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We show that the saturation of resistive tearing modes in a cylindrical tokamak, as well as
the corresponding island width, can be directly calculated with a magnetohydrodynamics
(MHD) equilibrium code without solving the dynamics and without considering
resistivity. The results are compared with initial-value resistive MHD simulations and to
an analytical nonlinear theory. For small enough islands, the agreement is remarkable. For
sufficiently large islands, the equilibrium calculations, which assume a flat current profile
inside the island, overestimate the saturation amplitude. On the other hand, excellent
agreement between nonlinear resistive MHD simulations and nonlinear theory is observed
for all the considered tearing unstable equilibria.
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1. Introduction

In magnetic fusion, tearing modes are an important class of instabilities that can often
be described by resistive magnetohydrodynamics (MHD) (White 2014). Tearing modes
are current-driven internal instabilities that drive spontaneous magnetic reconnection at
rational surfaces in toroidally confined plasmas. Magnetic islands grow in time, thus
potentially affecting confinement, and eventually saturate nonlinearly. If their saturated
amplitude is too large, they can trigger disruptions, sometimes even inducing the complete
termination of the plasma discharge (La Haye 2006). While resistivity is required to
allow these modes to grow, their saturated states are three-dimensional MHD equilibria
that are often independent of resistivity, at least for sufficiently large Lundquist numbers
(Poyé et al. 2014). This suggests that a direct MHD equilibrium computation might be
able to describe and even predict these saturated states, as was shown to be the case for
the saturation of ideal instabilities in tokamaks (Cooper et al. 2010, 2011; Kleiner et al.
2019) or the formation of saturated double-axis states in reversed field pinches (Dennis
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et al. 2013b). The possibility of finding these nonlinearly saturated tearing modes directly,
namely, without solving the dynamics and without free parameters, was investigated
and successfully shown for the first time in a slab geometry (Loizu et al. 2020). More
recently, a similar type of calculation was carried out in a cylindrical geometry for
the case of externally forced reconnection in a cylinder (Wright et al. 2022), although
the volume available for reconnection remained unconstrained. Here, we investigate the
possibility of directly predicting the saturated state of tearing modes in a cylindrical
tokamak geometry at zero pressure. In this configuration, we can exploit an exact nonlinear
saturation theory (Arcis, Escande & Ottaviani 2006) that predicts the saturated island
width for a given initially axisymmetric equilibrium that is unstable to a tearing mode.
The results are compared with those obtained with the SpeCyl code (Cappello & Biskamp
1996; Bonfiglio, Chacén & Cappello 2010), which solves the time-dependent nonlinear
visco-resistive MHD equations in a cylinder. These predictions serve as a benchmark
for the direct equilibrium approach, where we use the stepped-pressure equilibrium
code (SPEC) (Hudson et al. 2012, 2020) to describe, without free parameters, the
spontaneous formation of these nonlinearly saturated tearing islands. In general, the direct
calculation of saturated states with an equilibrium approach is interesting for two reasons:
on the one hand, it provides insights into the nature of the saturated state itself; on
the other hand, the approach is potentially much faster than the initial-value approach,
especially as we consider larger systems (such as magnetic fusion reactors) or more
complex geometries (such as stellarators), where analytical theories are not available and
initial-value approaches are very demanding.

The remainder of this paper is organized as follows. In § 2 we construct and analyze the
linear stability of a family of MHD equilibria both analytically and with SPEC. Section 3
describes a nonlinear theory that predicts the saturated island width of these unstable
equilibria. In § 4 we carry out nonlinear simulations with the SpeCyl code and compare
the obtained saturated tearing modes with the theoretical predictions. Section 5 describes
how SPEC can also be used to retrieve the saturated states corresponding to each unstable
equilibrium, and a discussion on the level of agreement is provided. Conclusions follow
in § 6.

2. Family of equilibria and linear stability analysis

We construct a family of non-rotating, cylindrical MHD equilibria with zero pressure
and parametrized by the on-axis safety factor g

2
q(r) = qo [1 + <é> } , 2.1)

for 0 < r < a and where a and ry are fixed and correspond, respectively, to the radius of the
plasma boundary and to the current channel width. As we will see, the value of g, controls
the stability of the equilibrium, the presence and location of resonant rational surfaces as
well as the width of the saturated islands. In the strong guide field limit (B, > B, where B
is the magnetic field), which for a tokamak with g ~ 1 also corresponds to the large aspect
ratio limit (R >> a where R is the tokamak major radius), the axial current density profile
associated with this g-profile is given by
Jo

J(r) = (2.2)
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FIGURE 1. Equilibrium profiles for the safety factor (a) and current density (b) as given by
(2.1)—(2.2) (solid black lines) and as obtained from SPEC (red circles and lines) with N, = 41.
Here, go = 1.2 and ry/a = 0.81.

where j, = 2By/(uoqoR) is the on-axis current density and o the vacuum magnetic
permeability, By = B,(0) and 2ntR is the length of the cylinder, which is considered to be
27-periodic in both the polar angle 6 and ¢ = z/R. Figure 1 shows examples of profiles
corresponding to (2.1)—(2.2). Given the fixed, circular plasma boundary at r = a, and
given qq, 19, By and R, the ideal MHD equilibrium magnetic field B is fully determined
by the force-balance equation j x B = Vp = 0, which reduces to a one-dimensional,
first-order differential equation for B.(r). These equilibria are ideally stable as long as
qo > 1 (Freidberg 2014), but as we will see in the next section, they can be resistive
unstable (Furth, Rutherford & Selberg 1973).

