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MATCHINGS IN COUNTABLE GRAPHS 

K. STEFFENS 

1. Tutte [9] has given necessary and sufficient conditions for a finite graph to 
have a perfect matching. Different proofs are given by Brualdi [1] and Gallai 
[2; 3]. The shortest proof of Tutte's theorem is due to Lovasz [5]. In another 
paper [10] Tutte extended his conditions for a perfect matching to locally finite 
graphs. In [4] Kaluza gave a condition on arbitrary graphs which is entirely 
different from Tutte's. 

Here we present a necessary and sufficient condition for the existence of a 
perfect matching in a countable graph. The methods we use are developed 
in [6; 8]. 

2. Let F be a set and denote by [Vf the set {{a, b] \ a ^ b and a, b G V). 
An ordered pair (V, E) is a graph if E C [V]2. If G = (V, E) is a graph the 
elements of V are called vertices and those of E are called edges. A subgraph 
(F ' , £ ' ) of a graph (V, E) is a graph G' such that V C F and E H [F']2 = E'. 
A vertex 5 is incident with an edge {&, c} if s G {b, c}. U each vertex is incident 
with only a finite number of edges G is a locally finite graph. A countable graph 
is one for which F is a countable set. A matching in the graph G = (F, E) is a 
subset M of £ such that no two distinct edges of M are incident with the same 
vertex. The matching M is perfect (a 1-factor) provided each vertex of G is 
incident with one edge of M. ^ (G) denotes the set of all perfect matchings 
of G. Let co be the set of all natural numbers. An injective sequence (Vf) «j^w of 
vertices is called a path if {vif vi+1] G E for every i satisfying i + 1 < k. Let 
M be a perfect matching of G. A path (Vi)i<k^u is called M-alternating if the 
edges \vuvi+\) alternately lie in M and in E\M. Let G' be a subgraph of G and 
Mr G 3^ (Gf). An Mf-augmenting path P is an ikf'-alternating path starting 
at a vertex s G F(G)\F(G') and having one of the following properties: 1) P 
is an infinite sequence or 2) P terminates in a vertex v G V(G)\V(Gf). An 
ikf'-augmenting path P is said to be proper if P contains an edge of M'. A 
matching M is called independent if there is no proper M -augmenting path 
starting at a vertex 5 G F(G) \F(M) . A subgraph G' of G is said to be inde-
independent if ^ {G') ^ 0 and every perfect matching M' G ^~ (G') is 
independent. G satisfies condition {A) if for every matching M and for every 
vertex s G F(G)\F(Af) there exists an M -augmenting path which starts at s. 
G satisfies condition (B) if for every independent subgraph G' of G and for 
every vertex 5 G V(G)\V(G') there exists a vertex v G F(G)\F(G /) such that 
{s,v\ € £ ( G ) . 
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We shall prove the following theorem. 

THEOREM. A countable graph G has a perfect matching if and only if G satisfies 
condition (A). 

Of course this holds trivially for finite graphs. Therefore one obtains an 
extension to locally finite graphs by use of Rado's selection principle [7]: A 
locally finite graph G has a perfect matching if and only if for every finite 
matching M and for every vertex 5 G V(G)\V(M) there exists an M-aug-
menting path which starts at s. 

To prove the theorem we need several lemmas. 

LEMMA 1. Let M be a perfect matching of G and G' be an independent subgraph 
of G. Then there is no edge {s,v} G M such that s G V(G)\V(Gf) and v G V(G'). 

LEMMA 2. A subgraph Gr of G is independent if and only if there exists an 
independent perfect matching for G'. 

The proofs of Lemmas 1 and 2 are left to the reader. 

LEMMA 3. Every graph G has a maximal independent subgraph. 

Proof. Let ^ be a chain of independent subgraphs of G. Let (Ca)a</3 be a 
subchain of ^ such that VJa<pCa = U ^ where a, 13 are ordinals. Choose 
Ma G ^ (Ca) for every a < /3. By transfinite recursion we define a (trans-
finite) sequence (Ma*)a<p of matchings. Let Mo* = Mo and assuming 
Ma* G &~ (Ca) to be defined for a < a < 0, define 

Ma* = (Ma\(Ma H E(Ca))) U M* for a = a + 1, and 

Ma* = U Ma* for limit ordinal a. 

Then Ua</3 Ma* is a perfect matching of Ua<# Ca = U ^ . By Lemma 2 the 
subgraph U ^ is independent. Thus the result follows by Zorn's Lemma. 

LEMMA 4. Let M be a matching of G and s be a vertex of G. Let SP be the set of all 
M-alternating paths (Vi)i<k^ such that v0 = s and v\ = b in case {s,b\ G M 
and let & be the set of all proper M-alternating paths starting at s in 
case s G V(G)\V(M). If every path of SP terminates in an edge of M then 
M* = M C\ [V(\J ëP)']2 is an independent matching. 

