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Semi-classical Integrability, Hyperbolic
Flows and the Birkhoff Normal Form

Michel Rouleux

Abstract. 'We prove that a Hamiltonian p € C°°(T*R") is locally integrable near a non-degenerate
critical point pg of the energy, provided that the fundamental matrix at py has rationally independent
eigenvalues, none purely imaginary. This is done by using Birkhoff normal forms, which turn out
to be convergent in the C°° sense. We also give versions of the Lewis-Sternberg normal form near a
hyperbolic fixed point of a canonical transformation. Then we investigate the complex case, showing
that when p is holomorphic near py € T*C", then Re p becomes integrable in the complex domain
for real times, while the Birkhoff series and the Birkhoff transforms may not converge, i.e., p may not
be integrable. These normal forms also hold in the semi-classical frame.

0 Introduction

Birkhoff’s theorem reduces Hamiltonians near an elliptic equilibrium to quasi-
integrable systems. More precisely, let p € C°°(T*R") have a local non degenerate
minimum at py = (xg,&) = 0 with non resonant frequencies Ay, ..., A,, i.e., the
fundamental matrix F,, defined by

(0.1) P = S0t Fp(9)

(here the hessian p’’ and the symplectic 2-form are considered as quadratic forms
on R?") has eigenvalues +i)\y, . .., £i)\ linearly independent over Z, Aj > 0. Then
there is (locally near py,) a canonical transform x € C* preserving the origin py = 0,
formally defined through its Taylor series, such that

1
(0.2) q.m) =porly,m~ Y au®, =05+
a€EN"\0

near 0 (in the sense of Taylor series) with linear part )" | Aj.;. The function q is
known as the Birkhoff normal form of p (see [BamGraPa, Bi, Gal, GiDeFoGaSim,
Sj3, Vi], etc.) A theorem of C. Siegel [Sil, Si2] says that Birkhoff series are in general
divergent (because of small denominators) and there is no hope to reduce p to a
completely integrable system. A gigantic literature has been devoted to integrability
of Hamiltonian systems; we have listed below some of the most famous references
([Ar, ArNo, CuB, Mo, Sil, Si2, SiMo], etc.) but this work has been in part inspired by
[El, It and IaSj]. See also [Au] for a somewhat less conventional and more algebraic
approach.
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Classification of quadratic Hamiltonians was made by Williamson [Ar, App. 6].
We know that eigenvalues of F,, are of the form A, A, =X, —\. These Hamiltonians
have a particularly simple normal form when the eigenvalues are all distinct and non
vanishing. Assuming that F, is semi-simple (diagonalizable) in suitable symplectic
coordinates (x, &) € R*", the normal form is given as follows:

14 m
03)  px, 8= Z ajx;€; + Z (Cj (xXer2j—1€042j—1 + Xe42E042))

j=1 j=1

Yo bR

j=0+2m+1

N =

+d;(xer2j-18042j — Xe42j€042j—1) ) +

We call “action variables” the elementary polynomials that enter the expression (0.3).
The eigenvalues A; of F,, are of the form +a;, +(c; & id;), and +ib;, with the con-
vention aj, bj,c; > 0. Here we consider the case where none of the eigenvalues A;
is purely imaginary, i.e., no b; occur in the decomposition. We say then that p, or
H, (the Hamiltonian vector field), is hyperbolic, or of complex hyperbolic type, if
we want to stress that some );’s are complex. Since the construction of Birkhoff se-
ries is a purely algebraic algorithm, it extends trivially to the hyperbolic, or complex
hyperbolic case (provided, of course, the eigenvalues are rationally independent.)

In the analytic category, H. Ito has proved [It] that Birkhoff series and Birkhoff
transforms are convergent iff the Hamiltonian is integrable, i.e., the corresponding
dynamical system has, locally, n Poisson commuting, analytic integrals of motion.

Complex eigenvalues occur in small oscillations around an unstable equilibrium.
As a first example we consider a top spinning around its apex O, with inertial mo-
menta I; < I, < I5, where the principal axis of inertia corresponding to eigenvalue
I5 goes through O. For I} = I, (the so-called Lagrange top), the Hamiltonian is in-
tegrable at all energies, but in general there are only 2 integrals of motion. See e.g.,
[Au] for details. When the top is spinning fast enough, the total energy is close to a
minimum, and the Hamiltonian orbits (expressed in suitable Euler angles) are con-
fined within compact energy surfaces, on quasi-invariant torii. Then the motion can
be described by means of the Birkhoff normal form (0.2). Some of these torii are in-
variant (the KAM torii), but most of them will be eventually destroyed. When kinetic
energy decreases however, we approach a critical value of the Hamiltonian, and the
motion becomes unstable.

As a second example, we may consider a satellite, with inertial momenta l; < I, <
5, spinning around the principal axis of inertia corresponding to the intermediate
eigenvalue I,. Again, within certain regimes, such a motion is unstable.

Then we may ask whether the Hamiltonian becomes integrable near critical ener-
gies.

In the smooth case (or in case of finite regularity), G. Belitskii, I. Bronstein and A.
Kopanskii [BeKol, BeKo2, BrKo] used recently an idea of A. Banyaga, R. de la Llave
and C. Wayne [BaLlWa] to prove that, under somewhat more general conditions of
non resonance, such hyperbolic (or complex hyperbolic) flows are locally integrable.

From the point of view of classical mechanics, this matter may look rather fu-
tile, since the system will leave the unstable position long before the effects of non
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integrablity become relevant. Divergence from equilibrium grows in general expo-
nentially fast with time, with exception however of the trajectories sufficiently close
to the stable manifold. Thus, such an improvement may be of “microlocal” nature.

In (semi-classical) quantum mechanics however, particles are reputed to tunnel in
classically forbidden regions. A local minimum of the classical Hamiltonian becomes
a saddle point “seen from the complex side”. Consider for instance a semiclassical
Schrodinger operator P = —h? A+V (x) for energies E close to a non-degenerate min-
imum of V, V(xy) = 0. The classical Hamiltonian reads p(x, £) = &2 + V(x). When
extending quasi-invariant tori in V(x) > E, we replace p by p(x,&) = & — V(x),
which becomes hyperbolic, and it is very convenient to know, in tunneling problems
(as in [MaSo, KaRo, Rol]) that the resulting Hamiltonian, written in (hyperbolic)
action-angle coordinates is completely integrable.

Our main result for integrability and Birkhoff transformations in the real C*°
sense is to give a self-contained proof of the following :

Theorem 0.1 Assume p € C*° is real, with a non-degenerate critical point at py, such
that the eigenvalues Ay, ..., A, of F,, are rationally independent, and none of them is
purely imaginary. Then, in a neighborhood of (0,0), there is a C* canonical map &,
k(0,0) = (0,0), dr(0,0) = Id, and a C*> function q of the elementary action variables
¢ as in (0.3) such that p o k(y,n) = q(0).

(Then we shall say that p has exact Birkhoff normal form, while the term “reso-
nant” means that the relation p o k(y,n) = g(¢) holds modulo flat terms at pj.)

A related problem concerns conjugation of a real canonical transformation to a
time-one Hamiltonian flow ; this is the so-called Lewis-Sternberg normal form [St].
A typical situation is this of the Poincaré map, and a lot of work has been devoted to
the subject [Bru, Fr, BaLIWa, It, [aSj], etc.

As for the Birkhoff normal form, a central question is convergence of the process
of reduction. The Lewis-Sternberg theorem was stated at the level of formal series,
and a proof of convergence in the symplectic, hyperbolic case was recently given in
[BaLlWa].

So let ®: T*R" — T*R" be a local diffeomorphism preserving the symplectic
structure, ®(0,0) = (0,0). Assume that d®(0,0) has eigenvalues Aj, ..., \,, and
none of them is negative or of modulus 1. We say then that ® is hyperbolic at (0, 0).

Assume also the frequencies Ay, . . ., A, are non resonant in the strong sense, i.e.,

(0.4) APt N =1formjeZ = mj=0forall j.

Note that if H,, is a Hamiltonian vector field, then H, is hyperbolic in the sense above
iff the time-one map exp H, is hyperbolic, because of the formula koexp Hyorx ™! =
exp Ho,.—1. By a slight abuse of notations, if ® is a map in T*R" and & a local dif-
feomorphism, we denote again x o ® o k~! by ®, since the conjugation is simply
a change of variables, both in source and target space. Loosely speaking, a Birkhoff
normal form for p gives a Sternberg normal form for exp H,. This is the main idea

in the following:
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Theorem 0.2  Let ® be as above, satisfying (0.4). Then there is a smooth function q(1)
defined in a neighborhood (0, 0), depending on the action variables ¢ alone such that

®(p) = exp Hy(v).

This theorem has the following semi-classical counterpart. Let U be an elliptic
h-Fourier Integral Operator (FIO for short) of order 0, defined microlocally near
po> and associated with the canonical transformation ® as in Theorem 0.2. Let [ =
(I, - -+, I,) be the semi-classical Weyl quantization of the action variables ¢ ;.

Theorem 0.3 Let U be as above, whose canonical transformation verifies (0.4). Then
there exists a classical symbol F(1,h) = Fo(¢) + hF (1) + W2F,(1) + - -+, Fo(1) = q(1),
such that U = ePIW/M microlocally near py.

(For terminology and basic results on FIO’s see Appendix A.2.) Thus we specialize
the result of [IaSj] in the hyperbolic case. Such a normal form may be useful when
studying the quantization of some billiard maps as in [SjZw].

Next we turn to the holomorphic case, and focus on the reduction of Hamiltoni-
ans. (See [It] for a discussion on necessary and sufficient conditions ensuring that
such Hamiltonians are integrable.)

Again the problem arises naturally in semi-classical quantum mechanics. As an
example, consider p(x, £) real analytic near py = (0,0) € R?", with a non-degenerate
minimum at pg, and let +i)y, ..., =i}, be the purely imaginary eigenvalues of F,,,
Aj > 0, which we assume again rationally independent. When trying to construct
the solution of some eikonal equation, one introduces p(z, () = —p(z — (,i() as an
holomorphic function on a neighborhood of 0 in T*C". Then p verifies the hypothe-
ses above, namely if p, denotes the quadratic part of p, then (dp,(0,0), (z,¢)) =
2 Z?Zl Ajzj(¢j — 1z;). This situation is met when studying microlocal properties of
eigenfunctions for certain PDO’s (see [MaSo]).

As usual in complex symplectic geometry, it is convenient to distinguish between
several symplectic structures ; we send the reader to [Sj1], [MeSj] for the theory, and
recall here simply the following fact: C*" is endowed with the complex canonical 2-
form oc = Z?:l ag¢; Ndzj, zj = x; +iy;, (j = & + in;, which makes it a symplectic
space, and two real symplectic 2-forms: Reo¢ = Z;‘l:1 d¢; N dx; — dn; A dyj, and
Imoc = Z;’Zl d¢;Ndy+dn;Adx;. Concerning integrability in the complex domain,
we are naturally led to introduce the following:

Definition 0.4  Let p(z, () be a complex Hamiltonian near p, and have a non de-
generate critical point at py. We say that p is R-integrable iff there is a Re o¢-canonical
map £ € C* around p, and a C* function g(:’) such that Re p o k(z,{) = g(./).
(Here ¢/ stand for the real and imaginary part of the complex action variables as in
(0.3), and Poisson commute for the real symplectic structure.)