We can also construct these equilibria numerically by using SPEC (Hudson et al. 2012,
2020), with the purpose of seeking nearby, relaxed (lower potential energy) equilibria,
which can be accessed via the possible opening of magnetic islands. SPEC considers
a finite number N, of nested volumes, hereafter referred to as relaxation volumes,
that are separated by magnetic surfaces, hereafter referred to as ideal interfaces. In a
cylindrical geometry, the position of each ideal interface [ is generally described by
x;(0, ¢) = 10, ¢) cos 07 + ri(8, ¢) sin 0} + R(plAc, with (;JA lAc) the cartesian unit vectors,
and thus can be determined by a set of Fourier coefficients, since we can write r;(6, ¢) =
Y FLmn €08 (MO — ng). In each relaxation volume, the magnetic field solves a Beltrami
equation V x B = B with 1 a constant that is related to the parallel current density. The
solution in the volumes is then determined by the shape of the boundary interfaces where
B - n =0, the value of  and two scalars ¥, and ¥, that correspond to the ‘poloidal’
(constant-6) and ‘toroidal’ (constant-¢) magnetic fluxes enclosed by each volume (in
the innermost volume, only ¥, is required). The position and shape of each interface is
unknown a priori and is determined by a jump condition across each interface, [[B*]] =
Bi — B> =0, where + and — refers to each side of the interface. This condition is the
local equivalent of force balance and ensures that the inner and outer pressures are in
balance everywhere on an interface. We remark that equilibria with finite plasma pressure
can also be described in SPEC but here we are considering zero-pressure equilibria. The
magnetic fields satisfying these equations are extrema of the plasma potential energy,
W= v, B?/(2u0) dV, when considering arbitrary variations in the magnetic field inside

the relaxation volumes and ideal variations of the interface geometries, with the constraint
of a conserved magnetic helicity, K; = |, y, 4+ BdV, and magnetic fluxes in each relaxation
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volume (Hudson er al. 2012). Here, V, = Zf]:l V, is the total plasma volume and A is
the magnetic vector potential. Furthermore, it has been shown that the magnetic field
satisfying these equations retrieves exactly ideal MHD in the limit N, — oo (Dennis
et al. 2013a). Hence, SPEC can be used to construct the family of ideal MHD equilibria
described by (2.1) if a large value of N, is chosen and if the appropriate constraints are
provided. In fact, the constants (u, ¥,, ¥;) in each volume, which determine the Beltrami
fields, can be related to other physical quantities such as the safety factor g on each side
of each interface, g, and ¢_, or the net toroidal current flowing in each volume, I,,, and
on each interface, I, (Baillod et al. 2021). One can thus for example constrain in each
volume (q,, q_, ¥,) if the safety factor is to be imposed, or (Iyo|, lsus, ¥;) if the current
profile is to be imposed. Figure 1 shows an example of an equilibrium reconstructed with
SPEC, where N, = 41 and the safety factor was constrained on each interface by following
(2.1). After the SPEC calculation, one can look at the global behaviour of g(r) as well as
that of j.(r), which indeed reproduce well the analytical profiles.

2.1. Linear stability from classical tearing theory

The linear resistive stability of a cylindrical tokamak with zero pressure is uniquely
determined by the sign of A’ (Furth ez al. 1973)

A — i POt O =P =)

8 , (2.3)
o ¥ (ry)

with A" > 0 implying instability. Here, U (r) is the amplitude of the perturbed flux
function ¥ (r, 6, ¢) = lﬁ(r) cos (mf — ne) for the linear ideal mode (m, n) associated
with the rational surface ¢(r;) = g, = m/n, where m and n are, respectively, the poloidal
(along 0) and toroidal (along ¢) mode numbers. The corresponding magnetic field
perturbation is 8B = Vi x z, and thus the radial magnetic field perturbation, §B,, for
this mode is proportional to . Notice that A’ depends on equilibrium profiles but is
independent of resistivity. It can be calculated from the linearized ideal MHD equations,
by matching the so-called ‘outer solutions’. A shooting code provides a numerical solution
for 4 (r) and a value of A’ for a given resonant surface. For the family of equilibria
described by (2.1), choosing ry/a = 0.81, R/a = 10 and assuming the presence of a
perfectly conducting shell at the plasma boundary, we find instability forthe m =2, n = 1
mode whenever 1 < gy < 2. In that range of g, values, we also find no other instability,
hence, we can focus on the g; = 2 resonant surface. Figure 2 shows an example of solution
for @(r) for go = 1.2. Figure 3 shows the obtained values of A’ as a function of ¢. For
larger values of ¢, the value of A’ keeps increasing but of course for g, > 2 there is no
instability because there is no g; = 2 surface anymore.

