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SYMMETRIC LADDERS

“ALDO CONCA

In this paper we define and study ladder determinantal rings of a symmetric
matrix of indeterminates. We show that they are Cohen-Macaulay domains. We
give a combinatorial characterization of their A-vectors and we compute the
a-invariant of the classical determinantal rings of a symmetric matrix of indeter-
minates.

Introduection

Let us recall the definition of ladder determinantal rings of a generic matrix
of indeterminates. Let X be a generic matrix of indeterminates, K be a field and
denote by K[X] the polynomial ring in the set of indeterminates Xi;. A subset Y of
X is called a ladder if whenever X;;, X,, €Y and i < &, j < k, then X, X); € V.
Given a ladder Y, one defines I,{(Y) to be the ideal generated by all the f~minors
of X which involve only indeterminates of Y. The ideal I,(Y) is called a ladder
determinantal ideal and the quotient R,(Y) = K[Y]/I,(Y) is called a ladder
determinantal ring. This class of ideals is investigated in [1], [2], [9], [15], [17]. Tt
turns out that the main tool in the investigation of the ladder determinantal rings
is the knowledge of Grobner bases of the classical determinantal ideals. In [8] we
determined Grobner bases of ideals generated by minors of a symmetric matrix of
indeterminates. This allows us to study the ladder determinantal rings of a
symmetric matrix.

Now let X be an # X n symmetric matrix of indeterminates, K be a field. Let
us denote by A the set {(Z, 7) EN*:1<4,j<u}. A subset L of A is called a
symmetric ladder if satisfies the following condition: if (Z, 7) € L then (7, 1) €
L, and whenever (¢, 7), (h, k) € Land i < h, j < k, then (i, k), (h, 5) € L.

The set Y=AX,;:i<j, (i, /) € L} is called the support of L. We say that
a minor is in L if it involves only indeterminates of Y. Given a sequence of
integers ¢ = 1 <, < ++- < a, < n, we define I,(L) to be the ideals generated

Received April 6, 1993.

35

https://doi.org/10.1017/50027763000024958 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024958

36 ALDO CONCA

by all the z-minors of the first &, — 1 rows of X which are in L, 1 =1,..., {, and
by all the ¢ + 1 minors of L. Denote by R, (L) the ring K[Y]/1,(L). In particular
ifa=1,...,t— 1, then I, (L) is the ideal generated by the {-minors in L.

Following the approach of Narasimhan [17], we use Grobner bases to show
that I,(L) = I(X) N K[Y]. Since I,(X) is known to be a prime ideal, see [16], it
follows that I,(L) is prime too. Furthermore we determine a Grobner basis of the
ideal I,(L). It turns out that the ideal in(I,(L)) of the leading forms of I,(L) is
generated by square free monomials. Therefore the ring R,(L)* = K[Y]/
in(Z,(L)) is the Stanley-Reisner ring associated with a simplicial complex 4,(L).
By a result of Stanley, the Hilbert function of Ra(L)* is determinated by the
f-vector of A4,(L). We describe the facets of 4,(L) in terms of families of
non-intersecting chains in a poset, and we get a combinatorial characterization of
the dimension and multiplicity of R,(L). As in the case of ladders of a generic
matrix, it is possible to show that 4,(L) is shellable. Actually, we deduce this
result from the analogous of [15]. The shellability is a combinatorial property of
simplicial complexes which implies the Cohen-Macaulayness of the associated
Stanley-Reisner rings. But it is well known that if Ra(L)* is Cohen-Macaulay,
then R,(L) is.

In the second section we apply these results to give a combinatorial charac-
terization of the A-vector of the rings R,(X) in terms of number of families of
non-intersecting paths in a poset with a fixed number of certain corners. Then we
compute the g-invariant of the ring R,(X) defined by the ideal of minors of fixed
size in the matrix X in the homogeneous and weighted case. The same result was
obtained by Barile [3] independently and using different methods. As last applica-
tion we study the determinantal ring R,(Z) associated with an m X # matrix of
indeterminates Z in which an s X s submatrix is symmetric. It turns out that
R.(Z) is a symmetric ladder determinantal ring. In particular R,(Z2) is a
Cohen-Macaulay domain, and we compute its dimension and multiplicity. If s < m
< n, we prove that R,(Z) is normal and that is Gorenstein if and only if t = s
and m = . In [10] we deal with the case s = m < n, and we show that R,(Z) is
normal, and is Gorenstein if and only if 2m = n + £ The results of this paper are
part of the author’s Ph. D. thesis.

1. Ladders of a symmetric matrix

Let X be an # X # symmetric matrix of indeterminates, K be a field, and de-
note by K[X] the polynomial ring in the set of indeterminates Xj;, 1 < i< j < n.
Let 7 be the term order induced by the variable order X;; > -++ > X, > X,, >
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“e >X2n> “e >X

n—1n > Xnn

Let us recall the combinatorial structure of K[X] with respect to the product of
minors of X. Denote by H the set of the non-empty subsets of {1,..., n}.
Given an element @ of H we will always write its elements in ascending order

1<a <- <a;, <n On H we define the following partial order:

a=A{a,...,a} <b=Ab,...,b}er<sandag,< b fori=1,...,7.
As usual, we denote by lay,..., a,|by,..., b the s-minor det(X,,) of X, and
assume that 1< g, < -+ <g, <z and 1<h, <+ <bh,<n The minor
lay,..., a.| b, ..., bJ]is called a doset minor if @ < b in H. We denote by D the
set of all the doset minors of X. Let My = [ayy,..., a5 | by,..., by J,. .., M, =
[@prs. .oy @y, | by, .., bys,] be doset minors; the product M, --* M, is called a
standard monomial if {by,..., b;} < {@jn,. .., @y, ) for j=1,...,p— 1

The ring K[X] is a doset algebra on D, that is, the standard monomials form a
K-basis of K[X] and one has a certain control on the miltiplicative table of the
products of the standard monomials, see [12]. If one considers suitable ideals of
minors, the same combinatorial structure is inherited by the quotient rings. Given
a=A{a,...,a} € H one defines I,(X) to be the ideal generated by all the
minors [a,,..., a;|b,..., b) with {a,..., a) Zain HIfa={1,..., t— 1},
then the ideal I,(X) is the ideal I,(X) generated by all the ¢-minors of X. The
class of ideals I,(X) is essentially the same the class of ideals defined and studied
by Kutz [16].

