral index to Alfvén vortices (Alexandrova 2008) with scales
a few times the ion gyroradius.

7. Discussion
Models of strong Alfvénic turbulence that incorporate dynamic alignment predict

that the turbulent structures become progressively more sheet-like at smaller scales
(Boldyrev 2006; Chandran et al. 2015; Mallet & Schekochihin 2017). This suggests
that at some sufficiently small scale λD, the cascade time of the structures may
be slower than the time required to disrupt them via magnetic reconnection. For
resistive RMHD, this scale was calculated by Mallet et al. (2017) and Loureiro &
Boldyrev (2017a). In this paper, we have extended this idea to the case of a weakly
collisional, low-βe plasma, in which the reconnection is due to electron inertia,
rather than resistivity, and two-fluid effects become important at ion scales. We find
that there is again a critical scale, λ̂D ∼ L1/9

⊥ (deρs)
4/9, below which the sheet-like

structures are destroyed by reconnection. For sufficiently low electron beta, and
sufficiently large-scale separation between the outer scale L⊥ and the ion sound scale
ρs, this scale lies in the inertial range: λD > ρs. The break in the energy spectrum
of turbulence in a low-β collisionless plasma can thus occur at a larger scale than
expected based on linear physics of wave modes – it does indeed do so in the solar
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wind (Bourouaine et al. 2012; Chen et al. 2014), although the observed scaling of
the break scale with βi appears to be stronger than we are able to predict here, unless
there is some systematic correlation of the electron–ion temperature ratio with βi.

We have argued that between λD and ρs, the spectral index of the turbulent
fluctuations should be steeper than −3. A steep ‘transition range’ around the ion
scale is indeed sometimes observed in the real solar wind (Sahraoui et al. 2010).
This has been attributed to the presence of Alfvén vortices (Alexandrova 2008; Lion
et al. 2016). These may be similar to the flux-rope-like structures that we envision in
this paper to be the product of the disruption of the aligned cascade, and so disruption
via tearing may be a physical reason for the presence of Alfvén vortices at ion scales
in the solar wind. We predict that such structures should become very unlikely above
a certain βe [given by (4.9)], and that as βe decreases, the proportion of the volume at
the ion scale filled with aligned, undisrupted structures decreases, as does the amount
of energy contained in them (§ 5.1). We also propose the relationship (5.6) between
the amplitude and radius of the individual flux-rope structures. This could potentially
be tested by solar-wind observations of the kind performed by Perrone et al. (2016).

For the Alfvénic turbulence to be disrupted by reconnection, we need λD >ρs. This
inequality translates into a requirement that the electron plasma beta must be less than
some critical value βcrit

e , given by (4.7), which depends on the ratio L⊥/ρs of the outer
scale to the ion scale and on the amplitude of the structures being considered. In
the solar wind, L⊥/ρs ≈ 103, and we find that for fluctuations of moderate amplitude
(ones that dominate the energy spectrum), βcrit

e ∼ 0.01, while for the most intense (but
rare and intermittent) fluctuations, βcrit

e ∼ 1. Thus, we expect only the most intense
structures to be disrupted in the solar wind at 1 AU, where βe∼ 1. Closer to the sun,
βe may be lower (Chandran et al. 2011), and the disruption process becomes more
effective.

The turbulence at the ion scale is significantly different depending on whether
disruption due to the onset of reconnection can occur or not. Above βcrit

e , sheet-like
Alfvénic structures with a large aspect ratio will reach the ion scale without disruption.
Below βcrit

e , the disruption should occur, and turbulence at the ion scale should become
much less anisotropic (less aligned) in the perpendicular plane (see § 6.3). Thus, the
nature of the turbulence at the ion scale, which provides the starting point for the
sub-ion-scale kinetic Alfvén wave turbulence, depends crucially on whether the
disruption process occurs.
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Appendix A. Semicollisional disruption
Here, we will replicate some of the calculations done in the main text, but this

time for a low-β ‘semicollisional’, large-guide-field regime where the width of the
diffusive layer δin is smaller than ρs, but is controlled by resistivity rather than by
electron inertia. For the turbulence, this means that the ion scale is greater than the
resistive scale that would have provided the dissipative cutoff in fully collisional MHD,

ρs

L⊥
� S−3/4

L⊥ , (A 1)
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but the electron–ion collision rate is nevertheless much larger than the nonlinear
cascade rate of the fluctuations, or the growth rate of the tearing mode,

νei� τ−1
C ∼ γ . (A 2)

This means that the flux conservation is broken by Ohmic resistivity η= νeid2
e rather

than by electron inertia, but the two-fluid effects are still important. This situation
is relevant to many laboratory plasmas, for example TREX (Forest et al. 2015) and
FLARE (Ji et al. 2014), as well as in hybrid-kinetic simulations that do not model the
electron inertia (e.g. Parashar et al. 2009; Kunz et al. 2014; Cerri & Califano 2017;
Cerri et al. 2017).