2.2. Linear stability from SPEC

The stability of each of these equilibria can also be assessed with the SPEC code by
evaluating the eigenvalues of the Hessian matrix H, whose coefficients measure the
second variation of the plasma potential energy with respect to perturbations in the
geometry of the ideal interfaces, with the constraint of fixed magnetic helicity and fluxes in
each volume (Loizu & Hudson 2019; Kumar et al. 2021, 2022). In a cylindrical geometry,
however, one can also directly evaluate the eigenvalues of the force-gradient matrix G,
whose coefficients measure the variation in the force on each interface, f; = [[B*/2uo]l:
with respect to perturbations in the geometry of the ideal interfaces, ry,,,, with the
constraint of fixed magnetic helicity and fluxes in each volume (see Appendix A for more
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FIGURE 2. Radial profile of the perturbed flux function Y for the unstable m = 2, n = 1 mode
obtained from the linearized ideal MHD equations (black solid line). The same function can be
inferred from the linear radial displacement & (r) obtained with SPEC using the relation I/A/ (r) =
rBo(1/q(r) — 1/qs)&(r)/R. The initial equilibrium is the same as for figure 1. The dashed line
indicates r = r;.
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FIGURE 3. Value of A’ vs gg as obtained from a shooting code (black solid line) for the m =
2,n = 1 mode. The equilibrium g profile is given in (2.1) with ro/a = 0.81 and R/a = 10. The
smallest eigenvalue of the force-gradient matrix from SPEC, Aspgc, is also shown in arbitrary
units for each value of g (red circles).

details). Let us call A the smallest eigenvalue of G. If 2 > 0, the equilibrium is stable. If
A < 0, then the equilibrium is unstable and the eigenmode u, = {r;,,,} corresponding to
the eigenvalue A provides information about the mode number (m, n) of the instability as
well as its radial structure. For the family of equilibria described by (2.1), we find that, for
1 < go < 2, there is a negative eigenvalue (thus instability) that corresponds to the m = 2,
n =1 mode (figure 3). Outside this interval of gy-values, all eigenvalues are positive
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(thus stability). In the case of instability, the radial structure of the unstable eigenmode
agrees well with the one obtained from the shooting code, as shown in figure 2. Indeed,
this comparison is carried out by relating the radial displacement of the flux surfaces
to the perturbed flux function, B =V x (§ x By) = V¢ x z, and evaluating the radial
displacement of the SPEC ideal interfaces, which has an amplitude & (r;) = 7, — 1,00 fOr
each mode (m, n).

3. Nonlinear saturation theory

The growth of the tearing mode promotes the growth of a magnetic island. The rate
y at which the island grows depends on the plasma resistivity n, both in the linear
(Furth et al. 1973) and nonlinear (Rutherford 1973) phases. The saturation of the tearing
mode, which in itself proves the existence of a nearby, generally three-dimensional MHD
equilibrium, can be characterized by the width of the saturated island, wy,, and that value
becomes independent of resistivity for sufficiently small resistivity (Poyé et al. 2014). For
a cylindrical tokamak, Arcis et al. (2006) derived a nonlinear theory for the time evolution
of the island width w(7)

2 B 2
—1.224' +w{ilni—221,42+040“4+ 5 +0.170 As

Wo I —

po dw
neq(rv) dt

}, (3.1)

that is exact to first order in w. The coefficients in (3.1) can all be calculated from the
equilibrium profiles, namely,

eq (75) 2 o (75) 2 3’
A= J_q— (1 — —) ;. B= J e ( — —) i Wo = aexp (——) (3.2a—c)
Jeq(rs) s Jeq () s 2A
where joq(7) is the equilibrium current density profile, which in our case is given by (2.2),
s = ryq'(ry) /q(ry) is the magnetic shear at the resonant surface,

¥ = lim [’ﬁ/(”“ + i}:rrj’/(” —) oy (1 +1n (Z))] (3.3)

is a quantity that, similar to A’, can be obtained from the ideal outer solution and o
is a constant that defines whether the equilibrium resistivity is uniform (¢ = 0) or the
equilibrium electric field is uniform (o = 1). Equation (3.1) can be used to predict the
saturated island width, wy,, as a function only of the initial equilibrium profiles, by setting
the left-hand side to zero and solving for w (notice that, as expected, the solution will not
depend on n). This involves solving a single nonlinear algebraic equation and that can be
easily done numerically. Figure 4 shows the predicted values of wy, for the same family of
equilibria as in § 2, namely for different values of gy. We observe that wy, increases with
¢o up to a maximum, wg,/a ~ 0.15 at gy ~ 1.3, and then decreases again towards zero as
qo approaches g, = 2. It is worth noticing that the value of A’, which gives a measure of
the available energy for reconnection (Furth ez al. 1973), is monotonically increasing with
qo and thus the final amplitude of the mode is not entirely reflected by the amplitude of A’
We also observe that the choice of o (0 or 1) only introduces minor changes.

4. Nonlinear resistive MHD simulations

The dynamics of the tearing mode, from the initially unstable equilibrium up until the
nonlinear saturation of the island, can be calculated by using an initial-value approach.
Here, we use the SpeCyl code (Cappello 2004; Bonfiglio et al. 2010) to solve the nonlinear
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FIGURE 4. Value of wgy Vs go as obtained from (3.1) with o = 1 (solid black line) and 0 = 0
(dashed grey line). Also shown are the predictions from the initial-value code SpeCyl (blue stars)
and from the equilibrium code SPEC (red circles). The initially unstable equilibria are the same
as for figure 3.

visco-resistive MHD equations in a cylinder, in the constant-pressure, constant-density
approximation. The model equations are, in dimensionless units,

0B

— =-VXE,

ot

E=n—-vxB8B,

j=V x B, 4.1)
dv X B+ puV?