In order to define ladders and ladder determinantal ideals of the symmetric
matrix X we introduce some notations. Let A = {(, /) € N*:1 <i<#x and
1<j<#un} and B={(i,j) € A:i <j}. We consider A a distributive lattice
with the following partial order: (i, 7) < (k, h) © i > kand j < &

In the generic case there is a one-to-one correspondence between minors and
monomials which are product of elements of main diagonals of minors. When we
deal with minors of a symmetric matrix we lose this correspondence. The mono-
mial X, ..
the main diagonal of all the minors M = [c,,..., ¢, |d,,...,d,] such that {c,
d} = {a;, b} and ¢; < ¢;,,, d; < d,,,. But if we require that the minor is a doset

. Xago with a; < @, and b; < b;,y, is the product of the elements on

minor then it is unique.
Therefore the natural choice for the definition of a ladder of the symmetric
matrix X is the following:

DerINITION 1.1. A subset L of A is a symmetric ladder if:
(a) L is a sublattice of A;
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(b) L is symmetric, that is (¢, j) € L if and only if (7, 1) € L.
We represent ladders as subsets of points of N’. An example of symmetric
ladder is the following:

(5,5)

4
7
4

4
4
s
’

(1,1)

Fig. 1

Let L be a symmetric ladder, we put L' =L N B and ¥ = {X,;: G, e
L, i <j}. The set Yis called the support of L. We say that a minor M = [a,,...,
ag|by,..., b isin L if the following equivalent conditions are satisfied:
(1) For all 1 <4, j <5, then (a;, b)) € L.
(2) For all 1 £4< s, then (a;, b,) € L.
(3) The entries of M belong to Y.
(4) The entries of the main diagonal of M belong to Y.

Let « = {a,..., )} € H. For systematic reasons it is convenient to set
@,., = n + 1. Following [15], we define the ideal cogenerated by « in L.

DermviTION 1.2. Let L be a symmetric ladder and Y its support. We denote by
I,(L) the ideal generated by all the minors M = [a,,..., a,| b,,..., b of L such
that {a,,..., as 2 aand set R, (L) = K[Y]/I,(L).

In particular, if @ = {1,..., ¢t — 1}, then I,(L) is the ideal generated by all
the f-minors of L.

Let /(L) be the set of all the doset minors [a,,..., a,|b,,..., b,] of L such
that 1 <7<t+1,a,2afori=1,...,r—1 and a, < «,. The main result of
[8] is the determination of a Grobner basis of the ideal [,(X) with respect to 7 :
the set J,(X) is a minimal system of generators and a Grobner basis with respect
to 7 of the ideal I,(X), see [8, 2.7, 2.8]. From this we deduce the following:

THEOREM 1.3. (a) The ideal I,(L) is prime.

(b) The set J,(L) is a Grobner basis of I,(L) with respect to T.
(¢) The set J,(L) is a minimal system of gemevators of I,,(L).
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Proof. (a) Since I,(X) is a prime ideal, see [16, Th. 1], it is sufficient to
show that [,(L) = I(X) N K[Y]. We have I,(L) < I,(X) N K[Y] since, by
definition, I,(L) < I,(X). Let f€ I,(X) N K[Y] be an homogeneous polynomial
and denote by in(f) its initial term with respect to 7. The set J,(X) is a Grobner
basis of I,(X). Therefore in(f) is divisible by the initial term of a doset minor M
of J,(X), that is, in(f) = in(M)h. Of course in(f) € K[Y], and therefore the
minor M is in L. Note that M € J,(L). Set g = f— hM ; then we have g €
I,(X) N K[Y] and g = 0 or in(g) < in(f) in the term ordering. Therefore, by in-
duction, we may suppose g € I[,(L) and f= g+ hM € [, (L).

(b) Let f € I(L), since in(f) € in(I,(X)) N K[Y] we may argue as in the proof
of part (a) and show that in(f) is divisible by the initial term of a minor of J,(L).
(c) Since J,(L) is a Grobner basis of I,(L), it is also a system of generators. But
J,(X) is a minimal system of generators of I,(X) and J,(L) C J,(X). Therefore
J,(L) is a minimal system of generators of I,(L). ]

Now we see how we may interpret the ideal I,(L) as an ideal of minors
associated with more general subsets of A.

DerFINITION 1.4. A subset Vof A is a semi-symmetric ladder if:

(a) Vis a sublattice of A.
(b) If (G, 7) €EVandi=j then (G, 1) € V.

Given a semi-symmetric ladder V, we say that a minor [a,,..., @ |b,..., b]
isin Vif (a;, b;) € Viorall 1 <14, j <s. We define I,(V) to be the ideal gener-
ated of all minors in V whose sequence of row indices is not greater than or equal
to a.

Remark 1.5. Let V be a semi-symmetric ladder and set L(V) = {(4, j) € A:
(1, €Vor (j,1) € V}. It is easy to see that L(V) is a symmetric ladder and
that L(V)™ € V. If we consider a doset minor M in L(V), then its main diagonal
is in L(V)™, and therefore M is in V. Hence I,(V) = I, (L(V)). In other words, to
study ideals of minors of symmetric ladders is the same as to study ideals of
minors of semi-symmetric ladders.

In the picture V is a semi-symmetric ladder and L(V) is its associated sym-
metric ladder.
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V= ’ L(V) = -

Fig. 2

The ideal in(I,(L)) of the leading forms of [,(L) is generated by the leading
terms of the minors in J,(L), and hence it is a square-free monomial ideal. There-
fore R, (L)* = K[Y] /in(I,(L)) is the Stanley-Reisner ring associated with a sim-
plicial complex. For the theory of the Stanley-Reisner ring associated with a sim-
plicial complex we refer the reader to [18].