Proof. Note that every path of & is finite. Assume that there exists a vertex 
v G V(G)\V(M*) and a proper if*-augmenting path (Vi)i<k^u which starts at 
v. By assumption v 9e s. Let {ci, c2] G M* be such that V\ G {ci, c2}. Let 
(dr)r<i^u be a path of SP which contains the edge {ci, c2\ and let r0 be the 
smallest r < co for which there is an i < co such that vt = dr. Denote by io the 
number i < œ satisfying vt = dro. Distinguish two cases. 

Case 1. {vi0, vi0+1] G M*. Let cn = dn if n S r0 and cn = w(n_ro)+<0 if 
r0 < n < r0 + (k — io). Then (cn)w<r +(*-<„) is an Af*-alternating path which 
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starts at s and does not terminate in an edge of M. This contradicts the 
assumption. 

Case 2. {vî0, vi0+i} g M*. Let cn = dn if n ^ r0 and cn = wio_(w_ro) if 
ro < n ^ r0 + i0. Then (cn)n^rQ+i0 is an Af *-alternating path which starts at 5 
and terminates in v. Thus v G V(M*) which is impossible. 

LEMMA 5. A graph G satisfies condition (A) if and only if G satisfies 
condition (B). 

Proof. We only prove the nontrivial implication. Assume that G does not 
satisfy condition (^4). Then there exists a matching M and a vertex 
s Ç V(G)\V(M) such that there is no Af-augmenting path which starts at 5. 
Let SP be the set of all proper Af-alternating paths which start at s. By Lemma 
4, M* = M H [V{ U 0)]2 is an independent matching and therefore G 
does not satisfy condition (B). 

LEMMA 6. If G satisfies condition (B) and has no nonempty independent 
subgraph then G\v satisfies condition (B) for every v Ç V(G). 

Proof. Assume that there is a vertex v such that G* = G\u does not satisfy 
condition (B). Thus there exists an independent subgraph G of G* and a 
vertex 5 Ç F(G*)\F(G') such that b £ F(G') for every edge {5, 6} Ç £(G*). 
By Lemma 5 there is a matching AT £ Ĵ ~ (G) and a proper Af'-augmenting 
path P which starts at s and terminates at v. Since the edges in P can be 
switched there is a perfect matching Afi of G\ = G' W {5, v}. Let y be incident 
with {v, b} G Afi and SP be the set of all Afi-alternating paths (Vi)«^w such 
that flo = v and V\ = b. Assume that there exists a path fa *)«*£« of ^ which 
does not terminate in an edge of Mi. This means that G VJ {s} or G' VJ {s} vk-i] 
possesses a perfect matching which is absurd. By Lemma 4 the graph U 0 is 
a nonempty independent subgraph of G, which contradicts the assumption. 

LEMMA 7. Let G be a graph satisfying condition (B) and having no nonempty 
independent subgraph. Let s £ V(G), G be a maximal independent subgraph 
of G\s and M' G &~ (G). Assume that (Vi)i<k^œ is an Mf-augmenting path 
which starts at s. Then 

G* = G\({s\ U {vt\i <k^œ}VJ V(G')) 

satisfies condition (B). 

Proof. By Lemma 6, Gi = G\s satisfies condition (B). We have to prove 
that G2 = Gi\V(G) also satisfies condition (B). By the maximality of G the 
graph G2 has no nonempty independent subgraph. Therefore it suffices to prove 
that G2 has no isolated vertex. This is obvious since G\ satisfies condition (B). 
If k = ce then G* = G2 and the lemma is proved. If k < œ then G* = G2\vk-i 
and the result follows by Lemma 6. 

Proof of the Theorem. Clearly (A) is a necessary condition for a graph to 
have a perfect matching. Assume that G is a countable graph satisfying (A). 
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We have to show that G has a perfect matching. It will be enough to show that, 
if v is any vertex, then there is a matching M of G such that v £ V(M) and 
H = G\V(M) also satisfies condition (A). 

Let Go be a maximal independent subgraph of G which exists by Lemma 3. 
Choose Mo G ^ (Go) and let Gi = G\F(Go). Then G\ has no nonempty 
independent subgraph and satisfies (B). If v G F (Go) we are done. Suppose 
fl € F (Go). Let G2 be a maximal independent subgraph of GiV and let 
M2 G ^~ (G2). By Lemma 5 there is an if2-augmenting path (Vi)i<k^u in G\ 
which starts at v0 — v. Therefore {vt\i < k} U F(G2) has a perfect matching 
M'. Then M = Mo W ikf' is a matching of G which contains v and 
H" = G\V(M) satisfies (B), and hence condition (^4), by Lemmas 7 and 5. 

COROLLARY 8. For each countable graph G = {V, E) there is a maximal subset 
V' Q V which has a perfect matching. 

It should be mentioned that the condition (̂ 4) is not sufficient for a non-
denumerable graph to have a perfect matching. To see this consider the com­
plete bipartite graph i£(Xo, w), where m is any cardinal greater than No-

Since every component of a locally finite graph G is countable the Schroder-
Bernstein Theorem is a corollary of our theorem. 

Remark. The author wishes to express his gratitude to Prof. Th. Kaluza who 
has directed the author's attention to the problem of factorization of graphs. 
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