Equivalently, there exists an Im o¢-canonical map kK € C*°, and a C* function
q(1"), such that Im p o K(z, ) = q(¢’). We could define analogously an I-integrable
Hamiltonian by requiring that Im p o x(z, {) = g(¢") for some Re o¢-canonical map
k. Roughly speaking, an R- (resp. I-) integrable Hamiltonian is integrable for real
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(resp. imaginary) times. If p is holomorphic and C-integrable, (i.e., with respect
to o¢), then it is both R and I-integrable, but there are not so many Hamiltonians
because of Siegel’s result. We have:

Theorem 0.5 Let p(z,() be a complex Hamiltonian near py and have a non de-
generate critical point at py. Assume that O p = O(|z,¢|>), and that the fun-
damental matrix F,, (in the holomorphic sense) has no purely imaginary eigenval-
ues. Then p is R-integrable in a complex neighborhood of py. Moreover, if k denotes
the Re oc-canonical map as in Definition (0.4), we have o)k = O(|z,¢|>), and
k*(oc) = oc + O(|Z, Cloo)

Our result still looks quite poor, in the sense that we lose on the way almost ev-
ery track of analyticity; reduction to the normal Birkhoff form holds only modulo
functions with d of rapid decrease near p,. Of course again, we cannot expect con-
vergence of Birkhoff series or Birkhoff transforms in a full complex neighborhood of
Po» except in the one dimensional case, see [It] and [HeS;j2, App. B]. A more thorough
approach should rely on resurgence theory for functions of several complex variables
as in [Ec]; this would of course help to understand better how the system switches
from integrability to non-integrability when moving around the origin in complex
directions. (See also [Ro2] for another type of result, where we study integrability
and monodromy of x, as a map defined on the covering in T*C”", of the complement
of the stable and unstable manifolds.) The paper is organized as follows:

In Section 1 we prove Theorem 0.1 for Hamiltonians and discuss briefly the case
of a closed hyperbolic orbit. Then we treat the semi-classical case.

Section 2 is devoted to the Lewis-Sternberg normal form for canonical transforms
and Fourier Integral Operators quantizing a Poincaré map. We sketch a slightly dif-
ferent proof for the normal form of canonical maps given in [BaLIWa].

In Section 3, we extend the Birkhoff normal form of Theorem 0.1 and the Stern-
berg normal form of Theorem 0.2 to the parameter dependent case, in the spirit of
[TaSj].

In Section 4, we recall some well known facts about complex symplectic geometry
and prove first the center stable/unstable manifold theorem in the almost holomor-
phic case. Then we turn to the proof of Theorem 0.5, which is very similar to that of
Theorem 0.1. We conclude with some remarks on monodromy.

In the Appendix, we first recall a simple way of constructing Birkhoff series, in-
cluding parameters. We conclude with some review on FIO’s.

We close this Introduction by listing some open problems:

(1) What can be said about integrability when Spec F,) N iR = {i\, —iA}, A > 0,
i.e., when the center-manifold associated with purely imaginary eigenvalues is of
dimension 2? For higher dimensions, it is known that KAM torii can occur (see
[Gr]).

(2) What can be said about integrability in the (complex-) hyperbolic case, when
some of the frequencies are resonant, or more precisely when the equilibrium
point py is “simply resonant” in the sense of [It]?
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(3) Do our results extend to time-dependent, (or non autonomous) Hamiltonians?
(See [Sie] and again [It].)

1  Birkhoff Normal Form and Integrability: The Real Case

We discuss here “convergence” of Birkhoff normal forms for smooth, real valued
Hamiltonians near a fixed point py.

1.1 Classical Integrability

Let p be a real valued Hamiltonian with a nondegenerate critical point py € T*R" of
complex hyperbolic type. First we recall some well-known facts about the geometry
of bicharacteristics of p near py (see [Ch2, Sj2], though there seems to be some con-
fusion in [Ch2, p. 707] between the invariant manifolds for the vector field X and its
linear part X, the main arguments show up already in that paper.) Then we discuss a
solvability problem for H,, in the class of smooth, flat functions at py. At last we prove
Theorem 0.1 by the method of homotopy. Let F,,; denote the fundamental matrix of

p at Po = (07 O))
op P
0x0& 0¢?
(1.1) 2F,, = R (po) = J Hess(p)(po)
Ox? Ox0&

(where ] is the symplectic matrix), verifying

Hess(p)(p)(t,5) = p/1(¢,5) = 50(t, Fp (9).

The factor % is for convenience of notations. Since p,’ is non degenerate, F,, has

no zero eigenvalues. As we are interested in the Birkhoff normal form, we readily
assume that F,, is diagonalizable. Let Ay C T, R*" be the sum of all eigenspaces
corresponding to eigenvalues with positive (resp. negative) real parts.

Assuming that F,, has no purely imaginary eigenvalues, in suitable symplectic co-
ordinates (x, &) € R*", the normal form for the quadratic part p, of p at py is given
as in (0.3) with no elliptic terms, i.e. £+ 2m = n. So A, is the sum of eigenspaces
associated with A\; = a;, (j = 1,...,0) \; = ¢j_o*idj_4, (j = £+1,...,
£+m), and A_ is the sum of eigenspaces associated with the corresponding —\ ;, and
A, & A_ = T, R*. In these symplectic coordinates A, = {£ =0}, A_ = {x = 0},

and F,, has block diagonal form, the diagonal terms (A, ..., A¢), the 2 x 2 matrices
( f&] 'j]]) (j=2+1,...,¢+m), the diagonal terms (—Al,...,—)\g),andtheZ X 2
matrices ( :;J)'_ ij ) (j =2+1,...,0+ m) respectively, which is the so-called Cartan

decomposition. Note that A, and A _ are dual spaces for the symplectic form on R?".

https://doi.org/10.4153/CJM-2004-047-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2004-047-6

1040 Michel Rouleux

To simplify notations, we shall sometimes introduce complex symplectic coordinates

1 . 1 .
) Z2j = %(xuzj +ixp12j-1), Cor2j = ﬁ(ghzj —i€2j-1),
' 1 . 1 .
Zp2j—1 = \ﬁ(xmj —ixps2j-1),  Gerajo1 = %(ﬁmj +i&e2j-1),
j=1,...,m. (the variables x; and &; being as in (0.3) ). Further we denote x; for z;,

&; for the dual coordinate ¢, and eventually label the collection of these symplectic
coordinates, so that

" ) 9
(1.4) H,, :;Aj(xja—xj—g,-a—gj)

or

n
p/li(/)(t’ S) = Z )\J (txJS£J t tfjsxj) :
j=1

Of course, we shall keep in mind that the complexification here is only formal, since
no analyticity is assumed; this is no more than the usual identification consisting for
instance in taking complex coordinates which diagonalize a rotation in the plane.

Now we turn to the non-linear case and recall the stable-unstable manifold theo-
rem. This theorem has a long history, see e.g., [Ha] in the differentiable case, [Ch2]
or [Ne] for a proof based on Sternberg’s linearization theorem, [AbMar, AbRob, Hi-
PuSh] and references therein for more general statements. Note that these results are
generally stated without symplectic structure, but most of them easily extend to this
setting. See however [Sj2, App.] in the analytic category, and Theorem 4.2 below for
the almost holomorphic case.

Theorem 1.1 With notations above, in a neighborhood of po, there are H,-invariant
Lagrangian manifolds 4 passing through po, such that T, (J+) = Ax. Within J,
(resp. J_), po is repulsive (resp. attractive) for H,, and p|g, = 0. We can also find real
symplectic coordinates, denoted again by (x, &), such that their differential at py verifies
d(x,€)(po) =1d, and J, = {£ = 0}, J— = {x = 0}. In these coordinates

(1.5) p(x,€) = (Alx, §)x, §)

where A(x, ) is a real, n X n matrix with C* coefficients, Ay = dA(py) = diag(\y,
<.y Ay) with the convention that if \; is complex, diag(\;, Xj) denotes ( _Cé,j 4 ) .

It follows that
9

(1.6) Hy = A%, ©)x - 2 — Ay(x, )¢ - 5

Ox

WlthA](X, E) = 140'1_O (xa E) )AO = diag(Ala ceey )‘n)>Al(xa E) = A(X, §)+taﬁA(x7 g) :
& Ay(x, &) ="A(x, &) + OA(x, §) - x, and Spec A(x, ) = Spec'A(x, &) C R*. Possibly
after relabeling the coordinates, we may assume 0 < Re A; < --- < Re A,.
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Now we describe the flow of H,, using Theorem 1.1. Let || - || denote the usual
euclidean norm on R”. We put

oo
Bo=/ e s(A0)g=sA g
0

which is a positive definite symmetric matrix with the property ‘A¢gBy + ByAy = Id.
In the present case where A is diagonalizable,

. 1 1 1
BO = dlag()\lv Al; C€+l7 SC+15 5 SC+ms _C€+m) .

2 2 2
If ||x||3 = (Box, x) is the corresponding norm, then

(1.7) Aox - Oulxllg = [Ixl1*,  Ao& - OclI€lls = lI€]”®.

It follows from this and (1.6) that if ||x||3 + ||£]|3 < &%, for some § > 0 small enough,
then

d
Z 126 = Hyllxllg > Clll*, - —Hyli€lls = ClIEIP, € > o.
For § > 0, we define the outgoing region
Q5 = {(x, ) : [IEllo < 2llxllo, l1xlI5 + €115 < 6%}

and let 92" denote its boundary. Let t — (x(¢),{(t)) = exptH, (x(O), 5(0)) be an
integral curve of H, with p = (x(O), 5(0)) € Q9™. We have

x(t) = Ar(x(0), £(0))x(t), E(1) = —As(x(t), E()E(D).

