BULL. AUSTRAL. MATH. SOC. VOL. 27 (1983), 243-248.

TRANSFORMATION GROUPS OF STRONG CHARACTERISTIC O

SABER ELAYDI

It is shown that a transformation group (X, T, π) is of strong characteristic 0 if and only if it is of P-strong characteristic 0 for some replete semigroup P in the phase group, provided that all orbit closures are compact. It is shown also that, under certain conditions, (X, T, π) is of P-strong characteristic 0 if and only if $(X \times X, T, \pi \times \pi)$ is Liapunov stable.

By a transformation group we mean a triple (X, T, π) , where X is a locally compact Hausdorff space and T is a generative group [5] acting on X by π ; that is $\pi: X \times T \to X$ is a continuous map satisfying

- (1) $\pi(x, 0) = x$ for every $x \in X$, where 0 denotes the identity of T, and
- (2) $\pi(\pi(x, s), t) = \pi(x, s+t)$ for $x \in X$ and $s, t \in T$. For brevity $\pi(x, t)$ is denoted by xt.

In 1970 Ahmad [1] introduced the notion of characteristic 0^+ in continuous flows using prolongation sets. In the same year Hajek [6] extended the notions of prolongation to transformation groups. Using Hajek's ideas, Knight [7] was able to define and study transformation groups of characteristic 0. This study was later pursued by Elaydi and Kaul [4], [3]. In an attempt to generalize the unilateral versions of prolongations the author [2] introduced the P-prolongations, where P is

Received 16 November 1982.

a replete semigroup in T [5]. Then the property of characteristic 0^+ is generalized to that of P-characteristic 0 [2]. Following these ideas Elaydi and Kaul [3] studied the property of strong characteristic 0, a stronger version of characteristic 0.

In this paper we define the property of P-strong characteristic 0 in a way similar to that of P-characteristic 0.

For the convenience of the reader we give the definitions of the basic notions used. For $x \in X$ and a replete semigroup P in T, we have the following definitions:

(1) the P-limit set of x,

$$L^{P}(x) = \bigcap \{\overline{xtP} \mid t \in P\} ;$$

(2) the P-prolongation set of x,

$$\overline{L}^P(x) = \bigcap \{\overline{VP} \mid V \text{ is a neighborhood of } x\}$$
 .

We remark here that $L^P(x)$ is always closed and invariant. The set $D^P(x)$ is closed and P-invariant; that is $D^P(x)t\subset D^P(x)$ for each $t\in P$. Furthermore, $y\in D^P(x)$ if and only if there are nets $\{x_i\}$ in X and $\{p_i\}$ in P with $x_i\to x$ and $x_ip_i\to y$ [2].

Let $X^*=X\cup\{\infty\}$ be the one point compactification of X. Then $(X,\ T,\ \pi)$ can be extended to $(X^*,\ T,\ \pi^*)$, where $\pi^*(x,\ t)=\pi(x,\ t)$ for $x\in X$ and $t\in T$ and $\pi^*(\infty,\ t)=\infty$ for $t\in T$. The P-limit set and the P-prolongation set of $x\in X^*$ in $(X^*,\ T,\ \pi^*)$ are denoted by $L^P_{*}(x)$ and $D^P_{*}(x)$, respectively. The closure of a set A in X^* is denoted by \overline{A}^* .

A point $x \in X$ is said to be of P-strong characteristic 0 if whenever there are nets $\{x_i\}$ in X and $\{p_i\}$ in P with $x_i \neq x$ and $x_i p_i \neq y$, then $x p_i \neq y$. If in the above definition P is replaced by T, then x is said to be of strong characteristic 0 [3]. As in [2], x is said to be of $\{P$ -characteristic 0 $\}$ (characteristic 0 $\}$ if $\{p^P(x) = \overline{xP}\}\{D(x) = \overline{xT}\}$. $\{X, T, \pi\}$ is said to have the property if every point in X possesses that property. It is clear that if x is of

P-strong characteristic 0, then it is of P-characteristic 0.

THEOREM 1. A transformation group (X, T, π) is of strong characteristic 0 if and only if it is of P-strong characteristic 0, for some replete semigroup P in T, provided that \overline{xT} is compact for each $x \in X$.

Proof. The necessity is clear.

The proof of the sufficiency consists of three steps.