In order to describe this simplicial complex and its facets we introduce some
notation and terminology. Given a simplicial complex 4, its elements are called
faces and facets its maximal elements under inclusion. A face of dimension ¢ is a
face with ¢ + 1 elements, the dimension of 4 is the maximum of the dimensions of
its faces and f; is the number of the faces of dimension ¢. The sequence f,..., f;
d = dim(4), is called the f-vector of 4. The Hilbert function of the Stanley-
Reisner ring kl[4] is determined by its f-vector [18]. In particular,
dim k[4] = d + 1 and e(k[4]) = f,.

Let P be a finite poset and £ € P. We define the rank of x in P to be the
maximum of the integers ¢ such that there exists a chain x; < --- < x; = x and
the rank of P to be the maximum of the ranks of its elements. A set of incompara-
ble elements of P is called an antichain. An antichain of B is a set {(v,, #,),...,
(v,, u,)} with v; S u; for i=1,...,p such that v, < -+ <, and #; < -
< u, and therefore it corresponds to the main diagonal of a doset minor.

For k=1,...,t+1 let S§,={(G,ND€EA: i<, or j<at, G,=BN
S,, S; = A\'S, and G, = B\ G,.

We define 4,,(L) to be the simplicial complex of all the subsets of L which,
for k=1,..., t+ 1, do not contain k-antichains (antichains with & elements) of
S, N L, and let A,(L) be the restriction of 4,(L) to L*. By construction 4,(L) is
the simplicial complex of all the subsets of L" which, for k = 1,...,t+ 1, donot
contain k-antichains of G, N L*. Furthermore the simplicial complex A, (L)
coincides with the simplicial complex 4,,(L) defined in [15], where M = [ay,...,
ala,..., al.
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We know that in(I,(L)) is generated by the k-antichains of G, N L* for
k=1,..., t+ 1. Therefore the Stanley-Reisner ring K[A4,(L)] associated with
A, (L) is R, (L),

It is well known that R, (L) and R,(L)* have the same Hilbert series, there-
fore their dimensions and multiplicities coincide. Thus the Hilbert function, the
multiplicity, and the dimension of R,(L) may be characterized in terms of
f-vector of 4,(L).

Let p = (a, b) be an element of L, we define R, ={(i,j) €L:a<1i,b
<7}, and for Z C L we set R, = U,_,R,. It is easy to see that R, is a sublattice
of L which is symmetric if Z is. We set L, =L N S, and recursively for
i=2,...,t,weset L; =S, N R, . Finally we put L; =L,N B.Since S, and L
are symmetric sublattices of A, L, is also a symmetric sublattice of A. By recur-
sion it follows that L, is the intersection of symmetric sublattices, and therefore it
is also a symmetric sublattice.

By [15, Th. 4.6] a subset Z of L is a facet of A(L) if and only if Z is the
union of disjoint maximal chains of L;, 1 =1,..., £

Lemva 1.6, Let Z be a facet of AL(L), then | Z N L | = Xi_, rk(L}) where
rk(L}) is the rank of the poset L.

Proof. Let p € L, we claim: p € L] © rk(p) > [rk(L,)/2], where rk(p) is
the rank of p in the lattice L,, and [x] = max{n € Z:n < x} denote the integer
part of a real number .

= Let p, < +++ < p, be a maximal chain of L;r which contains p, say p =
b If we consider the sequence ¢,,..., ¢, of the symmetric points (g; is obtained
from p; by exchanging the coordinates), then g, < -+ < g, < g, < p, < p, < -+
< p, is a maximal chain of L, Since L, is a distributive lattice and all the maxim-
al chains of a distributive lattice have the same number of elements, we have
rk(L) = 2s if p, # ¢, and k(L) =2s — 1 if p, = ¢,. In any case rk(p) =
rk(p) > [rk(L)/2].

&: Suppose p €L, and let ¢, <+ < g, =p be a chain with k = rk(p)
elements. If we consider the sequence of the symmetric points pi,..., p, then
¢ < - <gq <p.<...<p, is a chain of L; with 2rk(p) elements Therefore
rk(L,) = 2rk(p) > 2[rk(L,)/2], a contradiction.

From the previous claim it follows that every maximal chain of L; contains
exactly rk(L,) — [rk(L,)/2] elements of L} and rk(L]) = rk(L,) — [rk(L;/2].
Hence the assertion of the lemma follows from the description of the facets of
A, (L) and the claim. (]
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As immediate consequence we get:

ProposITION 1.7.  Let Z be a face of A,(L). Then Z is a facet of A,(L) if and
only if there exists a facet Z of A, (L) such that Z=Z N L.

Proof. = : The simplicial complex 4,(L) is the restriction of the simplicial
complex A4 (L) to L. Therefore there exists a facet Z of A,(L) such that ZC Z
N L*. Since Zis a facet, Z=Z N L".

&= Of course Z is contained in a facet Z, of 4,(L). By 1.6 it follows that | Z| =
| Z,|, and hence Z = Z,. OJ

We get the following characterization of the facets of 4,(L):

ProposITION 1.8.  The set Z is a facet of A,(L) if and only if Z is the union of
disjoint sets Z,,. .., Z,, where Z; is a maximal chain of L. Furthermore the decom-
position of Z as uwion of disjoint maximal chains of Lf 1S umique.

Proof. The set Z is a facet of A,(L) if and only if there exists a facet Z of
A (L) such that Z= Z N L". But Z is the union of disjoint sets Z,, ..., Z, where
Z, is a maximal chain of L,. If we set Z, = Z, N L] then Z, is a maximal chain of
L} and Z is the union of Z,,. .., Z,. The uniqueness of the decomposition of Z is a
consequence of the construction of the decomposition of Z as union of disjoint
maximal chains, see [15, pp. 20). O

COoROLLARY 1.9.  The dimension of R, (L) is 2i_, rk(L7), and its multiplicity is
the number of the families of disjoint sets Z,,.. ., Z, where Z; is a maximal chain of
L;.

