MATCHINGS IN COUNTABLE GRAPHS

K. STEFFENS

1. Tutte [9] has given necessary and sufficient conditions for a finite graph to have a perfect matching. Different proofs are given by Brualdi [1] and Gallai [2; 3]. The shortest proof of Tutte's theorem is due to Lovasz [5]. In another paper [10] Tutte extended his conditions for a perfect matching to locally finite graphs. In [4] Kaluza gave a condition on arbitrary graphs which is entirely different from Tutte's.

Here we present a necessary and sufficient condition for the existence of a perfect matching in a countable graph. The methods we use are developed in [6; 8].

2. Let V be a set and denote by $[V]^2$ the set $\{\{a,b\} \mid a \neq b \text{ and } a,b \in V\}$. An ordered pair (V, E) is a graph if $E \subseteq [V]^2$. If G = (V, E) is a graph the elements of V are called vertices and those of E are called edges. A subgraph (V', E') of a graph (V, E) is a graph G' such that $V' \subseteq V$ and $E \cap [V']^2 = E'$. A vertex s is *incident* with an edge $\{b, c\}$ if $s \in \{b, c\}$. If each vertex is incident with only a finite number of edges G is a locally finite graph. A countable graph is one for which V is a countable set. A matching in the graph G = (V, E) is a subset M of E such that no two distinct edges of M are incident with the same vertex. The matching M is perfect (a 1-factor) provided each vertex of G is incident with one edge of M. $\mathscr{F}(G)$ denotes the set of all perfect matchings of G. Let ω be the set of all natural numbers. An injective sequence $(v_i)_{i \le k \le \omega}$ of vertices is called a path if $\{v_i, v_{i+1}\} \in E$ for every i satisfying i+1 < k. Let M be a perfect matching of G. A path $(v_i)_{i < k \leq \omega}$ is called M-alternating if the edges $\{v_i, v_{i+1}\}$ alternately lie in M and in $E \setminus M$. Let G' be a subgraph of G and $M' \in \mathscr{F}(G')$. An M'-augmenting path P is an M'-alternating path starting at a vertex $s \in V(G) \setminus V(G')$ and having one of the following properties: 1) P is an infinite sequence or 2) P terminates in a vertex $v \in V(G) \setminus V(G')$. An M'-augmenting path P is said to be proper if P contains an edge of M'. A matching M is called *independent* if there is no proper M-augmenting path starting at a vertex $s \in V(G) \setminus V(M)$. A subgraph G' of G is said to be indeindependent if $\mathscr{F}(G') \neq \emptyset$ and every perfect matching $M' \in \mathscr{F}(G')$ is independent. G satisfies condition (A) if for every matching M and for every vertex $s \in V(G) \setminus V(M)$ there exists an M-augmenting path which starts at s. G satisfies condition (B) if for every independent subgraph G' of G and for every vertex $s \in V(G) \setminus V(G')$ there exists a vertex $v \in V(G) \setminus V(G')$ such that $\{s,v\}\in E(G).$

Received April 21, 1976 and in revised form, August 30, 1976.

We shall prove the following theorem.

THEOREM. A countable graph G has a perfect matching if and only if G satisfies condition (A).

Of course this holds trivially for finite graphs. Therefore one obtains an extension to locally finite graphs by use of Rado's selection principle [7]: A locally finite graph G has a perfect matching if and only if for every finite matching M and for every vertex $s \in V(G) \setminus V(M)$ there exists an M-augmenting path which starts at s.

To prove the theorem we need several lemmas.

Lemma 1. Let M be a perfect matching of G and G' be an independent subgraph of G. Then there is no edge $\{s, v\} \in M$ such that $s \in V(G) \setminus V(G')$ and $v \in V(G')$.

Lemma 2. A subgraph G' of G is independent if and only if there exists an independent perfect matching for G'.

The proofs of Lemmas 1 and 2 are left to the reader.

LEMMA 3. Every graph G has a maximal independent subgraph.