A.1. Semicollisional tearing mode
Growth rates of the tearing mode in this regime are reviewed in appendix B.5 of
Zocco & Schekochihin (2011). We will assume that the turbulent structures are still
given by our RMHD turbulence model summarised in § 2; namely, they have a width
λ and length ξ in the perpendicular plane, and a perturbed-magnetic-field reversal
δb∼ δz across λ. The tearing mode in this regime, like its collisionless cousin in § 3,
involves three-scale physics: the (unstable) ‘equilibrium’ at the scale of the turbulent
structure λ, two-fluid effects at around the ion sound scale ρs, and flux unfreezing in
an inner layer of width δin� ρs, controlled by resistivity.

We will again consider the long-wavelength limit, kλ� 1, and assume (3.1). For
∆′δin� 1, the linear growth rate and the inner layer’s width are

γ> ∼ kδz
(
∆′ρs

)2/3
(kλSλ)−1/3 ∼ δz

λ

(ρs

λ

)2/3
S−1/3
λ , δin ∼ λ(∆′ρs)

1/6(kλSλ)−1/3,

(A 3a,b)

where Sλ
.= δzλ/η is the Lundquist number based on scale λ. Note that, as in the

collisionless case, γ> is independent of k. For ∆′δin ∼ 1,

γ< ∼ kδz
(ρs

λ

)4/7
(kλSλ)−1/7 , δin ∼ λ

(ρs

λ

)1/7
(kλSλ)−2/7. (A 4a,b)

The transitional wavenumber ktr between these two regimes may be found by
balancing the two expressions for the growth rate, giving

ktrλ∼
(ρs

λ

)1/9
S−2/9
λ . (A 5)

For all k > ktr, the growth rate is given by γ>, so there is always a mode with the
maximum growth rate that has a short enough wavelength to fit into the sheet.

The linear stage of tearing ends when the width of the islands reaches δin. This
is largest for k < ktr, so, at the end of the linear stage, the largest islands are again
produced by the mode with k ∼ ktr, similarly to the collisionless case. We will,
therefore, again assume that this mode dominates the nonlinear dynamics. We will
also again assume that the X-points between the islands collapse on a time scale at
least as short as the linear stage, and that the islands circularise forming a set of flux
ropes. Similarly to the collisionless case, if they do so at constant area, their width
is

wcirc ∼
√
δink−1

tr ∼ λ. (A 6)

Since we are assuming that the circularisation is at least as fast as the linear stage,
we can again estimate the disruption time using the linear growth rate (A 3),

τD ∼ γ −1
> . (A 7)
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A.2. Disruption scale
Disruption of an aligned structure will occur if

τC

τD
∼ ξ
λ

(ρs

λ

)2/3
S−1/3
λ & 1. (A 8)

Therefore, the aligned structures are disrupted for

λ̂< λ̂D ∼
[(

ρs

L⊥

)2

S−1
L⊥

]2/9(1−4ζ n
⊥/9n)

−1

. (A 9)

For the n= 2 structures, this gives

λ̂D[2] ∼
(
ρs

L⊥

)1/2

S−1/4
L⊥ , (A 10)

while for the most intense structures (n=∞),

λ̂D[∞] ∼
(
ρs

L⊥

)4/9

S−2/9
L⊥ . (A 11)

The disruption scale is larger than ρs when SL⊥ is below an n-dependent critical value:

SL⊥ < Scrit
L⊥ ∼

(
L⊥
ρs

)(5/2)(1−4ζn/5n)

. (A 12)

For the n= 2 structures,

Scrit
L⊥ [2] ∼

(
L⊥
ρs

)2

, (A 13)

and for the n=∞ structures,

Scrit
L⊥ [∞] ∼

(
L⊥
ρs

)5/2

. (A 14)

Thus, the disruption becomes progressively more important to the aligned Alfvénic
turbulence above the ion scale as SL⊥ decreases – until S−3/4

L⊥ & ρs/L⊥, at which point
the semicollisional tearing mode scalings are no longer valid and the fully resistive
regime studied in Mallet et al. (2017) is reached.

Note that, from (A 10),

λD[2]
ρs
∼
(
ρs

L⊥

)−1/2

S−1/4
L⊥ . (A 15)

This can be compared with attainable values of SL⊥ and ρs/L⊥ in laboratory
experiments: for example, according to Forest et al. (2015), the TREX experiment
is able to access 103 . SL⊥ . 105 and 1 . L⊥/ρs . 102. This results in values of the
disruption scale in the interval

2 &
λD[2]
ρs

& 0.1, (A 16)

and so it is at least plausible that the disruption of Alfvénic turbulence by
semicollisional tearing could be observed in such an experiment.
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A.3. Amplitude of flux ropes
Instead of characterising the structures by n, we can, similarly to what we did with
the collisionless case in § 5, return to (2.2) and treat the amplitude of a fluctuation
as a random variable. Via an analogous derivation, for disruption to occur, we must
have

τC

τD
∼ ξ
λ

(ρs

λ

)2/3
S−1/3
λ & 1 ⇒ λ̂−3/2Λ2q/3

(
ρs

L⊥

)2/3

S−1/3
L⊥ & 1, (A 17)

which is satisfied for

q . qD = ln λ̂− (4/9) ln(ρs/L⊥)+ (2/9) ln SL⊥

lnΛ
. (A 18)

One may use this and (2.3) to calculate the semicollisional versions of the filling
fraction of aligned structures, f0, and the remaining fraction of their energy, f2 [§ 5.1,
(5.3) and (5.4), respectively], and show that as SL⊥ decreases, these both become
smaller.