— =] X v v,

'Odt J P
V.-B=0,

where E and B are the electric and magnetic fields, j is the current density, v is the
plasma velocity, dv/dt = [dv/dt 4+ (v - V)v] and p = m;ny is the (constant) mass density.
Lengths are normalized to the minor radius a, the plasma particle density to the uniform
density ng, the magnetic field to the initial value B, of the axial magnetic field on axis,
the velocity to the Alfvén velocity vy = Bo/(juoming)'/? and time to the Alfvén time
T4 = a/v,. In these units, the resistivity n corresponds to the inverse Lundquist number
§~' = 14/7,, and the viscosity v to the inverse viscous Lundquist number (for a scalar
kinematic viscosity), M~! = 7, /1,, where 7, and 7, are the resistive time scale and viscous
time scale, respectively. The equations are solved in cylindrical geometry (r, 6, z) and
periodic boundary conditions are used for both the azimuthal coordinate 6 and the axial
coordinate z, which has periodicity 2nR. The code uses finite differences in the radial
coordinate » and a spectral formulation in the two periodic coordinates 6 and z. In the
calculations presented in this paper, the Fourier harmonics (m, n) = (2, j) are retained,
withj =0, ..., 16. Such large number of helical harmonics is required to properly capture
the sharp flow patterns developing around the island separatrix, in particular for high
Lundquist numbers. The boundary conditions at the plasma wall, r = a, are B, = E; =0
(perfect conductor), E, = E, (externally imposed, constant, toroidal electric field) and
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vy = v, = 0 (no-slip boundary conditions). The rest of the boundary conditions can be
derived from Ohm’s law. More details about the SpeCyl code and its numerical algorithm
can be found in Cappello & Biskamp (1996) and Cappello (2004).

We run SpeCyl for a number of initially unstable equilibria that, as described in § 2, are
characterized by ¢q. For each value of gy, we consider different values for the Lundquist
number from S = 10° to § = 10° at fixed magnetic Prandtl number P = S/M = 1, we
evolve the system until saturation and measure the island width. Figure 5 illustrates
examples of such saturated states by showing a Poincaré section of the magnetic field
obtained for ¢, = 1.3 (top left) and gy = 1.6 (bottom left) with S = 108. For sufficiently
high Lundquist number S > 108, the radial profiles of the perturbed flux function ¥ show
good agreement in the linear growth phase with those produced by the shooting code,
and the nonlinear saturated island width becomes independent of S (data not shown). This
is consistent with previous analytical and numerical studies (see e.g. Poyé et al. 2014)
showing that the saturated tearing mode island width is independent of resistivity and
viscosity. We also find very good agreement with the analytical predictions from the
nonlinear theory of Arcis for all the considered tearing unstable equilibria (figure 4).
In particular, the best agreement with nonlinear theory is found assuming o =1 (i.e.
a uniform equilibrium electric field) consistently with the assumption of the resistive
MHD code. From the resistive simulations, we also observe that the saturated island is
not symmetric with respect to the X-point. More precisely, we can define the asymmetry
parameter

Iy —r—

Asym =

-1, (4.2)
ry—ryx

where ry is the radial position of the X-point of the island and r_, r, are respectively the
smallest and largest radial positions of the island separatrix (which occur at the poloidal
position of the O-point). For a symmetric island, ry — r_ = r; — ry and thus Ayy,,, = 0. We
can evaluate (4.2) from the SpeCyl simulation results and display Ay, as a function of gy
(figure 6). Figure 7 also shows how the individual values of ry, _ and r, change with g.
As soon as gy > 1, the islands become quickly asymmetrical, Agy,, > 0, and become more
and more asymmetric as gy approaches 2. We remark that the asymmetric feature of tearing
mode islands has been observed in previous investigations and has been suggested to play
an important role in determining the saturation amplitude from a modified Rutherford
equation approach (Teng et al. 2016).

5. Nonlinear equilibrium calculations

We now use the SPEC code to seek stable equilibrium solutions by starting from the
unstable equilibria described in § 2. Indeed, in § 2.2 we obtained, for each value of ¢, the
unstable eigenmode u, = {r;,,,} that is associated with the unstable (negative) eigenvalue
A of the force-gradient matrix G. Here, m =2, n = 1 and the index [ = 1,2,...,N, — 1
labels the interfaces. Figure 8 shows an example of such an eigenmode. We now perturb
the Fourier geometry of the initial equilibrium interfaces by adding a displacement
proportional to the eigenmode, namely, we add o u,; with @ > 0. Notice that, given a
certain volume (or equivalently, magnetic flux) enclosed by the two interfaces surrounding
the resonant surface, there is a maximum perturbation amplitude beyond which the
interfaces would overlap — but this is never exceeded because the perturbation is typically
small enough. SPEC then seeks a new equilibrium solution. If « is too small, SPEC
snaps back to the initial equilibrium (figure 9). If « is large enough, however, SPEC finds
another equilibrium solution (independent of «, see figure 9) that has a helical structure
and displays a magnetic island inside the volume containing the resonant surface and
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FIGURE 5. Poincaré sections of the magnetic field at ¢ = 0 showing the saturated island as
obtained from SpeCyl (a,c) and SPEC (b,d) for go = 1.3 (a,b) and g9 = 1.6 (c,d). The violet
lines on the SPEC Poincaré sections (b,d) indicate the two interfaces encapsulating the resonant
volume.