Proof. Let $\mathscr C$ be a chain of independent subgraphs of G. Let $(C_{\alpha})_{\alpha < \beta}$ be a subchain of $\mathscr C$ such that $\bigcup_{\alpha < \beta} C_{\alpha} = \bigcup \mathscr C$ where α , β are ordinals. Choose $M_{\alpha} \in \mathscr F$ (C_{α}) for every $\alpha < \beta$. By transfinite recursion we define a (transfinite) sequence $(M_{\alpha}^*)_{\alpha < \beta}$ of matchings. Let $M_0^* = M_0$ and assuming $M_{\sigma}^* \in \mathscr F$ (C_{σ}) to be defined for $\sigma < \alpha < \beta$, define

$$M_{\alpha}^* = (M_{\alpha} \setminus (M_{\alpha} \cap E(C_{\sigma}))) \cup M_{\sigma}^*$$
 for $\alpha = \sigma + 1$, and $M_{\alpha}^* = \bigcup_{\sigma \leq \alpha} M_{\sigma}^*$ for limit ordinal α .

Then $\bigcup_{\alpha<\beta} M_{\alpha}^*$ is a perfect matching of $\bigcup_{\alpha<\beta} C_{\alpha} = \bigcup \mathscr{C}$. By Lemma 2 the subgraph $\bigcup \mathscr{C}$ is independent. Thus the result follows by Zorn's Lemma.

LEMMA 4. Let M be a matching of G and s be a vertex of G. Let $\mathscr P$ be the set of all M-alternating paths $(v_i)_{i < k \le \omega}$ such that $v_0 = s$ and $v_1 = b$ in case $\{s, b\} \in M$ and let $\mathscr P$ be the set of all proper M-alternating paths starting at s in case $s \in V(G) \setminus V(M)$. If every path of $\mathscr P$ terminates in an edge of M then $M^* = M \cap [V(\cup \mathscr P)]^2$ is an independent matching.

Proof. Note that every path of \mathscr{P} is finite. Assume that there exists a vertex $v \in V(G) \backslash V(M^*)$ and a proper M^* -augmenting path $(v_i)_{i < k \le \omega}$ which starts at v. By assumption $v \ne s$. Let $\{c_1, c_2\} \in M^*$ be such that $v_1 \in \{c_1, c_2\}$. Let $(d_r)_{r < l \le \omega}$ be a path of \mathscr{P} which contains the edge $\{c_1, c_2\}$ and let r_0 be the smallest $r < \omega$ for which there is an $i < \omega$ such that $v_i = d_r$. Denote by i_0 the number $i < \omega$ satisfying $v_i = d_{r_0}$. Distinguish two cases.

Case 1. $\{v_{i_0}, v_{i_0+1}\} \in M^*$. Let $c_n = d_n$ if $n \le r_0$ and $c_n = v_{(n-r_0)+i_0}$ if $r_0 < n < r_0 + (k-i_0)$. Then $(c_n)_{n < r_0 + (k-i_0)}$ is an M^* -alternating path which

MATCHINGS 167

starts at s and does not terminate in an edge of M. This contradicts the assumption.

Case 2. $\{v_{i_0}, v_{i_0+1}\} \notin M^*$. Let $c_n = d_n$ if $n \le r_0$ and $c_n = v_{i_0-(n-r_0)}$ if $r_0 < n \le r_0 + i_0$. Then $(c_n)_{n \le r_0 + i_0}$ is an M^* -alternating path which starts at s and terminates in v. Thus $v \in V(M^*)$ which is impossible.

LEMMA 5. A graph G satisfies condition (A) if and only if G satisfies condition (B).

Lemma 6. If G satisfies condition (B) and has no nonempty independent subgraph then $G\setminus v$ satisfies condition (B) for every $v\in V(G)$.

Proof. Assume that there is a vertex v such that $G^* = G \setminus v$ does not satisfy condition (B). Thus there exists an independent subgraph G' of G^* and a vertex $s \in V(G^*) \setminus V(G')$ such that $b \in V(G')$ for every edge $\{s,b\} \in E(G^*)$. By Lemma 5 there is a matching $M' \in \mathscr{F}(G')$ and a proper M'-augmenting path P which starts at s and terminates at v. Since the edges in P can be switched there is a perfect matching M_1 of $G_1 = G' \cup \{s,v\}$. Let v be incident with $\{v,b\} \in M_1$ and \mathscr{P} be the set of all M_1 -alternating paths $(v_i)_{i < k \leq \omega}$ such that $v_0 = v$ and $v_1 = b$. Assume that there exists a path $(v_i)_{i < k \leq \omega}$ of \mathscr{P} which does not terminate in an edge of M_1 . This means that $G' \cup \{s\}$ or $G' \cup \{s,v_{k-1}\}$ possesses a perfect matching which is absurd. By Lemma 4 the graph $\cup \mathscr{P}$ is a nonempty independent subgraph of G, which contradicts the assumption.