(i) We first show that the squared flow $(X \times X, T, \tilde{\pi})$, where $\tilde{\pi}((x, y), t) = (\pi(x, t), \pi(y, t))$, is of *P*-characteristic 0.

Let $(x,y) \in X \times X$ and let $(a,b) \in D^P(x,y)$. Then there are nets $\{(x_i,y_i)\}$ in $X \times X$ and $\{p_i\}$ in P such that $(x_i,y_i) \to (x,y)$, $(x_i,y_i)p_i \to (a,b)$. This implies that $x_i \to x$, $y_i \to y$, $x_ip_i \to a$ and $y_ip_i \to b$. It follows that $xp_i \to a$ and $yp_i \to b$ and consequently $(x,y)p_i \to (a,b)$. Thus $(a,b) \in \overline{(x,y)P}$. Hence $D^P(x,y) \subset \overline{(x,y)P}$. Since it is always true that $\overline{(x,y)P} \subset D^P(x,y)$, $\overline{(x,y)P} = D^P(x,y)$. Therefore (x,y) is of P-characteristic 0. In fact we have shown that (x,y) is of P-strong characteristic 0.

(ii) In this step we show that $(X\times X,\ T,\ \widetilde{\pi})$ is of charactistic 0 .

We first show that $\overline{(x, y)T}$ is minimal for each $(x, y) \in X \times X$. Since $\overline{(x, y)T} \subseteq \overline{xT} \times \overline{yT}$ is compact, $L^{p^{-1}}(x, y) \neq \emptyset$, where $P^{-1} = \{p^{-1} \in T \mid p \in P\}$. Let $(c, d) \in L^{p^{-1}}(x, y)$. Then $(c, d) \in \overline{(c, d)T} \subseteq L^{p^{-1}}(x, y) \subseteq D^{p^{-1}}(x, y)$. Thus

This implies that

$$\overline{(x, y)T} \subset \overline{(c, d)T} \subset L^{p^{-1}}(x, y) .$$

Let $(e, f) \in \overline{(x, y)T}$. Then $(e, f) \in L^{p^{-1}}(x, y)$. Therefore, as above,

 $\overline{(x, y)T} \subset \overline{(e, f)T}$ and consequently, $\overline{(x, y)T}$ is minimal. Since $L^P(x, y) \neq \emptyset$, it follows that

$$\overline{(x, y)T} = \overline{(x, y)P} = L^{P}(x, y) .$$

Let $(g, h) \in D(x, y)$. Then there are nets $\{(g_i, h_i)\}$ in $X \times X$ and $\{t_i\}$ in T such that $(g_i, h_i) + (x, y)$ and $(g_i, h_i)t_i + (g, h)$. For each i,

$$(g_i, h_i)t_i \in \overline{(g_i, h_i)T} = \overline{(g_i, h_i)P} = D^P(g_i, h_i)$$
.

It follows from [2] that $(g, h) \in D^P(x, y) = \overline{(x, y)P} = \overline{(x, y)T}$. Thus $D(x, y) \subset \overline{(x, y)T}$. Hence $D(x, y) = \overline{(x, y)T}$. This shows that $(X \times X, T, \widetilde{\pi})$ is of characteristic 0.

(iii) We now show that (X,T,π) is of strong characteristic 0. Assume there is a point $x\in X$ which is not of strong characteristic 0. Then there are nets $\{x_i\}$ in X and $\{t_i\}$ in T such that $x_i \to x$, $x_it_i \to y \in X$ and $xt_i \xrightarrow{f} y$. Since \overline{xT} is compact, we may assume that $xt_i \to z \in X$. Now $(x_i,x) \to (x,x)$ and $(x_i,x)t_i \to (y,z)$ implies that $(y,z) \in D(x,x)$. From (2) it follows that $(y,z) \in \overline{(x,x)T}$. Consequently, y=z and we thus have a contradiction.

The proof of the theorem is now complete.

We say that a subset M of X is Liapunov stable if for each neighborhood U of M there exists a neighborhood V of M such that $VT \subseteq U$. A transformation group (X, T, π) is Liapunov stable if \overline{xT} is Liapunov stable for each $x \in X$.

THEOREM 2. If a transformation group (X, T, π) is of P-strong characteristic, then the squared transformation group $(X \times X, T, \widetilde{\pi})$ is Liapunov stable, provided that either X is locally connected or $\overline{(x, y)T}$ is connected for each $(x, y) \in X \times X$. The converse holds whenever \overline{xT} is compact for each $x \in X$.