So when p € Q9", [|x(¢)||o is increasing and [|£(¢)||o decreasing as long as (x(t)7 §(t))
€ 9", and moreover there is C > 0 such that for > 0 sufficiently small and all

teR:
(1.8) e RNl e0)lg < [[€@)]lo < e B ()]
Re A\_ ()t ,—Cd|t] Re A\ ()t ,CO|t|
. 0> =
(1.9) e e Mx(0)[|o < [Ix(B)]lo < e e x(0)lo

with the convention A\ (t) = A\, and A_(¢) = A; fort > 0, \;(t) = A\jand A\_(¢) =
An for t < 0. It follows that for any §y > 0, there is 6; > 0 (say d; = do/2),
such that if p € Q"ut then exp(—tH,)(p) € Qout t > 0, until the path meets
o0 N {[[€llo = 2||x|| }. For each p € Qf™, we deﬁne the hitting time

(1.10) T (p) = inf{t > 0 : [[£(=1)[lo > 2||x(=1)]l0},

ie, the time for the path exp(—tH,)(p) to reach the cone ||{|lo = 2||x[o. Since
exp(—tH,)(p) is a C* function of p and t, it follows from the implicit function
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theorem that T°"(p) is a C*° function of p € Qf;':“ \ J+. For p = (x,0) € J,, we set
T2"(p) = +00, and we leave it undefined for p = 0. Similarly, for p € Q3" we define

(1.11) T"(p) = inf {t > 0 ||x(8)||§ + [€®)I§ = &5},

to be the time for the path exp(tH,)(p) to leave the ball ||x||j + [|£||§ < d3. Again,
T (p) is a C* function of p € ngt Moreover, there is 7 > 0 such that for all
pE le‘“, exp(tH,)(p) ¢ Qg;“ for T®"(p) < t < T°"(p) + 7. Since we are interested
in local properties of the flow near py, we can modify, without loss of generality,
p(x, &) outside a small neighborhood of py such that the path exp(tH,)(p), p € le”‘,
will never enter Q¢\" again after time T9"(p), i.e., we may assume 7 = +oo. From
now on, we change notation dy and ¢, to ¢ for simplicity, keeping in mind that d is a
sufficiently small, but fixed positive number.
We define in a similar way the incoming region

(1.12) 5 = {8 ¢ llxllo < 2/I€llo, llxl5 + 1€1I5 < 6%}

and the hitting times T'?(p). More precisely,

(1.13) T™(p) = inf{t > 0 : |x(=0)[[5 + [£(=D)[I5 = 67}

(1.14) T (p) = inf{t > 0 |[x()]Jo = 2[[€(1) o}

As above, we may assume that the flow starting from any point p € R*" crosses at
most once the region Q5 = Qf;“ U Q9" Then estimates (1.8) and (1.9) hold for all
(x,&) € Q5,and all t € R provided (x(t),g(t)) € Q.

Now let I denote the ideal of C°°(R*") consisting in all smooth functions vanishing
at py. We want to solve the homological equation H, f = g in I°°. This is of course
essentially well-known (see e.g., [GuSc, p. 175] for analogous results). So let " +
X™ = 1 be a smooth partition of unity in the unit sphere $>"~! such that supp
X C {llEllo < 2ixllo}, supp x™ C {llxllo < 2[[€llo}. We extend X, x™ as
homogeneous functions of degree 0 on T*R" \ py.

Proposition 1.2 Let py be an hyperbolic fixed point for p as above, and g € I*°. Let

0 [e%s)
"(p) =/ (X°™g) o exp(tH,)(p)dt, f"(p) = —/ (x™g) oexp(tH,)(p) dt
—00 0

Then f = [+ fi" € I°° solves H, f = g.

Proof We treat the case of f°", this of fI" is similar. Let §, > 0 small enough, and

leut/ ™ be as above. Without loss of generality, we may assume supp g C €, =

Qty Qg“o, so supp(x°*'g) C Qg Then it is easy to see that

(supp f°*) N Qs C Q3
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so we will assume p € Qg:“, and as above write ¢ for §y or 6. If p € Q9" \ J,, we

have f°"(p) = fETO;“(p) (Xoutg) o exp(tH,)(p)dt, since exp(tH,)(p) ¢ supp x°" for
t < —T°"(p). Furthermore,

0

d
prout(p) — / a ( (Xoutg) o eXp(th)(P)) dt = (Xoutg)(p)'

When p € J4, exp(tH,)(p) — Owhent — —oo and the integral makes sense because
of (1.9) and the fact that g(p) = O(p), as p — 0. Again H, f*""(p) = x°“'g(p). We
are left to show that f°" € I°°. Because of (1.9) and [|£(8)|lo < 2||x(t)]o in supp
X°U, f°" is continuous and vanishes at p = 0. To show that f°** € C 1 we write,
following [IaSj]:

(1.15)  d((x°"'g) o exp(tH,)(p)) = (d(x**'g)(exp(tH,)(p)) o dexp(tH,)(p)

so we need to examine the evolution of dk,(p) = dexp(tH,)(p) along the integral
curve k; of H, starting at p. Differentiating 0,x,(p) = H, ( nt(p)) we find

OH
(1.16) Odry(p) = a—pp(%r(p)) o (dri(p)), dro(p) =1d
with a(%(p) = 2F,, + O(p), and the Gronwall lemma applied to (1.16), as in (1.8)
and (1.9), gives, for k,(p) € Q9" and all t < 0:

(1.17) e~ Rei—Co)r 1€, (p)|| < o~ (Re A +Co)

(1.18) o(Re At Co)t < |ldx(p)]|| < o(Re A —Co)t

SO dﬂt(ﬂ) =0 (ef(Re )\,,+C($)t) .

On the other hand, g being flat at 0, d(x°"'g) (exp(tH,)(p) = O(||x:(p) |N) for any
N, so taking N large enough, we see that d ( (x°"g) o exp(tH p)(p)) is integrable, so
fout € C!, and vanishes at 0. To continue, we take the partial derivative of (1.16)

with respect to p;, j = 1,--- ,2n and write
0 O0H, 0
— _ - = F,
O 5pj dr(p) ap (ke(p)) o ( 5pj (d"ft(p)) ](ta p)
with

2n 2
0
Fj(t, p) 1?:1 8pk8p(fet(p)) o, ke x(p) o drsi(p).

Using the group property, we write (1.16) as

OH
(1.19) D, 7(17(p) © di(p) = 5.2 (s 7(1i(p)) ) o disy_i(1i(p) o ()

(1.20) dro(p) = 1d.
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Since k7 is a canonical map, dk; is invertible, so

0H

Odr,_;(ri(p)) = a—p"(n,_;(m;(p))) odr,_(ki(p)), drolp) =1d.

So we recognize dk,_;( k;(p)) , dr;_;(p) = 1d as the fundamental matrix of our 271 x

2n system of ordinary differential equations, and since %dm(p) |t=o = 0, Duhamel’s
]

principle gives:

a%jdm(p) :/0 dr,_;(ki(p)) o F(t, p) dt.

From (1.17) and (1.18) we find the estimate F;(t, p) = O(e’z(Re’\”C‘s)?) , and by
integration

0
(1.21) 8_pjd,<;t(p) = o(efZ(ReAﬁCé)t).

On the other hand, differentiating (1.15) with respect to p; we get

D469 0 k() = dx9) (me(p)) © ~dia(p)

ap; o
2n 9 5
- out o

+;8pkd(x g) (M(P)) ap]K/t’k(p)odﬂt(p)

Using (1.21), and again (1.17), (1.18), the estimates

0
d(Xoutg) o (Ht(p)) , 8—pkd(XOUTg) (Iit(p)) = O(HX:(P)”N)

ensure once more the integrability of %d((x"“tg) o nt(p)) , 50 fou € C? and we
can see that its second derivatives vanish at 0. The argument carries over easily by
induction, so the Proposition is proved. ]

Now we are ready to prove Theorem 0.1, by combining the Birkhoff normal form
(see e.g., Appendix for a simple proof) and a deformation argument. When p has a
non-degenerate critical point with non-resonant frequencies, we know that there is a
smooth canonical transform « between neighborhoods of 0, leaving fixed the origin,
such that p o k(x, &) = qo(t) +r(x, &), where ¢ = (¢, - - - , ty,) are the action variables
asin (0.3), and r € I°° depends also on the corresponding dual (angle) variables. The
Hamiltonian g (¢) satisfies the same hypotheses as p, and is constructed from the for-
mal Taylor series by a Borel sum of the type qo(1) = >~ qk(t)x(¢/€x), x € C5°(R™)
equal to 1 near 0, €y — 0 fast enough as k — oo, and gx(¢) is homogeneous of degree
k. The canonical transformation is of the form x = exp Hy for some smooth f We
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shall try to construct a family «, of canonical transformations, 0 < s < 1, tangent
to identity at infinite order, such that ko = Id and &, solves p o K 0o K1 = ¢qo. The
deformation (or homotopy) method consists in finding a C*° one-parameter fam-
ily of vector fields s — X, along which some property is conserved, in that case the
property for Hamiltonians, interpolating between p and gy, of being integrable. It
reduces here essentially to solving a homological equation as in Proposition 1.2. (See
[ArVaGo] for an introduction, and also [GuSc, p. 168, HeSj2, App. A, MeSj, BaLIWa,
BrKo, IaSj, etc.], for other applications more directly relevant to our problem.) So let
qs = qo + 51,0 < s < 1, and look for «; such that

(1.22) gs © Ks = qo-

Then £|s—1 will solve our problem. The deformation field
2n 8
Xi(p) = 5 i(p)=— € I®°(TR*
(0) ; nilp)g, € I (TR)

is such that
(1.23) Osks = X, 0 K.

Differentiating (1.22) gives r o ks + g—qg(ms) 0 Osks = 0, Or

ro ks + (Xy(k5(p)), g5(ks(p))) = 0.

Furthermore, we require X, to be Hamiltonian, i.e., X; = Hy, f; € I°°, so we get

(1.24) (Hp,q5) = —(Hg,, i) = =,

all quantities being evaluated at x,(p). We want to apply Proposition 1.2 to p = g,
g = 1, so we move to the new symplectic coordinates (adapted to the outgo-
ing/incoming manifolds) by composing with smooth canonical transformations ®;,
i.e., replace H, by (®,)*H,, f; by (®,)* f;, etc., so omitting for brevity these coordi-
nate transformations when no confusion might occur, Proposition 1.2 gives f, € I
solving (1.24). So we are led to show that, given H; € I*°, (1.23) has a solution of
the form r; = Id +x/, k! € I°°. Existence for 0 < s < 1 follows e.g., from Gronwall’s
lemma, truncating g, outside a neighborhood of 0, and the condition x = Id gives

(1.25) [ < Cllpll, C€>0

for ||p|| < 6. We want to show x/(p) = O(p>°). Recall from the proof of Proposition
1.2 that, by the group property, dr(p) is the fundamental solution for the system

oY (p,s) = agf (ns(p)) Y (p,s). Since dr!(p) solves
OH OH
(1.26) ddr[(p) — 5 i (ks(p)) o (d/‘fs/(P)) ) ) (ks(p)), dr(0) = 0.
P p
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Duhamel’s principle gives

dr!(p) = / drio_s(r5(p)) o f (ks(p) .

Since - (rs(p) = O(|(s(p))|[N), (1.25) gives 3%‘(%3(0)) = O(|lp[I), and
drs_s(ks(p)) = O(1), so, choosing N large enough, we get dx(p) = O(||p||*). Inte-
grating this relation, we get again x/(p) = O(||p||). Taking partial derivative of (1.26)
with respect to p; as in the proof of Proposition 1.2 ylelds also 0 9 dk!(p) = O pl)s
and a straightforward induction argument shows k. € I°, umformly for s on com-
pact sets. Taking s = 1 and undoing the transformation |, give eventually the
result. ]

1.2 Two Simple Applications

As a first application, we present a different statement of theorem 0.1. It is sometimes
convenient to perform the Birkhoff transform in action-angle coordinates (see [Gal,
p. 473] for the elliptic case.) We restrict for simplicity to the usual case of a (real-)
hyperbolic fixed point, where

n

P, &) =& =Y Xoxd + 0(||x[*)

j=1

The corresponding Williamson coordinates are then given by the linear symplectic
transformation x;(x, &) = (y,n) \f)\]y] = Ajxj +&j, \fn] —Ajxj +¢;. Outside
the hyperplanes x; = 0, we can construct smooth hyperbolic action-angle coordi-
nates (¢, ). Restricting for simplicity to x; > 0, all j, they are defined for +; > 0,
©@; € R, by the formulas A\;x; = /2Ajtjcoshp;, {§ = /2Ajrjsinh ;. We set
Rolt, ) = (x,€).