thus where reconnection happens (two examples are shown in figure 5). This approach
was successful in slab geometry and showed that the saturation amplitude of the tearing
mode is correctly retrieved (Loizu et al. 2020). In that study, the toroidal magnetic flux
v, enclosed by the resonant volume, which constrains the maximum achievable island
width, was chosen by following a recipe without free parameters that is summarized
in § 5.1 for convenience. If the island is expected to be perfectly symmetric around the
resonant surface, the value of ¥,, uniquely determines the initial positions r, and r_ of the
two interfaces defining the resonant volume, since ¥,, = B.7(r} — r?) and the symmetry
argument forces the flux to be equally distributed on each side of the resonant radius 7;. In
general, however, there are multiple ways of placing the two interfaces given the same total
flux ¥, (see figure 10 for an illustration). For this reason, we need an additional constraint
that is related to the expected island asymmetry, and that is the subject of § 5.2. Finally, the
search for a nearby, lower energy equilibrium state can be done with different constraints,
and an appropriate choice must be made by identifying the good quasi-invariants in the
process at play. In the case of tearing mode reconnection, it is the net-toroidal-current
profile that shall be constrained, and that is the subject of § 5.3. Section 5.4 summarizes

https://doi.org/10.1017/50022377823000934 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377823000934

10 J. Loizu and D. Bonfiglio

25
*
2t * 1
*
*
1.5} * 7 1
3 O
<):“J % o//o
1 0 °° ’
i ©
0.5’ *// 4
O 1 1 1 1
1 1.2 14 1.6 1.8 2

FIGURE 6. Value of Agym as a function of go as obtained from SpeCyl (blue stars) and SPEC
(red circles). The dashed line indicates the expected island asymmetry Ap,x obtained by solving
by solving (5.4) and that is used to initialize the SPEC equilibrium.
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FIGURE 7. Radial positions ry, r— and ry characterizing the island, as a function of go as
obtained from SpeCyl (blue) and SPEC (red). The dashed line indicates the position of the
resonant surface.

the results of nonlinear simulations carried out with SPEC to reproduce the saturated
tearing mode island width as a function of gy.

5.1. Determining W,

In the limit ¥,, — 0, the volume available for reconnection vanishes and therefore the
maximum island width that is possibly achievable goes to zero. For increasingly large
values of ¥, the island is allowed to grow over a larger volume, although it may well
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FIGURE 8. Unstable eigenmode profile showing the typical tearing parity around the resonant
surface. Here, go = 1.1 and N, = 41.
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FIGURE 9. Saturated island width obtained from SPEC nonlinear calculations with gg = 1.1
as a function of the initial perturbation amplitude as measured by «. The normalizing factor
ot Tepresents the actual saturation amplitude of the helical state obtained after the nonlinear
calculation. The Fourier resolution is (m, n) = (4, 2).

only occupy a fraction of it. However, if the value of ¥,, exceeds a certain threshold, ¥ ¥,
the initial equilibrium becomes stable and no island grows at all. This is illustrated in
figure 11 for two cases. Obviously, for each g, the saturated island width obtained with
SPEC depends on ¥,,. However, there is a distinct point, which we identify as wg,, and that
is the maximum achieved island width, which occurs at around ¥,, ~ ¥*. We thus apply
the following procedure: for each value of ¢, a linear stability analysis is first performed
with SPEC (see § 2.2) and the value of ¥ ¥ is obtained by solving A(¥,,) = 0. This criterion

is reminiscent of the quasi-linear theory of R. White (White et al. 1977), in which the
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FIGURE 10. An illustration of how the initial positions 4 and r_ of the interfaces defining the
resonant volume can be symmetric (a) or asymmetric (b) with respect to the resonant surface
r = ry, while preserving the same enclosed toroidal flux ¥,,,.
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FIGURE 11. Island width, w, obtained from SPEC nonlinear calculations as a function of the
enclosed toroidal flux ¥,, imposed in the resonant volume. Two values of gg are shown: go = 1.1
(orange squares) and gp = 1.3 (purple diamonds). The vertical dashed lines indicate the value
of W. Here, the flux is always equally distributed on each side of the resonant surface, and the
toroidal-current profile is constrained. The Fourier resolution is low here (m = 2, n = 1).

saturation of a tearing mode occurs at a marginal stability point evaluated as A’ (w) = 0.
We remark that the value of ¥ obtained with this procedure is independent of the number
of volumes for sufficiently large N, (see figure 12). Then, SPEC is run nonlinearly with
W, < W and the obtained value of wy, is extracted from the corresponding saturated
state.
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FIGURE 12. Values of ¥, (obtained by solving A(¥,,) = 0) as a function of the number of
volumes. Here, the equilibrium has gp = 1.1.