Proof. (i) Assume that X is locally connected and suppose that for some $(x, y) \in X \times X$, $\overline{(x, y)T}$ is not Liapunov stable. Since $\overline{(x, y)T}$ is minimal (Theorem 1), it follows that $VT \supset \overline{(x, y)T}$ for every

neighborhood V of (x,y). There exists a neighborhood U of $\overline{(x,y)T}$ and a neighborhood filter $\{V_i\}$ of connected open neighborhoods of (x,y) and a net $\{t_i\}$ in T with $V_it_i \not\in U$ for each i. Since V_it_i is also connected, there exists $(x_i,y_i) \in V_i$ such that $(x_i,y_i)t_i \in \partial U$ (the boundary of U). Since ∂U is compact, we may assume that $(x_i,y_i)t_i \to (c,d) \in \partial U$. It follows that $(c,d) \in D(x,y)$. This implies by Theorem 1 that $(c,d) \in \overline{(x,y)T} \subseteq U$ and we thus have a condiction. This shows that $(X \times X,T,\tilde{\pi})$ is Liapunov stable.

(ii) Assume that (x,y)T is connected for each $(x,y) \in X \times X$. If (x,y)T is not Liapunov stable for some $(x,y) \in X \times X$, then there is a neighborhood U of (x,y) and there exist nets $\{(x_i,y_i)\}$ in U and $\{t_i\}$ in T such that $(x_i,y_i) + (x,y)$ and $(x_i,y_i)t_i \notin U$ for each i. Since $(x_i,y_i)T$ is connected, $(x_i,y_i)T \cap \partial U \neq \emptyset$ for each i. Let $(a_i,b_i) \in D(x_i,y_i) \cap \partial U$ for each i. Without loss of generality, we may assume that $(a_i,b_i) + (a,b) \in \partial U$. Hence $(a,b) \in D(x,y)$ [4,1.6]. It follows from Theorem 1 that $(a,b) \in (x,y)T$ and we thus have a contradiction. Hence (x,y)T is Liapunov stable.

To prove the converse under the assumption that \overline{xT} is compact for each $x \in X$ we show first that $X \times X$ is of characteristic 0. If for some $(x,y) \in X \times X$, $D(x,y) \neq \overline{(x,y)T}$, then let $(a,b) \in D(x,y) - \overline{(x,y)T}$. There exists a neighborhood U of $\overline{(x,y)T}$ such that $(a,b) \not\models \overline{U}$. Since $\overline{(x,y)T}$ is Liapunov stable, there exists a neighborhood V of $\overline{(x,y)T}$ with $VT \subseteq U$. Thus $(a,b) \in D(x,y) \subseteq \overline{VT} \subseteq \overline{U}$ and we thus have a contradiction. Consequently, $X \times X$ is of characteristic 0. Assume that there exists a point $z \in X$ which is not of P-strong characteristic 0. Then there are nets $\{z_i\}$ in X and $\{p_i\}$ in P such that $z_i + z$, $z_i p_i + d$ and $z p_i + d$. Since \overline{zP} is compact, we may assume that $z p_i + c$. Thus $(c,d) \in D(z,z) = \overline{(z,z)P}$. Thus c=d and we then have a contradiction. This completes the proof of the theorem.

References

- [1] Shair Ahmad, "Dynamical systems of characteristic 0⁺", Pacific J.

 Math. 32 (1970), 561-574.
- [2] Saber Elaydi, "P-recursion and transformation groups of characteristic 0", J. Univ. Kuwait Sci. 9 (1982), 1-10.
- [3] S. Elaydi and S.K. Kaul, "Flows of almost strong characteristic 0 with generative phase groups", Nonlinear Anal. 6 (1982), 807-815.
- [4] S. Elaydi and S.K. Kaul, "On characteristic 0 and locally weakly almost periodic flows", Math. Japon. 27 (1982), 613-624.
- [5] Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics (American Mathematical Society Colloquium Publications, 36. American Mathematical Society, Providence, Rhode Island, 1955).
- [6] Otomar Hajek, "Prolongations in topological dynamics", Seminar on differential equations and dynamical systems, II, 79-89 (Lecture Notes in Mathematics, 144. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
- [7] Ronald A. Knight, "Prolongationally stable transformation groups", Math. Z. 161 (1978), 189-194.

Department of Mathematics, Kuwait University, PO Box 5969, Kuwait.