Let # be the canonical transform of Theorem 0.1, and define & = ;' o sy ' 0 K 0
k10oko. Then, with k(y,n) = (y',n") = (y,7)+0(|y,n|*), we have 5 (¢, p) = (., '),
22j; = =2hjyim; = —{’2 + A ’ , where k1 (x’,£") = (y',n’). Actually we can
check that we can choose  such that 51—1 o k o K preserves the hyperplanes ; = 0.
(This is done at the level of Birkhoff series as in [KaRo, App], and an inspection of
the proof of theorem 0.1 shows that this carries out to the corrections mod I°°.)

Moreover, there exists a smooth generating function S(¢/,¢) such that
L= 0,5(",¢), 9" = 0,,S(t/, ), and of the form S(./, ¢) = (., ¢) + ®(¢', ). Here
0@, ) = O()), 0,®(./, ) = O(.'*), uniformly for ¢ small enough. Finally,
p=aq@').

As for the second application, we consider an Hamiltonian flow with a non triv-
ial center manifold. More precisely, let p € C°°(T*R") such that dp # 0 on
the characteristic variety p(p) = 0, and p has a closed trajectory 7, of hyper-
bolic type at energy 0 (see e.g., [Ar, App. 7, GeSj, SjZw]). A basic example is
p(x,&) = & + Mxf — 37, Ajxj, near an energy level E > 0. Another example
is given by a smooth famlly p = pe of Hamiltonians depending on 2(n — 1) phase
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variables (x/,£’) € T*R"!, periodic with respect to § € S!; parameter E then stands
for the dual variable.

Since near every point of 7y, there are symplectic coordinates (y, n), such that p =
71, Hamiltonian p is locally integrable, but because of topological obstructions, there
is no such global coordinate patch in a neighborhood of yy. So we may address the
problem of “semi-global” integrability.

Let K be the set of trapped trajectories near energy 0:

K={pecp YE), E € [~E, E, exp(tH,)(p) /» 00, ast — Foo}

Let Ky = K N p~!(E), E small, and assume we are in the situation where Ky = 7 is
a closed trajectory of hyperbolic type.

Then in a neighborhood of K, there is a smooth, symplectic, closed submani-
fold ¥ C T*R" of dimension 2, containing K, and such that H, is tangent to X
everywhere. We call ¥ the center manifold of 7, and it is nothing but the one-
parameter family of closed trajectories vz C p~'(E), E small. The restriction oy,
of o to TE+ (where (- )+ stands for “ symplectic orthogonal”) is clearly invariant
under H,. Hyperbolicity means that p vanishes of second order on %, and for all
p € X, the fundamental matrix F,|y1 as in (1.1) is of rank 2n — 2, and has no
purely imaginary eigenvalues. In the case at hand, we will assume that these eigen-
values are rationally independent. For p € 3, let Ay (p) C Tp(RZ”) be as above the
(n — 1)-dimensional isotropic subspaces whose complexifications are the sum of all
complex eigenspaces corresponding to eigenvalues with positive/negative real parts.
We have the splitting (T,]Z)L = As(p) ® A_(p). We can also find real symplectic
coordinates, denoted again by (x,&) = ((x,x"), (£’,&’")), such that their differen-
tial verifies d(x,&)|x = Id, ¥ is given by (x’,¢’) = 0, and J; = {¢’ = 0} and
J_ = {x’ = 0} are the stable/unstable manifolds, tangent to A4 (p), p € X.

Let py € X be such that the non resonance condition holds on eigenvalues A; (py),

.+» An—1(po), and apply the Birkhoff normal form to p. Then there exists a smooth
canonical transform x for the symplectic 2-form oy, and a smooth Hamiltonian
qo(/;x",€"), where t' = (11,...,1,_1) are action variables as in (0.3) built from
the (x’, £’)-coordinates, such that

por(x,&) =qoltsx",€"), (x,€) € neigh (po, R*")

To formulate a semi-global result we assume that the fundamental matrix of p (for
the 2-form oy) is constant on ¥, with non resonant frequencies as above. Since the
coordinates above can be defined globally on a neighborhood of 7y (see e.g., [GeSj]),
and the constructions above depend smoothly on py € ¥, we have found a smooth
fibre bundle over ¥ whose sections are action-angle coordinates in TX* adapted
to p. Of course such a result is of mere academic interest, since « a priori does not
preserve the full symplectic structure, but it makes sense for the family pg as above
(non autonomous case. ) See [CuB, Vul, Vu2] for other (semi-)global aspects of
integrability.

https://doi.org/10.4153/CJM-2004-047-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2004-047-6

1048 Michel Rouleux

1.3 Semi-Classical Quantization and the Exact Birkhoff Normal Form

Let P = P"(x, hD, h) be a h-PDO with principal symbol p as above, so that P(p, h) =
p(p) + hpi(p) + - - - (in the sense of asymptotic sums) is real valued. Let x be as in
theorem 0.1, p(x,7n) a generating function and let U be an elliptic FIO associated
with the phase function ¢ and an amplitude we can choose so that U is microlocally
unitary near po. Then the principal symbol py = p o s of P = U~'PU is in the exact
Birkhoff normal form given by theorem 0.1 (see Appendix B for a short review on
pseudo differential calculus. ) We try to correct U by a h-PDO of the form B = ¢/,
where W = WY (x, hD, h), W(p, h) = wo(p)+hwi(p)+- - -, and proceed as in [KaRo,
IaSj] to show that we can choose W such that the Weyl symbol of

(1.27) Q=B"'"PB=¢"P" =" i'[iw, [iW,...,[iW,P]---]]
j>0 7"

(we have dropped the tilde for convenience), is in the exact Birkhoff normal form.
Let p(x,&,h) = po(x, &) + hpi(x, &) + - - - be the Weyl symbol of P, where py is in the
exact Birkhoff normal form by construction. The coefficient of & in (1.27) is given by

(1.28) q1 = p1+{wo, po}.

Working first at the level of formal Taylor series we can find q; resonant, and wy such
that q; = p1 + {wyo, po} modulo I°°, then we correct wy by changing w, in wy + W
where w{ solves an equation of the form Hy, wj = g € I°°. This can be achieved
because of Proposition 1.2, so the principal symbol wy of W (p, h) can be chosen such
that g = ¢1(¢), and the two first terms in (1.27) are in the exact Birkhoff form.
The choice of w, will influence the h? term in the symbol of e~ Pe’" only through
the term [iW, P] and to make the /h? term in the exact Birkhoff normal form leads
to a new equation of the same type as (1.28). It is clear that this construction can
be iterated and we have found W such that the Weyl symbol q(x,&,h) = po(e) +
hqi (1) + h*gy(1) + - - - is real and in the exact Birkhoff normal form. At last we set
A =UB. IfI = (I,...,I,) denote the Weyl quantization of the action variables
¢ (I; are commuting operators), our computations so far can be summarized in the
following:

Proposition 1.3 Let P(x, hD, h) be the Weyl quantization of the symbol p(x,{, h) =
po(x, &) + hpi(x,&) + - - -, real valued, and such that pg verifies the hypothesis of theo-
rem 0.1. Then there is a (formally) unitary FIO A, and a smooth symbol F(vy, ..., tn)
defined near py, such that A='PA = F(Iy, ..., I,, h) (microlocally near p,.)

2 The Lewis-Sternberg Normal Form for the Poincaré Map

In this section we prove Theorems 0.2 and 0.3. First we recall the following version
of a theorem of Lewis-Sternberg (see [St, Theorem 1, Corollary 1.1; Fr, Theorem V.1]
and [IaSj] for a detailed proof). For simplicity we content to a particular case relevant
to our problem. So assume A is a real 2n X 2n symplectic matrix and has eigenval-
ues AL, .oy Am L/AL oo 1/ A ALy ooy Ay 1/A1, ..., 1/, where none of them is
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negative. Then there is a natural choice of the logarithm B = log A, and B is anti-
symmetric for the canonical 2-form on T*R”. Let ;1; = log A;, in such a way that A ;
corresponds to Hj and po(p) = b(p) = %a(p, Bp). Assume that for k; € Z,

(2.1) ij,u]‘ EZiWZ:ijMjZO.
We have the following:

Theorem 2.1 Let ®: neigh(0,R*") — neigh(0, R*") be a smooth canonical trans-
formation, leaving fixed py = 0, and A = d®(po) as above. Then there is p € C*°
defined near p,, uniquely determined modulo I°°, (for a given choice of py ) such that

p(p) = po(p) + O(p*) and
®(p) = exp Hp(p) + O(p™).

We state now the counterpart of Theorem 1.1 for canonical maps involving a dis-
crete dynamical system (see e.g., [BaLIWa] and references therein.)

Theorem 2.2 Let f: neigh(0, R?") — neigh(0, R*") be a smooth canonical transfor-
mation, leaving fixed py = 0, and assume A = df(py) is non degenerate and has no
eigenvalues of modulus 1. Let L, (resp. L_) be the sum of eigenspaces associated with
eigenvalues \; of modulus > 1 (resp. < 1). So Ly are Lagrangian subspaces. Then
there exist smooth Lagrangian manifolds Ly passing through po, tangent to Ly at py,
invariant by f, and such that within L, (resp. L_), po is repulsive (resp. attractive)

for f.

For p = (x,£), we denote by p™) = (x™(p), ™ (p)) = fN(p), N € Z, the N-th
iterate of p under f. If L, (resp. £_) is given by £ = 0 (resp. x = 0), it is again
possible to define the outgoing region

Q2 = {(x,8) : [|€]lo < 2l|x[lo [|Ix[12 +1€]I2 < 6%}

for some suitable euclidean norm || - ||o, and express the expansion and contraction
properties of our discrete dynamical system in term of Lyapunov exponents as in
(1.8-1.9). The same holds of course for the incoming region. Now we recall the
following result, which is the symplectic version of the Lewis-Sternberg theorem. At
least to prepare for Theorem 0.3, it could be useful to sketch a simple proof based on
the previous arguments.