Using this result we computed in [8] the dimension and the multiplicity of the
ring R,(X).

Recall that a simplicial complex 4 is said to be shellable if its facets have the
same dimension and they can be given a linear order called a shelling in such a
way that if Z < Z, are facets of 4, then there exists a facet Z, < Z, of 4 and an
element x € Z, suchthat ZN Z, S Z, N Z, = Z,\ {x}.

By [15, Th. 4.9] the simplicial complex 4,(L) is shellable. Now we shall see
how shellability passes from a simplicial complex to a subcomplex when a condi-

tion as 1.6 is fulfilled.
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LEmMa 1.10. Let A be a shellable simplicial complex over a vertices set V, and
W a subset of V. Suppose that for all the facets Z of A the number | Z N W | does not
depend on Z. Then the restriction of A to W is a shellable simplicial complex.

Proof. We denote by 4, the restriction of 4 to W, F(4) the set of the facets
of 4, F(4,) the set of the facets of 4, n =|Z N W| for all Z € F(4).

From the hypotheses follows, as in 1.7, that 4, is a pure simplicial complex of
dimension # — 1 and that a subset Z of Wis in F(4,) if and only if there exists
Z <€ F(A) such that ZN W= Z 1f Z € F(4,), we define Z’ = min{Z € F(4) :
Z N W = Z}, where the minimum is taken with respect to the total order of F(4).
We define a total order on F(4,) setting: Z < Z, © Z’ < Z| in F(4), and show
that this order gives the desired shelling.

Let Z, Z, € F(4,) with Z < Z,. By definition Z’ < Z] in F(4). Since the
total order on F(4) is a shelling, there exists H € F(4) and x € Z/ such that H
< Z,{x} =Z/\Hand Z; N Z' € Z/ N H. We note that £ € Z, since otherwise
HN W= Z and H < Z], a contradiction with the definition of Z]. Let Z, = H N
W ;Z, € F4, since HE F(A), {x} =Z\Z, and Z, NZ< Z N Z, By
definition, Z; < H < Z/ and therefore Z, < Z,. U

Let Hg(f) be the Hilbert series of a homogeneous K-algabra S (here the
degrees of the generators are all 1). It is well-known that Hg() = X5_, ht' /(1 —
), where d is the dimension of S, h; € Z, and h, # 0. The vector (hy,..., k) is
called the h-vector of S. The McMullen-Walkup formula, see [5], is a combinato-
rial interpretation of the h-vector of the Stanley-Reisner ring associated with a
shellable simplicial complex. Given a facet Z; of a shellable simplicial complex 4,
we set

C(Z) = {x € V : there exists a facet Z of 4 such that Z< Z, and Z,\ Z = {x}}.

Let (hy,..., h) be the h-vector of the Stanley-Reisner ring associated with A.
The McMullen-Walkup formula is:

h, =|{Z facet of A:| C(2) | = 3} |.

Under the assumption the previous lemma and with the notation introduced in the
proof, we get:

Lemma 1.11. Let Z, € F(4)), then C(Z) = C(Z)).
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Proof. Let x € C(Z), and Z € F(4,) such that Z < Z, and Z,\Z = {z}.
Then Z’ < Z]; there exist H € F(4) and y € Vsuch that H< Z|, Z' N Z] C H
N Z; = Z,\ {y}. By definition of Z;, the restriction of H to W is not Z,. There-
fore we get y = x, and C(Z,) < C(Z)).

Conversely, let y € C(Z)), and H € F(4) such that H < Z] and Z]\H =
{y}. Again the restriction of H to W is not Z,, and therefore y € W. Let Z= H N
W ;Z € F(4,), and Z < Z, since Z' < H < Z|. Furthermore Z,\ Z = {y}, and
we are done. ]

ProposITiON 1.12.  The simplicial complex A, (L) is shellable.
Proof. Straightforward by 1.6 and 1.10. O

The Stanley-Reisner ring associated with a shellable simplicial complex is
Cohen-Macaulay, [4]. It is well-known that if R,,,(L)* is Cohen-Macaulay, then
R, (L) Cohen-Macaulay too, see for instance [14] or [6]. Therefore from the shella-
bility of 4,(L) we deduce the Cohen-Macaylayness of R,(L). By 1.3, R, (L) is a
domain, and we get the main theorem of this section:

THEOREM 1.13.  The ring R, (L) is a Cohen-Macaulay domain.

In particular the previous theorem gives an alternative proof of the
Cohen-Macaulayness of the ring R,(X), see [16].

2. Some applications

We present some applications of the results of the first section. First, follow-
ing the approach of [5] and [11], we give a combinatorial interpretation of the
h-vector of the determinantal rings R,(X) in terms of families of non-intersecting
paths. Secondly, we compute the g-invariant of the determinantal rings R,(X) in
the homogeneous and weighted case. The same formula was obtained, independent-
ly and using different methods, by Barile, see [3]. Finally we study, as an interest-
ing class of symmetric ladder determinantal rings, the determinantal ring associ-
ated with a matrix of indeterminates in which a submatrix is symmetric.

2.1. Characterization of the /-vector

We keep the notation of the first section. The h-vector of R,(X) coincides

https://doi.org/10.1017/50027763000024958 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024958

SYMMETRIC LADDERS 45

with that of R,(X)* = K[X] /in(I,(X)) which is the Stanley-Reisner ring associ-
ated with the simplicial complex 4,(X). We know that 4,(X) is a shellable sim-
plicial complex. Therefore, we may give a combinatorial interpretation of the
h-vector of R,(X) via the McMullen-Walkup formula. We need only to under-
stand the set C(Z) = {x € B : there exists a facet F of 4,(X) such that F < Z
and Z\ F = {z}}. We have seen that a facet Z of the simplicial complex 4,(X) is

the union of disjoint sets Zj,..., Z, where Z, is a maximal chain of X,C+ =
{G,j) € B:a, <i<j}. We may interpret Z, as a path from a point of the set
{(a,, @), (y +1,a,+1),..., (n,n)} to the point (a,, #). Therefore the

facets of 4,(X) are families of non-intersecting paths. The following picture rep-
resents a facet of 4,(X) where @ = {1,3} and » = 5.