5.2. Model for the island asymmetry

The SPEC calculations shown in figure 11 were done by assuming that the flux ¥, in the
resonant volume is equally distributed on each side of the resonant surface. However,
a different choice (as illustrated in figure 10) can substantially modify the nonlinear
saturation amplitude and thus the value of wyg,. In the following, we describe how we can
estimate the expected asymmetry of the island and thus constrain accordingly the initial
position of the interfaces, r, and r_, around the resonant surface.

We start by writing the total magnetic field as B = By(r) + Vi x z and assume an
arbitrarily large perturbation with single helicity, ¥ (r, ¢) = W (r) cos ¢, where £ = mf —
ng. This perturbation generates an island around the rational surface with g, = ¢(ry) =
m/n. The X-point of the island is located at ¢ = 0 and the O-point of the island is located
at ¢ = m. However, as we show now, this island is not symmetric in the sense of (4.2),
namely Ay, > 0. The island itself consists of a set of nested magnetic surfaces that are
described by a flux function y (, ¢) such that B - V x = 0. One can show that (Fitzpatrick
1995)

X(r ) = / (1 - 1) By dr + 9 (r) cos ¢, (5.1)
and so the magnetic surfaces in the island, and in particular the island separatrix, are
surfaces of constant y . Furthermore, the asymptotic behaviour of ¥ (r) around the resonant
surface can be obtained from the linear ideal outer solutions (see § 6.9 of Wesson 2004)
and is given by

VEP) = o, [1+ A —r)Inlr — r] + A*(r — )] (5.2)

where = refers to each side of the resonant surface, v is the (unknown) amplitude of the
perturbation at the resonant surface, A is given by (3.2a—c) and A* is a constant that can

be determined numerically by solving for the radial profile of  (r) outside of the resonant
layer. As a matter of fact, the constants A* are used to evaluate A’ and X’ as defined in
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(2.3) and (3.3), since A’ = AT — A~ and X' = A" + A~. At the separatrix, we have

Xy, ) = X(r—, 1) = Xsep X X (1, 0) = ¥y, (5.3)
and hence combining (5.1) and (5.2) into (5.3) we obtain a constraint for (r,, r_)
g(ry) = g(ro), (5.4)

where

r q
‘\1——)Bydr
J ( qs) '
2+A(r—rs)ln|r—rs|+Ai(r—rs)’

is a known function of the equilibrium. Equation (5.4) can be combined with the constraint
for the toroidal flux, ¥, = Ttho(r%r —r?), to solve for the positions r, and r_ of the
interfaces that encapsulate the resonant volume. The values obtained for r, and r_ can
then be used to initialize the SPEC equilibrium interfaces. Given this initial geometry, one
can show that the expected (maximum) value of the island asymmetry at saturation is

A =2 (” - 1) . (5.6)

ri—ry

g(r) = (5.5)

The value of A« obtained by solving (5.4) for different values of ¢, is shown in figure 6
and the agreement with the actual saturated island asymmetry obtained by SpeCyl is quite
remarkable. Notice that this prediction is merely based on linear theory.

5.3. Constraining the current profile

Magnetic reconnection is a process through which magnetic energy is converted into
kinetic and thermal energy. If the process is fast enough, the magnetic helicity is well
conserved (Berger 1999), and this happens for example during sawteeth in tokamaks
(Heidbrink & Dang 2000), which occur on quasi-ideal time scales. Resistive tearing
modes, however, are instabilities that promote magnetic reconnection at a rate that is fast
when compared with the resistive time scale t,, but slow when compared with the Alfvénic
time scale 74. The reconnection process is then too slow for the magnetic helicity to be a
good invariant. Nevertheless, it can be shown that the net toroidal current is a flux function
at saturation and is given by (Escande & Ottaviani 2004; Militello & Porcelli 2004)

J(Y) = (jeq)1//’ (5.7)

where (-), is the average over a flux surface and ¥ (r, 8, ¢) is the saturated flux function.
Equation (5.7) implies the quasi-invariance of the current profile, the invariance being
exact in the limit of small island width. We can thus exploit this constraint on the current
profile and run SPEC nonlinear equilibrium calculations by constraining the current in
each volume, /.., to remain constant, and the surface current on each interface, Iy,s, to
remain zero, thereby ensuring that the current profile remains smooth.