Theorem 2.3 [BaLlWa] Let f, fo: neigh(0, R*") — neigh(0, R*") be smooth canon-
ical transformations, leaving fixed py = 0, and assume they are tangent to infinite order
at po. Let A = df(po) have its spectrum outside the unit circle as above. Then there is a
smooth canonical transform g leaving fixed po, dg(po) = 1d, such that g™ o fog = f.
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Outline of Proof It relies again on the stable/unstable manifolds theorem above
and a deformation argument, which goes as follows. Let f;, 0 < s < 1 be a smooth
family of canomcal transformatlons interpolating between foand fi = f. We can

take f; = fs fo, with fs = 1f(sp fors > 0, and fo(p) = p, for s = 0, where
f fof;'. Welook for a family of canonical transformations g; with g, = Id,
satisfying

(22) & ofiog=f

The deformation fields are of the form

(23) 6sfs = Srs o f;7 8sgs - 95 S5y

with F; and §; Hamiltonian, i.e., F; = Hf,, §; = Hg,. Since f and f, are tangent to
infinite order at p,, we have F; € I*° and we look for §; in the same class. The crucial
observation in [BaLIWa] is the following. Taking derivative with respect to s in (2.2)
we obtain the homological equation:

8s(g;10f;ogs) = (gfl)*(gs—95+(fs)*95) o (g;l Of;ogs) =0

and it is clear that (2.2) can be solved iff we can find a C! family of vector fields G;
satistying F; — G; + (f)+9s = 0. At the level of Hamiltonians this relation takes the
form

(2.4) Gs— Gso ! =

This equation will be solved as in Proposition 1.2, changing the continuous dynam-
ical system t — exp(tH,)(p),t € R,to N N(p), N € Z. So let \°U' + xi" = 1
be a smooth partition of unity such that supp x*** C {[[{]lo < 2[lx[lo}, supp
X" C {|lxllo < 2||€|lo}> where we have chosen symplectic coordinates adapted to

fs as in theorem 2.2. After modifying suitably the functions outside a fixed neighbor-
hood of py, define

25)  GM™(p) =Y (x"F)o fN(p), GMp) == ("F)o f(p).

N>0 N>1

Then G; = G + G formally solves (2.4) and using exponential estimates on the
discrete flow fN shows that G; is C! and vanishes at p. For higher derivatives we use
the “tangent functor trick” of [BaLIWa], which is the discrete analogue of (1.16), and
differentiate (2.4) to obtain

(2.6) G, — dG,(f Y o df" = dF..

This is a linear equation in dG; similar to (2.4), whose solution is again given (for-
mally) by dG, = G + G,

G (p) = Y (X"dF.) o £ N(p) Hdﬁ o £ N (p)
(2 7) N>0 j=0

N
dG(p) = = > _(x"dF) o fN(p) [ df. " o N1 (p)

N>1 =0
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(the product being understood as a product of matrices). As above, it is easy to see
that the two series converge uniformly in Q5 = Q"' U QI to continuous functions
vanishing at py, and the same holds for the first derivative. A uniqueness argument
further shows that dG; as defined in (2.7) is actually the derivative of (2.5), so G; is
C?, and vanishes to second order at p,. To continue, we take partial derivative in (2.6)
with respect to p;, j = 1,---,2n, which gives an equation analogous to (2.6), and
argue again as in Proposition 1.2 (precise estimates can be found in [BaLlWa]). So
by induction we proved G; € I°°, and (2.3) gives g = Id +O(p°°) as in the argument
after (1.25). So we have proved the theorem. ]

Applying Theorem 2.3 to f = ®, fy = exp H,, where p is given in Theorem 2.1,
we get:

Proposition 2.4 Let ® be as in Theorem 2.1, i.e., none of the eigenvalues \j of A =
d®(py) is negative, and jij = log Aj, |\j| # 1 satisfy (2.1). Then there exists a smooth
Hamiltonian q defined near po, g(p) = po(p) + O(p?), such that ®(p) = exp H,(p).

If the 41;’s are rationally independent, we can write g in the exact Birkhoff normal
form, so Theorem 0.2 immediately follows from Proposition 2.4 and Theorem 0.1.

2.1 Semiclassical Integrability

Here we prove theorem 0.3. From Proposition 2.4 we may already assume that U is
associated with a canonical transformation of the form x = exp H,, (for the moment
we have no need on the rational independence of the y;’s. ) We could follow [IaSj]
but we prefer a similar proof based on the argument of Section 1.3. So consider the
family of FIO’s U, = sU + (1 — s)Uy, Uy = €P0/",0 < s < 1, Py = p"(x, hD) + ha
(where « is a constant subprincipal symbol we choose so that U; is elliptic for all s, )
all associated with k. See e.g., again [Iv, Section 2] for a proof of the fact that e"o/" is
a FIO, and related properties. We look for a smooth family W (x, hD, h) of h-PDO’s
of order 0 such that

(2.8) e Wy = P/h,
Taking derivative with respect to s we get
(2.9) Uy 'UOW, — Uy 'oWU — iUy 'U —1d) = 0.

Since all FIO’s are associated with the same canonical relation, U, U.o,wW,,
U(;lasWSUS and U{lU are h-PDO’s of order 0. Denoting the Weyl symbol of W;
by the same letter, W,(p, h) = wy(p, s) + hwy (p, s) + B2wy(p, s)+- - -, by a’(k(p), p, s),
the principal symbol of U;, b°(p, r(p)) this of U, !, we first identify the principal
symbol of (2.9). From the well-known calculus on FIO’s that we recall in Appendix
B, we get from (2.9)

(2.10)
b (p, k(p))a’ (k(p), p, $)Dswo(p, s) — b p, k(p)) Dswo(k(p), s)a’ (K (p), p, s)

—i(b°(p,k(p)) a(K(p), prs) — 1) = 0.
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Dividing this equation by 6°( p, k(p)) a° ( k(p), p,s) # 0, we get

1
(2.11)  Owy(p,s) — Owo(k(p),s) = —/ (Oswy) o exp(tH,)(p) dt = cy(p,s).
0

As in [IaSj, Theorem 3.2], this can be solved mod I°° by successive approximations,
so we are left, changing wy to wy + w}, with

(2.12) Oswo(p, s) — 0wy (K(p),s) = clp,s) € I°.

This is exactly equation (2.4) with  replacing f,~', so as in the proof of Theorem 2.3
we can find a smooth family Oswy(p, s) € I°° solving (2.12). Integrating for 0 < s < 1
with the initial value wy(p,0) = 0, we are done with the principal symbol wy(p, s),
which is unique mod I*° according to the uniqueness part of [IaSj, Theorem 3.2].
Of course, it is essential to notice that (2.11) and (2.12) can be solved in the whole
neighborhood of py where ¢ is defined.

Let us consider now the coefficient of h in (2.9). Using (A.4) and (A.5) and the
usual calculus on h-PDO’s, we see that O;w; (p, s) verifies again an equation of the
form of (2.11), where the right hand side also depends on wy(p, s). This can again be
solved in the same neighborhood of py. So an easy inductive argument shows that
(2.8) holds microlocally near py. For s = 1 we get, by usual estimates (see e.g., [Iv,
Section 1]) microlocally near py: U = e1el?o/he=™W1 = exp(ie’1Pye=™"' /h) and so
we have proved:

Proposition 2.5 Let U be an elliptic FIO microlocally defined near py, associated
with a canonical transform © as in Proposition 2.4. Then there is an h-PDO, P =
P(x, hD, h), with principal symbol p given by Proposition 2.4, such that ® = exp H,
and U = e/" microlocally near py.

Combining Propositions 1.3, 2.4 and 2.5 eventually gives Theorem 0.3.

3 Parameter Dependent Case

We extend some of the previous results, taking advantage of the fact observed in
[IaSj], that the Birkhoff normal form can be carried out nearby critical points with
non resonant frequencies, modulo small error terms. Thinking of the Poincaré map,
which depends smoothly on energy E, if the frequencies are non resonant for some
E = E;, they may become resonant for values of E arbitrarily close to E,. So it is
interesting to investigate some weak form of integrability. We content here to classical
Hamiltonians, but quantization could be easily treated as above.

3.1 The Birkhoff Normal Form

As in the Appendix, let p° € C> depend smoothly on s € neigh(0, R¥), p*(py) = 0,
and have a non-degenerate critical point of hyperbolic type at pg. (In some applica-
tions, the critical point depends on s, but choosing suitable linear symplectic coordi-
nates and changing p® by a constant we are in this situation.) After possibly perform-
ing another linear symplectic transformation, we may assume that its quadratic part
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is of the form
(3.1) Py, &) = pixi;
=1

with coordinates independent of s. For s = 0, we suppose the 1; = ,u(} rationally in-
dependent. Then Proposition A.1 below shows there is a smooth family of canonical
transforms, k°, K°(pg) = po, such that

pPor(p) =g () +1(p), r'(p) = O(p™) + p’O(s>)

with the principal part of ¢° as in (3.1). Looking at the deformation procedure, we
see that we can apply the stable/unstable manifold theorem to Q,(p) = g°(¢) +77°(p),
0 < 7 < 1, and if we decompose * = u° + v, v = O(p™), u° = p>O(s>), we are
able to solve Hq f = +*, for f. € I*°. Then the vector field X, = Hj generates a
1-parameter family of canonical transformations k., as in (1.23), and for 7 = 1 we
get

p ok oki(p) =q L)+ p’O(s>)

which is the normal form for p°.

3.2 The Lewis-Sternberg Normal Form

As in [IaSj] we extend Theorem 0.2 to the parameter dependent case. For simplicity
we just vary one parameter s € neigh(0,R). Let ®*: neigh(0, R*") — neigh(0, R*"),
s € neigh(0,R), be a smooth family of smooth canonical transformations, leaving
fixed pp = 0, and A* = d®*(py). We assume that & = ®° fulfills the assumptions
of Proposition 2.4. For small s, A° is still hyperbolic, but (2.1) need not be verified.
We want to investigate to what extent the conclusion of Proposition 2.4 holds for @°,
s # 0, so we look for a smooth, real valued family p*(p) = O(p?), such that

(3.2) *(p) = exp Hp(p) + p*O(s).

By Proposition 2.4, this holds for s = 0, with p* = p. Assume for a moment we have
found p*, which fulfills formally (3.2), and consider the family ®;(p) = exp(tHs)(p).
Since p, vanishes to second order at py, the germ of ®; at p, is well-defined for all
real t. We compute the “logarithmic derivative”

()" 0,9 = Hy,

where ,
q;:/ Bp’ o B dF.
0

In this formula, we take = 1 (deleting the corresponding subscript) and try to solve

t
(3.3) qs(p):/ 85pso<1>§d? mod p*O(s>)
0
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where 0;p* will be the unknown. We try to achieve this condition at any order in s.
At zeroth order, i.e., for s = 0, one should have g°(p) = fot (0sp°) |s=0© <I>?°d?, and this
can be solved as in (2.11), since condition (2.1) holds for ®°(p). We find 9;p°|s—¢ =
O(p?). If we differentiate (3.3) k times and evaluate at s = 0 we get

1
/ (8Sk+lps) © eXptH S(p) dt = 8qu(p) +Fk(p$a .. -785kpsap)7 s=0.
0

If p° ..., 0 p°l—o = O(p?) have been determined, we get O*'p’|_y = O(p?)
from this equation. It is then clear that (3.3) has a solution which is unique mod-
ulo p?>O((p,s)°°). That is the inductive part of the argument. Conversely, define
P = exp Hys. Then

(D)*0.0° = (9°)*0,8° + p*O(s™), D° = ",
From identity (D)1 (p) = —Hps((is)_l(p)) , estimate
() (p) = —Hp ((2°) 7' (p)) + pO(s™),

which follows from (3.3), and initial condition ®° = $° we conclude easily that (3.2)
holds.