LEMMA 7. Let G be a graph satisfying condition (B) and having no nonempty independent subgraph. Let $s \in V(G)$, G' be a maximal independent subgraph of $G \setminus s$ and $M' \in \mathscr{F}(G')$. Assume that $(v_i)_{i < k \leq \omega}$ is an M'-augmenting path which starts at s. Then

$$G^* = G \setminus (\{s\} \cup \{v_i | i < k \leq \omega\} \cup V(G'))$$

satisfies condition (B).

Proof. By Lemma 6, $G_1 = G \setminus s$ satisfies condition (B). We have to prove that $G_2 = G_1 \setminus V(G')$ also satisfies condition (B). By the maximality of G' the graph G_2 has no nonempty independent subgraph. Therefore it suffices to prove that G_2 has no isolated vertex. This is obvious since G_1 satisfies condition (B). If $k = \omega$ then $G^* = G_2$ and the lemma is proved. If $k < \omega$ then $G^* = G_2 \setminus v_{k-1}$ and the result follows by Lemma 6.

Proof of the Theorem. Clearly (A) is a necessary condition for a graph to have a perfect matching. Assume that G is a countable graph satisfying (A).

168 K. STEFFENS

We have to show that G has a perfect matching. It will be enough to show that, if v is any vertex, then there is a matching M of G such that $v \in V(M)$ and $H = G \setminus V(M)$ also satisfies condition (A).

Let G_0 be a maximal independent subgraph of G which exists by Lemma 3. Choose $M_0 \in \mathscr{F}(G_0)$ and let $G_1 = G \backslash V(G_0)$. Then G_1 has no nonempty independent subgraph and satisfies (B). If $v \in V(G_0)$ we are done. Suppose $v \notin V(G_0)$. Let G_2 be a maximal independent subgraph of $G_1 \backslash v$ and let $M_2 \in \mathscr{F}(G_2)$. By Lemma 5 there is an M_2 -augmenting path $(v_i)_{i < k \le \omega}$ in G_1 which starts at $v_0 = v$. Therefore $\{v_i | i < k\} \cup V(G_2)$ has a perfect matching M'. Then $M = M_0 \cup M'$ is a matching of G which contains v and $H = G \backslash V(M)$ satisfies (B), and hence condition (A), by Lemmas 7 and 5.

COROLLARY 8. For each countable graph G = (V, E) there is a maximal subset $V' \subseteq V$ which has a perfect matching.

It should be mentioned that the condition (A) is not sufficient for a non-denumerable graph to have a perfect matching. To see this consider the complete bipartite graph $K(\aleph_0, m)$, where m is any cardinal greater than \aleph_0 .

Since every component of a locally finite graph G is countable the Schröder-Bernstein Theorem is a corollary of our theorem.

Remark. The author wishes to express his gratitude to Prof. Th. Kaluza who has directed the author's attention to the problem of factorization of graphs.

REFERENCES

- 1. R. A. Brualdi, Matchings in arbitrary graphs, Proc. Camb. Phil. Soc. 69 (1971), 401-407.
- 2. T. Gallai, On factorisation of graphs, Acta Math. Acad. Sci. Hungar. 1 (1950), 133–152.
- Neuer Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Mat. Kutato Int. Közl. 8 (1963), 135–139.
- 4. Th. Kaluza, Ein Kriterium für das Vorhandensein von Faktoren in beliebigen Graphen, Math. Ann. 126 (1953), 464-465
- L. Lovasz, Three short proofs in graph theory, J. Combinatorial Theory (B) 19 (1975), 269– 271
- K. P. Podeski and K. Steffens, Injective choice functions, J. Combinatorial Theory (B) 21 (1976), 40-46.
- 7. R. Rado, Axiomatic treatment of rank in infinite sets, Can. J. Math. 1 (1949), 337-343.
- 8. K. Steffens, Ergebnisse aus der Transversalentheorie I, J. Combinatorial Theory (A) 20 (1976), 187-201.
- 9. W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107–111.
- 10. The factorization of locally finite graphs, Can. J. Math. 2 (1950), 44-49.

Technische Universität Hannover, Hannover, West Germany