(5,5)

(1,1)

Fig. 3

By 1.11, we have C(Z) = C(Z’), where by definition Z’ = min{H : H is a facet
of 4,(X), HN B = Z}, and the minimum is taken with respect to the shelling of
the facets of A;(X). Suppose that Z is the family of non-intersecting paths Z,,. ..,
Z, where Z; is a path from (a;, a,) to (a@;, ) with a; < a,. Define H; to be the
path from (#, @) to (a@;, n) obtaining from Z, by adding the set of points
{n, ), m—1, a,..., (a;, a), (@, a; +1),..., (a;, a)}. Then, from the de-
finition of the shelling of A, (X), see [15, Th. 4.9], it is clear that Z’ is the union
of H,..., H, In the following picture is represented the corresponding Z’ of the
facet in Fig. 3.

(5,5)

(1,1)

Fig. 4
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Given a path P in A, a comer of P is an element (i, ) € P for which (¢ — 1, 5)
and (Z, j — 1) belong to P as well. Let us denote by ¢(P) the set of the corners of
P. 1f H is a facet of A,(X) and H,,..., H, is its decomposition as union of
non-intersecting paths, then by, [5, 2.4], C(H) = ¢(H) U ... U ¢(H). Thus, if
Z is a facet of 4,(X), then C(Z) is the set of the corners of Z’. In our example of
Fig. 3 and Fig. 4 we have C(Z2) = C(Z) = {(2,5), (4,4)}.

Let P be a path from (b, b) to (a, ») in the poset B, and let (¢, j) be a point
of P. We define (i, ) to be an s-comer of P if i<jand G— 1,7, (¢, j—1
belong to P, or 7 = j (in this case ¢ = b) and (¢ — 1, j) belongs to P. Let us denote
by sc(P) the set of the s-corners of the path P, and if Z is the family of
non-intersecting paths Z,..., Z, in B, define sc(Z) = sc(Z) U ...sc(Z). 1t is
clear that the corners of Z’ are exactly the s-corners of Z. Therefore we have:

Lemma 2.1, Let Z be a facet of 4,(X), then C(Z) = sc(2).

Using the McMullen-Walkup formula, we obtain the following characteriza-
tion of the h-vector of the ring R, (X) :

ProPOSITION 2.2. Let (hy,. .., hy) be the h-vector of the ring R,(X). Then h; is
the number of families of nown-intersecting paths Z,,...,Z, m B with exactly
i S-corners, wheve Z,, is a path from a point of the set (o, o), ..., (n, W} to (a,, n).

ExampLes 2.3. (a) Let @ = 1,3 and #» = 4. In this case I,(X) is the ideal
generated by the 2-minors of the first 2 rows and by all the 3-minors of a 4 X4
symmetric matrix of indeterminates. The non-intersecting paths are the following:

| | | | |
sc=0 sc=1 sc=1 sc=1 F sc=1
sc=2 sc=2 sc=2 sc=2 sc=3

Fig. 5
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Hence the h-vector of R,(X) is (1, 4, 4, 1).

(b) Consider the ring R,(X), and denote by h,(»),..., h(n) its h-vector, where #
is the size of the matrix X. Then %,;(n) is the number of paths from one point of
the set {(1,1),..., (n, w)} to (1, #) with 7 s-corners.

The number of the paths with ¢ s-corners and which contain (1, » — 1) is
h;(n — 1). The number of those which contain (3, #) is h;(n — 1) — h;(n — 2).
Finally, the number of those which contain (2, n), (2, n — 1) is h,_;(n — 2).
Thus we get h;(n) =2h,n —1) — h,(n — 2) + h,_,(n — 2). By induction on

n
n, h,(n) = (2i>.
(c) Now consider the ring R,_;(X) and denote by h,(n),..., h(n) its h-vector.
By simple arguments as before one shows that h;(n) = 2h,_,(n — 1)— h;_;(n — 2)
+ c(m), with cw) =1 if 1 < — 2 and ¢(®) = 0 otherwise. Then by induction,

hi(n) = (Z -|2- 2) if i <n—2and h;(n) = 0 otherwise.

2.2. The a-invariant of R,(X)

The a-invariant a(S) of a positively graded Cohen-Macaulay K-algebra S is
the negative of the least degree of a generator of its graded canonical module. It
can be read off from the Hilbert series Hg(f) of S; more precisely a(S) is the
pole order of the rational function Hg(#) at infinity.

For the computation of the a-invariant we restrict our attention to the ring
R,(X) = K[X]/I,(X), and we consider the weighted case too. Suppose there are

given degrees to the indeterminates, say deg X;, = v;;, such that the minors of X

i
are homogeneous. Then one has 2v;; = v;; + v;;. Therefore essentially there are
two possible degree types:

Type (a): There exist ey,..., ¢, € N\ {0} such that deg X, =¢, + ¢; for all

1<:<j;<m.
Type (b): There exist ej,..., ¢, € Nsuchthat X;; = ¢, t ¢, +1foralll <i<j
<.
Since the ideals under consideration are invariant under rows and columns
permutations we may always assume ¢, < -+ < ¢,

Let us denote by 4, the simplicial complex 4,(X), with o = {1,..., t — 1}.

The Hilbert function of R,(X) and K[4,] = K[X]/in(I,(X)) coincide, thus we
may as well compute the a-invariant of K[A,]. Since 4, is a shellable simplicial
complex, Bruns-Herzog’s proposition [5, 2.1] applies and we get:
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THEOREM 2.4. Let R = R,(X). In the case of degree type (a):

a®=-¢-1D(Xe) ifn'= tmod (2)
i=1
a®=--D(Ee)-Ze ifn# tmod @
i=1 i=1
And in the case of degree type (b):
a®=-t-1D(Le+7) i n = tmod (2)
i=1
aR) = — (t— 1)<§ e, + n;- 1) - ;‘f.le,. if n # tmod (2)

Proof. By [5, 2.1}, a(R) = — min{p(2) : Z is a facet of 4,}, where
o(Z) = 2 degX,,.