Assume further that for s = 0 the y;’s are rationally independent. Using the
parameter dependent Birkhoff transformations as in Proposition A.1, we see that
for s € neigh(0, R) small enough, there is a smooth family of Hamiltonians ¢°, and
canonical transformations &°, x°(pg) = po, such that po x* = g+ O(p™) + p>O(s>)
and ¢° = ¢°(¢) depend on the action variable only. So we have

(3.4) (k)7 Lo exp Hps o 5° = exp Hyg + O(p™) + p*O(s>)
and by (3.2),
(3.5) (k)o@ 0 k' = exp Hz + p*O(s).

It suffices then to apply a parameter dependent version of Theorem 2.3 as in Sec-
tion 3.1, to get rid of the O(p>°) term, and we see that (3.4) and (3.5) imply the
following

Proposition 3.1 Let ®°, s € neigh(0,R), be a smooth family of smooth canonical
transformations, ®°: neigh(0, R*") — neigh(0, R?"), ®(0) = 0, such that for s = 0,
A" = d®°(0) is non degenerate, its eigenvalues Xj, j = 1...,n, are non negative and
lie outside the unit circle, and j1; = log A; verify (2.1). Assume further that the 1;’s
are rationally independent (i.e., the \js are non resonant in the strong sense.) Then
there are a smooth family of smooth canonical maps «°, s € neigh(0,R), «°(0) = (0),
dr*(0) = 1d, and a smooth family of smooth functions q°(1) depending on the action
variables v alone, such that

@' = exp Hy + prO(s>).
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4 The Complex Case

We present here a rather rough discussion in the almost holomorphic case, i.e., for
Hamiltonians whose 0 vanishes of infinite order at py, somewhat in the spirit of [Sj2]
and [MeSj]. First we recall some properties concerning symplectic structures in TC";
then we state the center stable/unstable manifold theorem for almost holomorphic
Hamiltonians; at last we prove Theorem 0.4, and conclude with some elementary
properties on monodromy.

4.1 Complex Symplectic Geometries

The variables in the complex phase-space T*C" will still be denoted by (x, £). As in
the real case, we start with some geometric preparations.
First we recall some elementary facts about complex vector fields. If

2n
v(p) = Zvj(p)aﬂj +vi(p)d,,
j=1

2n
= (aj(p)dx, +bj(p)d, +a}(p)Dx, + bj(p)Dy,) € T(T*C")
j=1
is a vector field on T*C", wesetv = 2Rev = v+ ¥, or

2n

Wp) =D (vi(p) +Vi(p)) By, + (vi(p) +v{(p)) Dp,-

j=1

Identifying C" x C" with R*" x R*", ¥ is simply the vector
(Vi + V], v+ v)) = (ay+al,...,a,+al, by +b],... b,+b)
=(Re(a; +a}),Im(a, — aj), ..., Re(b, +b,),Im(b, — b},))

expressed in the basis B = (8Rexl Oy, - -+ Ore &y Otm ﬁn) . In general the identifi-
cation between C" (or C?") and the underlying real vector space will be expressed as
O(ay,...,a,) = (Reaj,Imay,...,Rea,,Ima,).

Let us denote by I the ideal of C*° functions in C" (or T*C" as will be clear from

the context, ) that vanish at p,. We assume throughout that vjf € I, or even vj’- S

I°. In that case, we write v € TUO(T*C") @ TOV(T*C"). Then 7 is the (unique)
real vector field which gives the same result as v, at the point pp, when applied to a
differentiable function u, provided Ou € I. For real ¢, the flow of V' will be denoted by

B:(p) = (Z(p), &(p)) = exp(tD)(p).

In the case where V]{ =0 (ie, v € THO(T*C")), this is the solution of the system of
ODE’s

d— ~ d — ~ ~
20, () = a5 (Bi(p)) (&), (0) = bi(Bi(p)) . Bolp) = p.
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So it has the property, that if v € T (T*C") has holomorphic coefficients, then
D, (p) is the restriction to the real t-axis of the holomorphic flow

®,(p) = (x(p),&(p)) = exp(tv)(p).

We recall also that C*" is endowed with the complex canonical 2-form o, which
makes it a symplectic space, and two real symplectic 2-forms Re o¢ and Im o¢. For
convenience, we remove subscript C from the notations. If p is a smooth complex
function on C*", the Hamiltonian vector field of p is defined as

_0pd O0pd Opo Op0

" T x| ot Ox  OxOf  Ox O¢

(note that we have used a different convention from [MeSj, Sj1], where H, does not
contain the antiholomorphic derivatives). If we define the real Hamiltonian vector
field H*? by (Reo)(H[7,t) = (df,t), then we have Hyj = H,. More precisely,

in the basis B,
5 op Ip Ip Ip
= (R — R —Re——, R .
4 ( eBReﬁ’ e('“)Imf’ € ORex’ e8Imx)
We denote by the Jacobian (in the real sense) expressed in this basis.

The Poisson bracket associated with Re o¢ is denoted by { -, - }x and coincides
with {Re -, Re - } for the real symplectic structure on C*" read through O.

Let p be a smooth function such that dp € I*°. For real ¢, the Hamiltonian flow
of H » will be denoted as above by

(4.1) B(p) = (®rx(p), B1c(p)) = exp(tH,)(p)

Let )?,, = @(Ex@tﬂx, 5,((1),;5) , and 17,} = @(Ef@t,x, 55@_,5) considered as vec-
tor fields on T*(C"). In the same way, we write X, = @(5‘)((1),,)(, 8,((1)@5) , and
Y, =0 ( O0c Dt x, 85<I>t_’5) , where 0 denotes the holomorphic derivative. We first state
a technical Lemma, which follows from a straightforward computation and the fact
that p verifies approximately the Cauchy-Riemann equations:

Lemma 4.1 With p as above, we have:

(9Hp @,

(4.2) X, = 5 D)X, + 0(D:(0)>) (X,,X,)

~ OH ~
(4.3) Y, = P(¢> Y, +O0(®,(0)%) (Y,,Y,).
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4.2 The Stable-Unstable-Center Manifold Theorem in the Complex Domain

Our first step is to extend the stable/unstable manifold theorem in the case of almost
holomorphic Hamiltonians. To be complete we will actually prove a little bit more
than required. We will follow closely the nice geometric argument of [Sj2] in the
analytic category, implemented for higher derivatives by an idea we borrowed also
from [HeSj1].

So let p such that dp € I, have a non degenerate critical point at pg, p(p) = 0.
Let F,,(p) as in (1.1) denote the fundamental matrix (in the holomorphic sense),
and assume as before that F,, (p) has 2n distinct eigenvalues, none purely imaginary.
Again let Ay C T, C*" be the sum of all eigenspaces corresponding to eigenvalues
with positive (resp. negative) real parts. We have:

Theorem 4.2 With the notations above, in a neighborhood of po, there are ﬁp—
invariant, R-Lagrangian manifolds Jy (i.e., Lagrangian for Re oc), passing through
pos such that T, (d+) = Ax. Within J, (resp. J_), po is repulsive (resp. attractive)
for ﬁp, andRe p|g,. = 0. We can also find Re oc-symplectic coordinates, denoted again
by (x,€) = k(y,n), Ok € I, such that their differential at p, verifies dr(po) = 1d,
k*(oc) = ocmod I® and J, = {£ = 0}, J_ = {x = 0}. In these coordinates

(4.4) Re p(x,§) = Re(A(x, §)x, §)

where A(x, €) is smooth, has constant term equal to Ay, and OA(x, £) € I>°. Moreover,
(4.5) px,€) = (Ax, ©)x, §) mod I,
(For simplicity, we have written (A(x, £)x, £) instead of
(A (x,©)(Rex, Imx), (Re £, Im &)

where A’(x, £) is a 2n X 2n matrix; actually the notation p(x, £) = (A(x, £)x, £) makes
sense at the level of formal Taylor expansion at py.)

Outline of Proof We proceed in several steps. In the topological step we start to
define, as in Section 1.1, the outgoing/incoming regions relative to H > and study the
flow of Lagrangian manifolds, as t — £o00. This yields, via a compactness argument,
to C° coordinates where the outgoing (resp. incoming) submanifold J, (resp. J_ ) is
given by & = 0 (resp. x = 0 ). Then we turn to differentiability and prove the J. are
C!. Finally we turn to higher derivatives and properties of almost analyticity.

We first choose coordinates where F,, has block-diagonal form. Taking complex
linear coordinates as in (1.3), we can make it diagonal. Then the Hamiltonian vector

field takes the form

0 0 g 0
4. H. = Anx - — — A& - — 2\ (2 2 TOD (*Cr
(4.6) » 0X P o€ 8§+O(Hx’§u)(8x’8£)m0d A 0
where we recall Ay = diag(\, ..., \,). Forreal t, let @t(p) be the Hamiltonian flow

of ﬁp asin (4.1). As in Section 1.1 we can construct an hermitian norm || - ||o such
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that identity (1.7) holds if || - || and || - ||o stand now for the hermitian norms. For
0 > 0, we define the outgoing region as

O = {(x,6) : [|€llo < 2l1xllos [IxlI2 + 1112 < 8%}

and let 9Q9" denote its boundary. Estimates (4.6) again show that there exists
C > 0 such that

(4.7) Ixllo/(2C) < Hyllxllo < [Ix[lo/C. p € Q™
while
(4.8) —H, €]l > [I€]lo/C on dQ™ N {(x,€) : [|€]lo = 2[1x]lo}-

Lett — E%(x(O), 5(0)) be an integral curve of ITIP with p = (x(O), {(0)) € Q.
Along ®, we have §, = H 1> 50 using (4.7), Gronwall’s Lemma, after suitably truncat-
ing p outside a neighborhood of py, shows that

(4.9) ¢/x(0)]lo < [Ix(1)]lo < €/C|x(0)]l0, p € QF*,t > 0,

which allows us to define the hitting times T3 as in (1.10) and (1.11) (although we
have not yet found the outgoing manifold).

It follows from (4.9) and (4.8) that Q9" is stable under fft, ie, if p € Q9 then
exp(tﬁ p)(p) € Q9 for 0 < t < T3 (p), while it never gets back in afterwards.

Similarly, we define the incoming region as in (1.12), and the corresponding hit-
ting times as in (1.13), (1.14).

Now we try to find the outgoing/incoming manifolds for H > and study the evo-
lution of the complex manifold A; = {exp(tﬁp)(p) tp € QMY ast — +oo. Itis
convenient to introduce

A = {(t,7; exp(tﬁp)(p)) tpe WM 0<t< TM™(p),T=Repo exp(tﬁp)(p)}

By what we have just said, A°" is a connected submanifold of codimension 1 in the
symplectic space T*R*"*! endowed with the 2-form d7 A dt + Re o¢. The vector field
O+H » is tangent to A°*, and 7 is independent of t. The evolution of a tangent vector
fp(t) = (X\x(t),)?g(t)) € T(T*R*") (the p-projection of the tangent space to A°%,)
is given by the 4n x 4n system:

N 0H,  ~ N
(4.10) X, (t) = 8—;(<I>t<p))xp<r>

where 0, denotes the gradient in the real sense.