5.4. Nonlinear simulation results

For each value of gy, we thus proceed as follows: (i) perform a linear stability analysis
with SPEC to find the unstable eigenmode u, and the value of ¥ (§ 5.1); (i) use (5.4) to
infer the values of (r,, r_) (§5.2); (iii) perturb the equilibrium interfaces according to u,
and use SPEC to seek a new equilibrium by constraining the current profile (§ 5.3); (iv)
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measure the width of the island in the resonant volume of the newly found equilibrium.
We remark that this procedure has no free parameters. Figure 5 shows two examples of
saturated states obtained with SPEC for ¢y, = 1.3 (top right) and gy = 1.6 (bottom right),
which qualitatively look very similar to the ones obtained with SpeCyl (top left and bottom
left). Figure 4 shows the saturated island width wg, obtained with SPEC as a function
of go. The qualitative shape and order of magnitude of the expected function wg,(qo) is
reproduced. For small enough islands, the agreement with the predictions from nonlinear
theory and resistive MHD simulations is remarkable. The agreement remains good up
to island sizes of the order of 10 % of the minor radius. For increasingly large islands,
the equilibrium calculations overestimate the saturation amplitude from nonlinear theory
and resistive MHD simulations (the maximum relative error is approximately 25 %). This
might be due to the fact that these calculations assume a flat current profile inside the
island. Furthermore, the initial positioning of the interfaces around the rational surface,
which is determined by solving (5.4), has some approximations, namely that the nonlinear
perturbed flux function around the resonant surface has a single helicity and a radial
structure given by the linear solution. As a matter of fact, we can measure a posteriori
the positions ry, r— and r.. that characterize the island at saturation in SPEC, and compare
them with those obtained with SpeCyl for different values of ¢,. This is shown in figure 7.
In particular, we see that the sign of the asymmetry is well retrieved, namely the property
that ry — r_ > ry — r;.. However, the exact value of Ay, (4.2), is quite sensitive to small
errors in the values of ry, r_ and r,, and a good agreement is only observed for gy < 1.3
(see figure 6). We also compare the profiles of each component of B and j at saturation
as obtained from SPEC and SpeCyl. Figures 13 and 14 show this comparison for the case
qo = 1.3, for which the agreement in the island width is the least good. Even for this case,
we still observe that SPEC is capable of reproducing (both qualitatively and quantitatively)
the structure of the saturated tearing mode. We can also compare the axial current profile
at saturation, j,(r), taken through the O-point and X-point of the island (figure 15). In
particular, we indeed see that in SpeCyl the current significantly flattens, but not perfectly,
across the island.

Finally, we would like to remark that a convergence analysis has been carried out for the
SPEC simulations presented herein. Increasing further the number N, = 41 of volumes
does not significantly change the values of wy, (data not shown). Similarly, no significant
changes are obtained with a further increase in the order of the radial basis functions
(Tschebyshev polynomials) used to represent the magnetic vector potential in the volumes.
The Fourier resolution, however, seems to play a more important role. Even if the dominant
Fourier mode in the saturated island is the (m, n) = (2, 1) mode and higher harmonics
(m,n) = (2,)), with j € N, are present with exponentially decreasing amplitude, the
values of wy, can strongly depend on the Fourier resolution used in SPEC, as illustrated in
figure 16. At a resolution of (m, n) = (10, 5), which is the one used to obtain the results in
figure 4 and already implies describing 116 different Fourier modes (Hudson et al. 2020),
the relative changes in wg, due to a further increase in Fourier resolution become lower
than 5 %. It is also important to note that, for gy close to 2, the resonant surface is close
to the magnetic (and coordinate) axis, and that makes it harder for SPEC to robustly find
a solution, mainly because of the singularity in the coordinates at » = 0. Furthermore, the
SPEC code is still numerically fragile in the sense that the Newton-like method employed
to find force balance might not be able to converge depending on the initial guess. The
main result of this paper is thus the evidence that an equilibrium approach is capable of
predicting, to a certain level of accuracy, the saturated state of tearing mode islands in
a cylindrical tokamak. The potential of carrying out these predictions very fast is still to
be shown by improving the numerical algorithm in SPEC. Nevertheless, when SPEC is
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FIGURE 13. Components of B at saturation as obtained from SpeCyl (a,c,e) and SPEC (b.d, f)
for go = 1.3. For each component, the color scales are the same between SpeCyl and SPEC.

able to find a solution, it does so in ~ 3 CPU hours, while the time-dependent resistive
MHD calculations performed with SpeCyl can take hours to days, mainly depending on
the value of the Lundquist number S, which strongly affects the simulation time required
to reach saturation, and on the number of Fourier harmonics included in the calculation.
The SpeCyl predictions are, however, more accurate, as was shown in figure 4.
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6. Conclusions

In this paper we have investigated the nonlinear saturation of resistive tearing modes
in a zero-pressure cylindrical tokamak. We have validated the results of nonlinear
visco-resistive MHD simulations against an exact nonlinear saturation theory, showing
excellent agreement for a wide range of equilibria. Furthermore, we have shown that an
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FIGURE 15. Comparison of the axial current profiles at saturation (red is SPEC, blue is
SpeCyl) taken through the O-point (a) and X-point (b) of the island.
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FIGURE 16. Saturated island width (upper curve, left axis) obtained from SPEC nonlinear
calculations with go = 1.05 as a function of the poloidal Fourier resolution m. The toroidal
Fourier resolution is always n = m/2. The relative error defined here as (wgy(m + 1) —
Weat (1)) /Weqt (m) is also shown (lower curve, right axis).

equilibrium approach can be used to predict, without free parameters, the saturated state
of these modes to a certain degree of accuracy, with a very good agreement for sufficiently
small islands. The natural next step is to perform similar tearing mode saturation studies
in toroidal geometries. In stellarators, classical tearing modes have been observed (Bartlett
et al. 1980) and modelled (Nikulsin et al. 2022), and we plan on investigating them with
the SPEC code. In tokamaks, neoclassical tearing modes play a crucial role in the potential
trigger of plasma disruptions, and we plan on extending this approach with the addition of
the bootstrap current effects, which are already present in the SPEC code (Baillod et al.
2021, 2023). There are also toroidal corrections to classical tearing modes in tokamaks
(Glasser, Greene & Johnson 1975), which have already been reproduced linearly with
the SPEC code (Kumar et al. 2023). We plan on verifying whether the effect of these
corrections on the nonlinear saturation of classical tearing modes can be retrieved with an
equilibrium approach as well. Finally, the effect of rotation on tearing modes could also
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be studied by exploiting recent extensions of the stepped-pressure equilibrium model that
include the presence of flows (Qu et al. 2020).
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Appendix A