(i.)ez\C(2)

We define a facet F of 4, and prove that p(F) < p(Z) for all the facets Z of 4,.
Then the desired result will follow from the computation of o (F).

Fori=1,...,t— 2, let D, be the set {(z, n), (G, n—1),..., (G, n—t+i+
2)}, andset D,_, = 0.

If n =t mod(2), we define F, to be the path from (¢, ) to ((n — /2 + i +
1, ® — H/2 + i + 1) which is obtained from D, by adding the points (i, n — ¢
+:+0D, G+l,n—t+i+1D,..., G+j,n—t+i—j5+1, G+j+1,
n—t+i—j+1,..., G+m—8/2, m—0/2+i+1), (k—08/2+i+1,
n—0/2+i+1).

If n # t mod(2), we define F; to be the path from (¢, #) to ((n — ¢+ 1)/2
+ 14, m—t+1)/2 + i) which is obtained from D; by adding the points (i,
n—t+i+1, Gu—t+1), G+lL,u—t+1i),...,G+j,n—t+i—y),
GHj+1l,n—t+i—p,..., G+w—t—1/2 m—t+1)/2+79), ((n—
t+1)/2+4, n—t+1)/2 +19).

Finally we define F to be the family of non-intersecting paths F,,..., F,_,.

The following picture illustrates F when { = 4 and n = 89.
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Fig. 6

We start considering ! = 2 and # even. In this case C(F) = {2, n), (3, n —
1,..., ®m/2+1,#n/2+ 1)}, and therefore F\CWEF) = {Q, n), 2,n—1),
..., m/2,n/2 4+ 1)}. One has p(F) = X7, ¢, or o(F) = X}_, e, + n/2 if the
degree is of type (a) or (b), respectively. Given Z a path from (1, #) to
(p, p) we claim that for all ¢ < p there exists j such that (¢, ) € Z\ C(Z), and
that for all the ¢ = p there exists 7 such that (j, ) € Z\ C(Z). From the claim it
follows easily that 0(Z) = p(F). To prove the claim observe that if 1 < p (resp.
i = p) then there exists 7 such that (i, j) € Z (resp. (4, 9) € Z), and if (4, ) €
C(2), then (1,7 —1) € Z\C(2Z) (resp. if (j, 1) € C(2), then G— 1,1 € Z\
C2).

If t=2 and # is odd, we have p(F) = X7 e, + ¢, or p(F) = X7_¢; + ¢,
+ (n+1)/2. Let Z be a path from (1, n) to (p, p). Since % is odd we deduce
from the previous claim that | Z\ C(Z) | = (n + 1)/2, and that there exists ¢
which appears twice as a coordinate of some elements in Z\ C(Z). By assumption
e, < e, <... < e, therefore p(F) < p(2).

Now let £ = 2 and let Z be a facet of 4,, that is a family of non-intersecting
paths Z,..., Z,_,. Since the paths are non-intersecting, D, C Z, for all k=
1,..., t— 1. We may think of F, and Z, as paths starting from (i, n — ¢+ i+ 1),
and argue as before to show that:

2 degX; < 2. degX;

(i,)) €F \SC(F}) (1,))€Z\SC(Z)

forall k=1,..., t — 1. Therefore we get:

o(F) = g > deg X, < t_Zl 2 deg X,; = p(2)

k=1 (i, ) eF \SC(F ) k=1 (ipez,\sCzy
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and we are done. ]

The homogeneous case (all the indeterminates have degree 1) arises from a
degree type (b) with ¢; = O for all . Therefore

— (- 1)% if 7 = tmod(2)

n+1
2

a(R,(X)) =

— (-1 if » # tmod(2).

By a result of Goto [3], R,(X) is Gorenstein if and only if #» = ¢t mod(2). If
n % t mod(2), the canonical module of R,(X) is the prime ideal P generated by
all the t — 1 minors of the first £ — 1 rows of X. It is not difficult to see that, up
to shift, P is also the graded canonical module of R,(X). Hence the graded cano-
nical @, module of R,(X) is:

) RW(- ¢t =1%F) n=tmod@
o P(— t—1) ﬁ—z-—1> n £ tmod(2)

2.3. Determinantal rings associated with a matrix in which a submatrix is
symmetric

Let Z = (Zij) be an m X » matrix, m < n, whose entries are indeterminates
such that the submatrix of the last s rows and of the first s columns is symmetric,
with s > 1. Using the blocks notation, we write:

o= (2 2)
S P
where M = (M), N = (N,;), P = (P;) are generic matrices of indeterminates of
size m—3s) Xs,m—3s) X (m—3s),sX (mn—3s), respectively, and S=
(S;) is an s X s symmetric matrix of indeterminates. Denote by K[Z] the polyno-
mial ring over the field K whose indeterminates are the entries of Z.

Let I,(Z) be the ideal generated by all the t-minors of Z and denote by
R.(Z) the ring K[Z) /1,(Z). If s = m, then Z is called a partially symetric matrix.
When Z is partially symmetric, R,(Z) is essentially a ring of the class R,(X), see
(8, 2.5].

Next we will interpret R,(Z) as a ladder determinantal ring. To do this, we
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take two symmetric matrices of distinct indeterminates E,, E,, of size (m — s) X
m—35), (m—3s) X m—s). We construct an m+n—35) X m+n—23)
symmetric matrix of indeterminates in the following way:

E,. M N

X=|\M" S P

N' P' E,
Denote A=1{G, ;) EN:1<i,j<m+n—s}, and V={(G,)) €EA:i<m
and j > m — s}. Vis the semi-symmetric ladder of X corresponding to Z. The set
L=1{Gj)€A:i>m—s or j <m— stis the symmetric ladder associated
with V. Let «={1,..., t— 1}, then by construction and by 1.5 we have
I1,(L) = I,(V) = I,(Z) and R,(Z) = R,(L). Let us denote by 4,(Z) the simplicial
complex 4,(L).