It is easy to see that the leading term in the 4n X 4n matrix 9H »/Op in the basis B
has a hyperbolic structure, each eigenvalue A; occurring twice, as well as — 2}, +X js
so that the linear flow is expansive in the (Re x, Im x)- directions, and contractive in
the (Re &, Im &)- directions.
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So (4.10) shows that if ey > 0 and § > 0 are sufficiently small, then the outgoing
region

(4.11) Xl < &0 [ Xa(0)]

is stable along d,(p),p € Q9™, as t increases, t < T"‘“(p)

Now let 3+ ={peQM¢=0}3:0) = <I>t(3+) N QY™ and A, be its lift in A°".
This is a submanifold of T*RZ”“ Lagrangian for dr A dt + Re oc, and its tangent
space contains 0; + H »- Applying the theorem of constant rank to the projection
m: Ay — C, (4.11) shows that A, (or J.(¢), forgetting about 7 which is independent
of t, and that we may take equal to 0, since p(py) = 0), is of the form & = g, (¢,x)
where g, € C* (see for instance [M] for a simple proof). Moreover, g.(0,x) = 0.
Since &, (p) € Q9™, we have ||g,.(¢,x)|lo < 2||x||o for all# > 0. By compactness, there
is a sequence t; — +o0, such that g, (t;, - ) — G, in C°({||x|| < const-0}). We put

d+ = {(x, G1(x)) : x € neigh(0)}

(the outgoing tail, or outgoing manifold) and proceed to show that G, € C'.
Consider the evolution of a normal vector

Z,(t) = (Zu(1), Ze(1)) € N(@:(1)) = (T(T*R*)|g,()) /T(3+(1))

(the p-projection of the normal space to A.). It is given by a,Zp(t) = M(@t(p))zp(t)
where the leading part of M(x, €) is obtained from that of 9H »/Op by permuting the
eigenvalues with positive and negative real parts. So in A, the region given by

(4.12) 1Ze®)]| = 1 Z:(0)]/ &

is stable under <f>t.

Now let p; be another integral curve of i p> starting at p € Q9™, and not in J..(¢)
(p; lies in A°™, but we choose the initial condition away from §+). Let I'; be the
orthogonal projection of p; on J,(t), I'; € N(J,(t)) the normal vector. By (4.12), we
see that if 7; denotes the length of the segment [p;, I';], then %'yt < —Cv, C > 0
so the integral curves of H » approach g, exponentially fast as ¢ increases, and the
estimate ||g, (t, x) — g4 (s, %)|| = O(e=*/€),allt > s > 0, shows that g, (¢, x) is Cauchy,
and T(J,(t)) has a limit as t — +oo (not only for a sequence ¢;). This limit is the
tangent space to J+ = {{ = G.(x) : x € neigh(0)}, and it follows that . (¢) tends
exponentlally fast to 4 in the C! topology. It is easy to see that g, is invariant under
®,, all £, and characterized as the set of p € Q9" such that d,(p) € Qg allr < 0.
We have & +(p) = po=0ast — —o0, p € J;+. Moreover, Rep =7 = 0on J,.

We are left to show that J. is a Lagrangian submanifold for (T*C",Reo¢). If
uy, up are complex C! functions vanishing on J4, and p € J, then {uy, us}r(p) =
{u; o Oy uy; o O }r(P_,(p)). Since integral curves of exp tﬁp approach J; ex-

ponentially fast, we see that du; o <I>t(<I>,t(p)) tends to 0 as t — +o00, hence
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{u1, u,}r = 0, and we have proved that J, is involutive. Because T,,J, () is transver-
sal to 5, = {p € Q" x = 0} (and their intersection is 0) we have also proved,
letting t — +00, that J, is Lagrangian for Re o¢. Furthermore, T, (J;) = A. Simi-
larly, we introduce

A =L (t,m5exp(—tH,)(p)) : p € Q0 <t < T"(p), 7 = Re poexp(—tH,)(p) }

Taking the flow of 5, through </I\>(t) for negative f, we set J_(t) = @,(g,) N Qg‘,
and look for the evolution of a tangent vector to J_(¢) along an integral curve p,
of ﬁp, starting at p € Qf;n, and not in J_(f). Letting t — —o0, we can see that
J_(t) tends exponentially fast to J_ = {(G_(&),€) : & € neigh(0)}, for some C!
function G_(§). Then J_ is again Lagrangian with respect to Re ¢, and we call it
the incoming tail, or incoming manifold. Again we have Rep =7 =0o0n{_.

It is clear that the invariant manifolds J. are characterized as the set of p € s
such that ff)th(p) € Qg, forall +¢ > 0.

The higher derivatives cannot apparently be handled with the same method, but
by the uniqueness property of the outgoing/incoming manifolds, we can conclude
as in [AbRo, App. C] with a fixed point argument, the limits being necessarily ..
An alternative way is to mimick the proof of [HeSj1, Prop. 2.3]. Namely, it follows
easily from the previous arguments that g, (t) (say) can be parametrized by a phase
function ¢ (x, n), such that the graph of exp(tﬁp), t >0, is given by

Ce = {(Oypr 1%, 0cpr) + (x,m) € "}
Furthermore, ¢, verifies the eikonal equation

dyp e
a_tt + Rep(x, 8_;) =0, 90|t:0 = <X, 71>

By the previous estimates, we know then that ¢, tends exponentially fast as t — +o0,
to some 4 (x,n) inC Z(qut). Then ¢, (x, n) verifies again the corresponding station-
ary eikonal equation, and parametrizes J.. Using the transport equations verified by
%, we can show as in [HeSj1] that this convergence holds actually in C*°(Q9""). We
proceed similarly in Q.

Once we have found the smooth, involutive invariant manifolds J4, we choose
adapted coordinates of the form (x',£') = (x — G_(£),£ — G.(x)) . By construc-
tion, these are smooth symplectic coordinates for Re o, where the outgoing (resp.
incoming) manifold takes the form ¢’ = 0 (resp. x’ = 0.) From now on, we work
in these coordinates, which we denote again by (x, ), deleting the prime. The same
argument as in Section 1 then shows that (1.8) and (1.9) hold for p € Qs, ¢t € R,
where (x(t), £(t)) stands for &)t(p), and || - ||o for the hermitian norm.

We pass now to the almost analyticity property. Using coordinates adapted to J 1.,
this can be done again by combining Lemma 4.1 with the method above, showing
that the generating functions verify dp. € I°°. (Alternatively, this can be done
by the fixed point argument of [AbRo, App. C].) The Theorem easily follows, since
also (4.5) can be recovered from (4.4), using that p verifies the Cauchy-Riemann
equations modulo I*°. ]
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4.3 Proof of Theorem 0.4

We proceed exactly as in the real case. Again let y°"'+x™™ = 1 be a smooth partition of
unity in T*R*"\ pg with supp x*** C {[[¢]lo < 2[xlo}, supp x™ C {[xllo < 2[[£[lo}-
We start with

Proposition 4.3 Let p be as above, and g € I°°. Let

0 00
fp) = / (X°"g) o exp(tH,)(p) dt, f"(p) = — / (x"g) o exp(tH,)(p) dt
0

— o0
Then f = foU + fin ¢ [ solvesﬁpf =g

We use throughout the C* coordinates as in Theorem 4.2 where J are given by
¢ = 0and x = 0, as we did in Proposition 1.2.

Using again Birkhoff series (in C*"), we know that there is a smooth canonical
transform for the complex symplectic structure (T*C", o¢), K(po) = po, such that

(4.13) pok(x,8) = qot) +r(x,£)

where ¢« = (¢1,...,t,) are the action variables as in (0.3), and r € I*°. The Hamil-
tonian qo(¢) satisfies the same hypotheses as p, and is constructed from the formal
Taylor series by a Borel sum of the type qo(t) = > po; qe(t)x( Eik) , X € Cge(eh)
equal to 1 near 0, of the form x(z1,...,z,) = xo(z1) ® -+ ® x0(z4), Xo rotation
invariant. Of course, 9,4o(1) = O(:>°). Using again Borel sums, the canonical trans-
formation is of the form x = exp Hf for some smooth f, 3/)/1 = O(p>). Now we
take real part of (4.13):

Re p o ri(x, &) = go(¢)) +1'(x,§),

where ¢/ stands for the real and imaginary part of ¢ (it is easy to see that these 21 new
action variables Poisson commute for { -, - }r). Following the proof of Theorem 0.1,
we consider the family g/ = g +sr/,0 <s < 1.

As above we look for a family of smooth k, preserving Re o¢, satisfying the identity
q! o ks = g and

(4.14) Osks = X, 0 K.

We look for X; of the form X, = H 1, for some family of real valued functions f; € I*°.
Since g/ is real, we get

<Hf;7q5/> = _<Hqs’7f;> = —T/,

and again we are led to solve the homological equation (Iflq;, fs) = r’, for which
Proposition 4.3 gives f; € I°°. Then (4.14) has a solution of the form x, = Id +x/,
k! € I*, uniformly for s on compact sets. Furthermore, by construction, s, pre-
serves Re o, and (k;)*o¢ = o¢ mod I°°. Theorem 0.4 easily follows.
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4.4 Remark: Monodromy Along IR-Manifolds

Let p be analytic and have a non degenerate critical point at p = 0, such that F,
has rationally independent eigenvalues, none purely imaginary, as above. Assume p
is real on the real domain. We can apply Theorem 0.1 to T*R" so p is integrable
in the C*° sense on the real domain, for some real canonical transform «x = kg
that takes p into its Birkhoff normal form. We set Ay = T*R" and try to move
Ay around py in the complex domain, so we consider the family of IR-manifolds
A = exp(isH,)(Ag), s € R, which is defined for all real ¢. (Recall that a submanifold
of T*C" is called IR if it is Lagrangian for Im o¢ and symplectic for Re o¢). Then
again p is clearly integrable on A;, in the C* sense, i.e., for real times, and one can
address the problem of monodromy. The 1-dimensional case has been settled in
[HeSj2, App. B], where the authors recover the well-known fact that p is integrable
in the holomorphic sense; here « is univalued, so making a reflection on py gives
A, = Ayr = Ap. This is actually the way that the “exact Birkhoff normal form”
was obtained. In several variables we cannot expect integrability, nor even recovering
As = Ay for some s, since the orbits may never close (see [Ro2] for a more complete
study of monodromy).

A Appendix
A.1 The Birkhoff Transformations

We recall here from [KaRo] some formal constructions, using Lie brackets, borrowed
essentially from [AbMa, p. 500]. There are of course many alternative proofs, the
idea here is just to write formal power series in the most convenient way. Since the
procedure is mere algebra, it works equally in the holomorphic, real analytic or C*°
category, and eigenvalues also can be real or complex. When eigenvalues are complex,
and the Hamiltonian real and C*°, we can recover real asymptotics just by using an
appropriate linear symplectic transformation of coordinates. As in [IaSj], we discuss
the parameter dependent case. In what follows, s € neigh(0, R¥).