If we again assume that the newly created flux ropes have the same amplitude as
their mother sheets [see (5.5)], then, using (A 18), we obtain a relationship between
δzfr and λ of the flux ropes just after they are created:

δẑfr ∼ λ̂
(
ρs

L⊥

)−4/9

S2/9
L⊥ . (A 19)

This relationship between the radii and amplitudes of individual flux ropes produced
by the disruption of turbulent structures could in principle be tested in laboratory
plasma devices, or in numerical simulations. Note that, as in § 5.2, the largest flux
ropes are produced with radius λ̂D[n=∞] and have amplitude δzfr ∼ δz.

A.4. Recursive disruption?
Similarly to the collisionless case (§ 6), the flux-rope-like fluctuations just below the
disruption scale should seed a new Alfvénic cascade to smaller scales, aligning, and
potentially disrupting again, and so on recursively until the ion scale ρs is reached.
Let us again focus on n= 2, i.e. on the fluctuations that determine the scaling of the
energy spectrum. Again, (6.2) and (6.4) describe the ith ‘mini-cascade’. The recursive
relation between successive disruption scales is, analogously to (6.5):

λ̂D,i ∼ λ̂1/6
D,i−1

(
ρs

L⊥

)1/2

S−1/4
L⊥ ∼

(
ρs

L⊥
S−1/2

L⊥

)3/5(1−(1/6i))

. (A 20)

This is valid for all i for which λ̂D,i >ρs/L⊥, giving a condition for the ith disruption
to be realised:

λD,i

ρs
∼
(

S3/4
L⊥
ρs

L⊥

)−(2/5)(1−(1/6i)) (L⊥
ρs

)(1/6i)

& 1. (A 21)

This inequality is always violated for

imax ∼
ln

(
1+ 5 ln(L⊥/ρs)

2 ln(S3/4
L⊥ ρs/L⊥)

)
ln 6

<∞, (A 22)
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unless ρs/L⊥ < S−3/4
L⊥ , at which point the semicollisional scalings are no longer valid

and the system is in the fully resistive RMHD regime studied in Mallet et al. (2017).
We again see that for there to be more than one disruption above ρs, L⊥/ρs must be
unrealistically large. Thus, the semicollisional regime, like the collisionless regime, is
always characterised by a limited number of disruptions – usually a single disruption,
for realistic parameters.

A.5. Effective spectral index below λD

Suppose, despite the arguments in the previous section as to the real-world irrelevance
of this situation, that the range of scales between λD and ρs is asymptotically broad,
and there are a large number of disruptions, imax � 1 (and also the semicollisional
regime remains operative, i.e. ρs/L⊥ > S−3/4

L⊥ ). Using (6.4), the turbulent amplitude
just below each disruption is again (6.8). Between successive disruption scales, the
aligning cascade causes the turbulent amplitude to follow (6.9), and the aspect ratio of
structures is given by (6.10), but now with the disruption scales λ̂D,i given by (A 20).
Again, the aspect ratio of the structures is greatly reduced by the disruption. The
‘coarse-grained’ amplitudes calculated at the scales just above the ith disruption is [cf.
(6.9)],

δẑi,+ ∼ λ̂1/3
D,i−1

(
λ̂D,i

λ̂D,i−1

)1/4

∼ λ̂3/4
D,i

(
ρs

L⊥

)1/4

S−1/8
L⊥ . (A 23)

Thus, in the semicollisional case, the effective scaling exponent of the fluctuation
amplitude is αeff = 3/4, implying a spectral index of −2.5. Exactly the same scaling
is obtained by noticing that on the coarse-grained points λ̂D,i, the cascade time is just
set by the linear growth rate of the tearing mode (A 3), τC ∼ γ −1

> and requiring that
ε ∼ δz2/τC ∼ const. [cf. (6.12)].

For realistic values of ρs/L⊥ and SL⊥ , there will be at most a single disruption
before ρs. Essentially an identical argument to the one given in § 6.3 implies that,
due to the cutoff at ρs, the scaling of the fluctuation amplitudes may be non-universal,
somewhat steeper than (A 23), and depend on the values of the physical parameters.
As in the collisionless case, the presence of the disruption causes the structures at the
ion scale to be much less anisotropic within the perpendicular plane than they would
have been had reconnection not interfered.
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