Let 77 be the lexicographic term order on the monomials of K[Z] induced by
the variable order which is obtained listing the entries of Z as they appear row
by row. Let J be the set of all the minors [a,,..., a,| b,,..., b] of Z (the indices
refer to Z and not to X) such that b, — @, = — m + s. In other words [ is the set

of the f-minors of Z whose main diagonal does not lie under the main diagonal of
S. By 1.3 and 1.13, it follows immediately:

ProposiTION 2.5. (a) The ring R,(Z) is a Cohen- Macaulay domain.
(b) J is a minimal system of genevators of I,(Z) and a Grobmer basis with respect to T'.

(1,n (m,n)

(m,s)

(1,1) (m—-s+1,1)
Fig. 7

In order to compute the dimension and multiplicity of R,(Z), we describe the sim-
plicial complex 4,(Z). It seems more natural to use the labelling of Z instead of
that of X, so that we can identify L™ with the set {(i, /) EN*:1<i<m, 1<
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<m,j—1i>s—m, see Flg. 7. Note that, in this case, L} is obtained from L]_,
by deleting the lower border. Thus, if ¢ < s, then rk(L:-r) =m+m—s+1-—1),
and if 7 = s, then rk (L:) = (m+m — 21 + 1). Therefore, from 1.9, we get;

If t = s, then

s(s—1)

dmR(2) = (n+m+1=dEt—1 ~ >

The dimension of the determinantal ring R,(X,) associated with the ideal of the
t-minors of an m X % generic matrix of indeterminates X, is @ +m+ 1 — 1)
(t— 1), see [7, Cor. 5.12]. Therefore R,(Z) is nothing but a specialization of
R,(X)), that is R,(Z) is isomorphic to R,(X,)/I where I is the ideal generated by
the regular sequence of the s(s — 1)/2 linear forms which give the symmetry re-
lations on Z. Moreover, R,(Z) and R,(X;) have the same multiplicity and the same
h-vector.
If t <s, then:

GmR(2) = (n+tm+1—s=3)¢= 1.

In this case we can interpret a facet of 4,(Z) as a family of non-intersecting paths
H,,..., H,_, where H, is a path from one point of the set {(m — s +1,1)(m — s
+2,2),...,(m, $)} to (i, n). Let us denote by P, = (i, n) and ;= (m — s +
7, 0. Given 1 <j, < ..., j_, <s, according to [19, Sect. 2.7], the number of
families of non-intersecting paths from @;,..., @;, to Py,..., P,y is det(W(P,,
Q,))1<ni<i— where W(P,, Q;) is the number of paths from P, to @;,. But it is
easy to see that

ntm—s—h
n=J
Hence we get the following formula for the multiplicity of R,(Z) :

CR(Z2)= ¥ det [<”+’”‘S'”>] .
1<hk<t-1

1<j,<. <y <8 n = I

As we did for the ring R,(X), we may give a combinatorial interpretation of
the h-vector R,(Z) in terms of number of non-intersecting paths with a fixed
number of certain corners. The case f = s, by the above discussion, is solved in
[5].

Suppose t<'s. A facet H of 4,(2) is a family of non-intersecting paths
H,,..., H,_,, where H, is a path from one point of set {(im — s+ ¢, 1), m — s +
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i+ 1,i4+1),..., (m, s)} to (i, n). We distinguish two cases:

If s=m, then C(H) = sc(H) U ... U sc(H,_). This follows from the fact
that when we consider A4,(Z) as a sub-complex of 4,(X), it has the following
property: if H is a facet of 4,(Z) and H, € 4,(X) with H, < H in the shelling of
A,(X) and H\ H, = {(a, b)}, then H, € A,(Z). Therefore, if we denote by h, the
number of families of non-intersecting paths with exactly ¢ s-corners, (...,
hy) is the h-vector of R,(Z).

If s <m, then C(H) = (sc(H)\{TH) U ... U(sc(H_D\{T,_}}), where T,
is the point (m — s + ¢, 7). This follows from the fact that when we consider
A,(Z) as a subcomplex of 4,(2), if H, is a facet of 4,(X) such that H, < H and
H\H, = {(a, b)} then H, is in 4,(Z) unless (a, b) = T, for some i and7; be-
longs to H,.

For instance, consider the case in which t=4, s =5, m = n = 6. The two
facets H and K in the following picture have s-corners respectively in {(2,1),
(3,2), (5,6), (6,5}, and {(2,3), (3,2), (5,4), (5,6), (6,5)}. It is clear from the
picture that it is not possible to find a family of paths which differs from H only
in (3.2) and that is earlier in the shelling. The point 7, = (2,1)(resp. T, =
(3,2)) is not in C(H) since it is an s-corner of H, (resp. H,). The point (3,2) is in
C(K) since it is an s-corner but not of K,  Hence C(H) = {(5,6), (6,5)}, and
CK) ={(2,3), 3,2), (5,4), (5,6), (6,5)}.

Fig. 8

Therefore, if we denote by %, the number of families of non-intersecting paths
H with | (sc(H)\{TH U ... (sc(H_)I\AT,_}) | =14, then (h,,..., k) is the
h-vector of R,(Z).

ExampLes 2.6. From the computation of the A-vector of R,(X) it follows

n

2i) if £# 1, and

immetiately: (a) If s =m and # = m + 1, then h,(R,(2)) = (
nR@) = (1) -1
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b) 1 s+1=m=n then h,(R,(2) = (”;1>if i# 1, and b, (Ry(2) =
n+1
( , ) -2

If s = m < n, then the ring R,(Z) is essentially one of the class R,(X), and
in [10] we proved that it is always normal and that is Gorenstein if and only if
2m = n + t. We now show:

THEOREM 2.7. Let s < m, then (a) R,(Z) is a normal domain.
(b) R,(Z) is Gorenstein if and only if t = s and m = n.