Let p = p(s) depend smoothly on s, and have a non degenerate critical point of
hyperbolic type at p,. If p(s) is complex valued, we assume also that d(, ¢)p vanishes
of infinite order at p;, so that p(s) has formal Taylor series in (z, () at p;. After a
linear symplectic change of coordinates, depending smoothly on s, we may assume
that p; = pp = 0, and p(s) has quadratic part p,(z,(,s) = Z;’:l Aj(8)zj(s)Cj(s).
We assume also that p(0) has rationally independent (or non resonant) frequencies
(A100), ..., An(0)) = (A1,. .., An). Using the fact that the symplectic group is con-
nected, we may further perform a symplectic, linear change of coordinates, C*° in s,
such that z;(s), (;(s) become independent of s, and p,(z, (,s) = Z;’Zl Aj(s)z;¢;. Of
course, the A;(s)’s do not in general verify the non-resonance condition for s # 0,
but we shall investigate up to which accuracy Birkhoff series hold in that case. After
reduction of the quadratic part as above, p(s) now takes the form

p(z,¢,5) = pa(z, ¢, 5) + O(|z, CP).

We want to construct a map f = f(s) between neighborhoods V(0) of py = 0 €
T*R", such that (exp Hy(;))*Hp(s) is resonant, modulo p>0(5>). Indeed we have:
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Proposition A.1 Let p(s) = p(z,(,s) as above, and p = (z,(). Then there exists
a smooth canonical transforms k(s): V(0) — V(0) in T*R", and a smooth function
q(s) = q(t,s), v as in (0.3), such that k(py, s) = po = 0, dk(pg,s) = Id and

(A.1) p(s) o k(s) = q(s) + p°O((p,5)™)

Proof For simplicity, we assume k = 1, but the general case is similar. We introduce
a small ordering parameter € and rescale coordinates (y,7), as (€ y,en) = (z,()
so that p(z,(,s) = €2 pa(y,m, ) + € p3(y,n,s) + - -- where pj is homogeneous of
degree j. Working first at the level of formal Taylor series, we want to solve (formally),

denoting p = p(s), f = f(s):

(A.2) (exptHy)*H, =) —[Hy, [Hy, ..., [Hy, Hpl ... 1] = H,,
=0 I’
where r = r(s) is resonant, modulo p*O(s*), and t = €2. We look also for

f,n,s) =€ fily,n,s) + € fo(y,m,5) + - - - with f; homogeneous of degree j + 2.
We proceed by induction. Collecting the €*-terms in (A.2), we want to find f;
such that H,, — Hyp, 7} is resonant modulo p*O(s>), i.e, ps — {ps, fi} is reso-
nant modulo p*O(s>). Writing ps(y,n,s) = Z\mm:s pa,g(s)y“nﬁ, fily,m,s) =
Z‘ a3 Gap(s) y*n” we try to achieve this condition at any order in s. At zeroth or-
der, i.e., for s = 0, we take a,3(0) = —pa3(0)/(\, o — B) for a # [ and a,3(0) = 0
otherwise. At first order in s, the condition that d;( ps — {p2, fi}) |S is resonant
modulo p*O(s>) gives

aspaﬁ(o) - <as)\(0)7 o — 6>a0z3(0)
<)‘7 o — ﬂ>

when o # 3 and say, 0,a,3(0) = 0 otherwise. This process extends by induction
to any order in s (note that when s is vector valued, we need to check symmetry for
higher derivatives.)

So far we have constructed the formal Taylor series for a,3(s) at s = 0, and found
fi(s) with an uncertainty p*O(s°) (in the original variables). Next we collect the
e*-terms, which gives:

6saaﬁ(0) -

1
P4 — szf2 - Hpsfl + E{fla {flaPZ}} =def _szf2 +614-

We want to find f, = fo(s) such that —H,, f, + g4 is resonant modulo p*O(s>).
Writing q4(y’ LB s) = Z|u+/3\:4 dop (5))’077‘3’ fz(% U s) = Z|u+/3\:4 ] (5))’(177‘3, we
look again for the Taylor series aq3(s) = aa3(0) + 0saas(0)s + 102a,5(0)s* + - - . At
zeroth order we may take a,3(0) = 0 for o = (3, and a,3(0) = g,3(0)/(\, a0 — 3)
otherwise, then carry on the procedure as above at any order in s. This gives H,, f, =
14, Where r4(s) = E|a\ _5 Goa(8)y“n® is the resonant part of g4, modulo p>O(s>).
Assume by induction that we have alread%constructed fis- .+, fn—1 homogeneous
of degree 3,..., N + 1, so that f(N— e/ f; verifies (A 2) at order eN*1in p,
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and infinite order in s. Then we try fV) = fN=1 1 &N £ to fulfill (A.2) up to order
eN*2 je, find fy = fn(s) such that

N—1

t
N
is resonant modulo p?O(s>). Each of the terms of that sum are ex-

panded to order é¥*2.  The last one is an N-fold bracket and contains only

(Hp, [Hf,...,[Hp,Hp,]---]] to this order; other terms are j-fold brackets con-
taining fi,..., fu—1, and fy occurs only in [Hy,H,,]. Writing fn(y,7,s) =
Z\Mm:mz ac,g(s)yanﬁ, we can find a,s(s) as before so that —H,, fy + qni2 = 12
where gni2 = gqn+2(s) and ryy2 = 7n42(s) are of degree N + 2 (or ryy2(s) = 0,
according to the parity of N), and ry+,(s) is resonant modulo p*O(s>).

Summing up, we have found f;, r;, deg(f;) = j + 2, deg(r;) = j such that

(exptH( fite? ot ) He pote? pytet pat) = Hetpppl

s0 (A.2) is verified at the level of formal power series. In the original variables (z, {) =
(y,n), so by homogeneity: (exp Hy())*Hp(s) = Hy(s)-

All this computation can be implemented at the level of C* germs of functions
at p = p(0,0),s = 0 if we apply Borel’s theorem to the f;(s) and r;(s). Hence
the relation (exp Hp(;))*Hps) = Hy) holds at the level of C* germs, with r(s)
resonant modulo p>O(s>), i.e., asymptotic to a C* function of (z,(1,. . ., 2,(y).
Since (exp Hy)*H, = HpoexpH;, [AbMa, p. 194], we get Hpoexprr; = Hps and so
p o expHy = r is resonant modulo p’O(s>°). So we have proved the Proposition
with k(s) = exp Hf(s)’ where fN(s) is a Borel sum for f(z,(,s). [ |

A.2  Families of Fourier Integral Operators

We review the most fundamental properties of FIOs needed in the main text, follow-
ing essentially the book by V. Ivrii [Iv, Section 1].

First item composing our toolbox is the class S”(T*R") of smooth symbols in h
of order m € Z on T*R", i.e., h™"a(p, h) = ag(p) + ha;(p) + - -+ (in the sense of
asymptotic series in k), where a; are C*° functions defined in a (fixed) neighborhood
of pg. Of course, a may depends on other parameters, and this dependence will
also be smooth. We shall always work microlocally near py, which roughly means
that symbols are compactly supported near py = (xo, &), and only defined modulo
O(h*°). We call also “amplitude” an asymptotic sum a(x, y, 6, h) depending on the
position variable x, y € R", defined near x = x, ¥ = ¥, and possibly on other phase
variables § € RY. Their class is again denoted by $” = S"(R" x R" x RV), etc.

Next item is the class of smooth (real) phase functions ¢(x, y, 6), (x, y,0) € R" x
R” x RY, nondegenerate in the sense that dgbél, e d(ng are linearly independent on
the critical set C, = {(x, ,6) : ¢; = 0}. If ¢ is nondegenerate, the map ¢: (x, y, ) €
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Cy — (x,0Ly, —qb;) is a (local) diffeomorphism onto its range Ay. Then A =
A, is a Lagrangian submanifold of T*R*" for the 2-form d¢ A dx + dn A dy, and
the graph of a canonical transform . Conversely, if A is Lagrangian and 7: A —
T*R", (x,&; y,m) — (x,n) is non-degenerate, then A is the graph of a canonical map,
and if we consider a generating function ¢, then A = A, with the standard phase
o(x,v,0) = o(x,n) — yn, @ = n. We say usually that ¢ quantizes, or parametrizes
k. These objects may not defined everywhere, but we shall always assume that A,
contains a neighborhood of (x(py), po, ). On Cy there is a natural half-density sY 2,
and the inertial index sgn @, where ® is the Hessian of ¢, with respect to all variables,
is a well-defined integer.

Given an amplitude a € S° and a non-degenerate phase function ¢ as above, a
FIO is a linear operator A on C5°(R") with Schwartz kernel of the form

Ka(x,y) = I(a, d)(x, y) = (2rh)~ "N/ / e OCrha(x y. 0, h) do.

Again we say that A quantizes «, thinking of the case where A is (formally) unitary.
The principal symbol of A is the function on A, defined by

a(k(p), p) = €78 %ae61% 0 L7 (K (p), p).

Again, such an FIO is only defined “microlocally near (x(py), po)”; in the present case
where k(pg) = po we simply say that A is defined microlocally near p,. The relevant
setup is the notion of “frequency set”, and we refer to [Iv, Section 1] for details.

Objects such as the canonical transform k or the principal symbol a® are intrin-
sically attached to A, but not the phase or amplitude, which gives some degrees of
freedom for writing an FIO. Namely, if A is defined through I(a, ¢), and b(x, ¥,0)
is another phase function parametrizing x (the number of phase variables 6 need
not be the same as for ¢), then there exists another amplitude a(x, y, 8) such that
I(a, ¢) = I(a, QNS), microlocally near py.

In particular, if A;, 0 < s < 1, is a smooth family of FIOs associated with the same
canonical transformation &, k(py) = po, with Ks, = I(ag, ¢o) then there is a smooth
family of amplitudes a,(x, y, 8, h) such that K4, = I(as, ¢¢), microlocally near py.

There exists a nice calculus of FIOs. They compose according to their canoni-
cal relation, in particular if the principal symbol of A is non vanishing, then A is
invertible (microlocally near py), and we can choose for A~! the phase —¢(y, x, 6),
which parametrizes x~!. Let A, B quantize x and k! respectively, and P be a h-PDO
(a h-PDO is a particular FIO with x = Id; we shall always use Weyl quantization of
symbols) then Q = BPA is again a h-PDOQ. Denoting by P(p, h) = po(p)+hpi(p)+- -
and Q(p, h) = qo(p) + hqi(p) + - - - their Weyl symbol, the following relation holds:

k
(A4) qk = ng—j(xa Ea 836) 85)1)] OK

j=0

where /; are linear differential operators of degree 2. In particular, we have Egorov’s
Theorem:

(A.5) qo(p) = b°(p, () (po o K)(p)a’ (K(p), p) .
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