Here, we show that, in a cylindrical tokamak geometry, the stability of stepped-pressure
equilibria can be calculated from the eigenvalues of the force-gradient matrix G, whose
coefficients measure the variation in the force on each interface, f; = [[B*/20]];, with
respect to perturbations in the geometry of the ideal interfaces, r;,,,, with the constraint of
fixed magnetic helicity and fluxes in each volume (§ 2.2).

Consider the energy functional

F=W=Y K —Ky,), (A1)

where
BZ
W= Z f —qv, (A2)

is the total plasma potential energy and p,; are Lagrange multipliers defined to enforce the
constraint on the magnetic helicity K; = K, in each volume /. A variational calculation
on F that accounts for arbitrary variations in the magnetic field, B = V x 34 (except for
the boundary condition B - n = 0 and the flux constraints, which can be enforced using
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the gauge freedom), and interface geometry, x = {5y}, gives
8F = Zf (VXxB—B)-354dV + Z/ 1i€,(6x) + ds, (A3)
(R [ Vi

where &, is the displacement vector of the interface /, which depends on dx. At equilibrium,
8F =0,V x B= ;B in each volume and f; = 0 on each interface. Notice that the force
fi is a function of the position on the surface describing the interface, and thus can
be described, like the interface geometry, in terms of its Fourier spectrum coefficients
Ji.mn» Which must all be zero at equilibrium. In general, the force f = {f; .} is non-zero
and depends on the interface geometry x = {r;,,,}, i.e. f = f(x). We can define the
force-gradient matrix as the derivative matrix G with coefficients

ofi
Gi(x) = —f (x), (A4)

0x;

and where the derivatives are taken by preserving the constraints (fluxes and helicities)
fixed. The matrix G is square if the number of degrees of freedom (Fourier harmonics) to
describe f and x are the same.

Let us now consider a perturbation from an equilibrium state dx = x — x,q, such that
the new state satisfies a Beltrami equation with the same helicities as for the equilibrium
field, but now f'(x) # 0. While §F = 0 around the equilibrium point x.q, the variation of
the energy functional around x is

SF==>"| fi&@©x)- ds, (A5)
[

aV;

with the minus sign due to the sign convention for éx. Now, we can expand f; around x.q
using the fact that f;(x.q) = 0, and write

_ ofi
aF_—XI:/aV’<a

Given the expansion we have performed, one finds that the infinitesimal variation of
potential energy §W = W(x) — W(xeq) is thus

1 9
5W:‘Z/ of
2 ] v, ox y

. 8x> §,(8x) - ds. (A7)

. 8x) &,(6x) - ds. (A6)

We now show that in cylindrical geometry, the sign of W in (A7) is given by the sign of
the eigenvalues of the matrix G. Indeed, in cylindrical geometry, we have that the position
of an interface is

(0, ) = (0, ) cos 01 + (0, @) sin 6 + Ryk, (A8)

and we can expand in Fourier series the function (6, ¢)

(0, ¢) =Y ricos (), (A9)
k
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where o = m0 — npp, with k labelling all the Fourier modes in the expansion. The
displacement of an interface is then given by

& =56r0,9) = Zérl,k cos (o) (cos 07 + sin@_;), (A10)
k

which expresses the relation between &, and certain components of éx. Meanwhile, the
differential surface element, ds, projected on the displacement vector, &, gives

£-ds=Rn(0.9) Y 8rycos () do do, (All)
k

and we can thus express (A7) as

SW = %XI:/W (% xcq-5x> £,(5x) - ds (A12)
-5/ (3,
- rryf (%
Srr(t]
z_zzzz<aﬁk -(Sx) Sr T /d ) cos (o) cos (o) cos () d6 dg

. 8x> Rr/(0, @) Z 81y cos (o) dO do (A13)
q k

. Sx) cos (ot )81y i cos (o )R (6, @) d6 do (Al14)

(Sx) e / cos (ay) cos (a)ri(6, ¢) do de (A15)
8V,

(A16)
R 9
) Z Z Z ( fie) (Sx) Sririi L, (A17)
! k kK Xeq
where
Twrr = yg 7§ cos (a) cos () cos (c) dO dg. (A18)

Finally, assuming that the equilibrium is axisymmetric, r;; = r;06x.0, and that §x is an
eigenvector of G with eigenvalue A, G - §x = A8x, we have

SErr(]

= /lg X[: Xk: ; 8r1x8714 110 Tueo (A20)

=ATRY > " Sriwdriy rodw (A21)

= AR Xl: Xk: 52{,( 7105 (A22)
Tk

8x) 81’],]{?‘1'01_]{]{/0 (A19)
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and hence the sign of §W is given by the sign of 4. Hence, the stability of an axisymmetric
equilibrium can therefore be inferred from the (sign of the) eigenvalues of G.
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