Proof. (a) Let us consider the following two symmetric ladders of X : L, =
{G,peAii>m—sorj>m—s}, L,={(, DA i<n—sorj<n-—s}
The ladder determinantal rings R,(L,), R,(L,) are the determinantal rings associ-
ated with the partially symmetric matrices Z, and Z,, where:

M N E, M N
le S P 222 Ml‘S P
P' E,

Denote by Y; the support of L; The set of the doset ~minors is a Grobner basis
of I,(X). Then the set B(X) of the monomials in the set of indeterminates Xj;,
1<i<j7<n-+m—s, which are not divisible by leading terms of {-minors
form a K-basis of the ring R,(X). For the same reason the subset B(Y)) of
B(X) of the monomials in the set Y, not divisible by leading terms of doset
t-minors form a K-basis of the ring R,(L;). A K-basis of R,(L,) N R,(L,) is
B(Y) N B(L,), but the last is also a K-basis of R,(Z). Hence R,(Z) = R,(L,) N
R,(L,), and we conclude that R,(Z) is normal since R,(L,) and R,(L,) are.

(b) If t = s and m = #, then R,(Z) is Gorenstein since it is a specialization of
a Gorenstein ring, [7, 8.9].

To prove the converse we argue by induction on . Let { = 2; consider the re-
sidue class x of N,,_, in R,(Z), and denote by D the set of the residue classes of
the indeterminates in the first row and last column of Z, that is My,..., My,
N oovNuesr oo s Nypesnesy Pinesy o« oy Poy—s. Let K[D] be the K-subalgebra of
R,(Z) generated by D.

It is clear that K[D][z 7] = R,(2) [z™'. Furthermore, we have the following
relations MP;,_ = S;Ny,_s = S;;Ny,_s = M;P,,_ mod I,(Z), for all 1<
i, j < s. By dimension considerations, K[D][z '] is isomorphic to the polynomial
ring
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RIN,,...,Nygr.o, Np_oy JINSE ]
over the ring R, where
R = K[Mllr‘ DS} Mlsy Pln—sw LR Psn—s] /I,

and I is the ideal generated by the 2 minors of the matrix

<Mu . M, >

P, ... P, )’

By assumption R,(Z) is Gorenstein. Therefore R,(Z) [z '] is Gorenstein and R is
Gorenstein too. But this is possible only if s =2, [7, 8.9]. Then R,(Z) is a
specialization of the determinantal ring associated with the ideal of the 2-minors
of a generic m X n matrix. Therefore, by [7, 8.9], m = n. If £ > 2, we apply the
usual inversion trick. After inversion of s;, the residue class of S;;, we get an iso-
morphism between R,(Z)[s;'] and R,_,(Z)I[T,,..., Tpon_d [T, '], where the T,
are indeterminates and Z; is an m — 1 X # — 1 matrix of indeterminates such
that the submatrix of the last s — 1 rows and first s — 1 columns is symmetric
(when s = 2, Z, is generic). Since R,(Z) is Gorenstein, R,_;(Z}) is Gorenstein
and, by induction, s —1<¢t—1 and m —1=#n — 1. Therefore s < ¢ and
n=m. ]

REFERENCES

[1] Abhyankar S. S., Enumerative combinatorics of Young tableaux, Marcel Dekker,
New York, 1988.

[2] Abhyankar S. S., Kulkarni D. M., On Hilbertian ideals, Linear Algabra and its
Appl, 116 (1989), 53-79.

[3] Barile M., The Cohen-Macaulayness and the a-invariant of an algebra with
straightening law on a doset, Comm. in Alg., 22 (1994), 413—-430.

[4] Bjorner A., Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer.
Math. Soc., 260 (1980), 159-183.

[5] Bruns W, Herzog J., On the computation of @-invariants, Manuscripta Math., 77
(1992), 201-213.

[6] W. Bruns, J. Herzog, U. Vetter, Syzygies and walks, to appear in the Proc. of the
Workshop in Comm. Alg. Trieste 1992.

[7] Bruns W., Vetter U., Determinantal rings, Lect. Notes Math. 1327, Springer,
Heidelberg, 1988.

[8] Conca A., Grobner bases of ideals of minors of a symmetric matrix, J. of Alg., 166
(1994), 406—-421.

[9] ——, Ladder determinantal rings, to appear in J. of Pure and Appl. Alg.

[10] ——, Divisor class group and canonical class of determinantal rings defined by
ideals of minors of a symmetric matrix, Arch. Mat. 63 (1994), 216-224.

https://doi.org/10.1017/50027763000024958 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024958

56 ALDO CONCA

[11] Conca A., Herzog J., On the Hilbert function of determinantal rings and their cano-
nical module, to appear in Proc. Amer Math. Soc.

[12] De Concini C., Eisenbud D., Procesi C., Hodge algebras, Asterisque 91, 1982,

[13] Goto S., On the Gorensteinness of determinantal loci, J. Math. Kyoto Univ, 19
(1979), 371-374.

[14] Grabe H. G., Streckungsringe, Dissertation B, Piddagogische Hochschule Erfurt,
1988.

[15] Herzog J., Trung N. V., Grobner bases and multiplicity of determinantal and pfaf-
fian ideals, Adv. Math., 96 (1992), 1-37.

[16] Kutz R., Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic
groups, Trans. Amer. Math. Soc., 194 (1974), 115-129.

[17] Narasimhan H., The irreducibility of ladder determinantal varieties, J. Alg, 102
(1986), 162-185.

[18] Stanley R., Combinatorics and Commutative Algebra, Birkhiuser, Basel, 1983.

[19] —, Enumerative Combinatorics I, Wardworth and Brook, California, 1986.

FB6 Mathematik und Informatik

Universitat GHS Essen
45117 Essen, Germany

https://doi.org/10.1017/50027763000024958 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024958



