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Abstract

Let K be any compact set. The C*-algebra C (K) is nuclear and any bounded homomorphism from C(K)
into B(H), the algebra of all bounded operators on some Hilbert space H, is automatically completely
bounded. We prove extensions of these results to the Banach space setting, using the key concept of
R-boundedness. Then we apply these results to operators with a uniformly bounded H°°-calculus, as
well as to unconditionality on LP. We show that any unconditional basis on L? ‘is’ an unconditional
basis on L? after an appropriate change of density.
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1. Introduction

Throughout this paper, we let K be a nonempty compact set and we let C(K) be the
algebra of all continuous functions f: K — C, equipped with the supremum norm. A
representation of C(K) on some Banach space X is a bounded unital homomorphism
u: C(K) — B(X) into the algebra B(X) of all bounded operators on X. Such repre-
sentations appear naturally and play a major role in several fields of operator theory, in-
cluding functional calculi, spectral theory and spectral measures, and the classification
of C*-algebras. Several recent papers, in particular [8, 12, 21, 23], have emphasized
the rich and fruitful interplays between the notion of R-boundedness, unconditionality
and various functional calculi. The aim of this paper is to establish new properties of
the C(K)-representations involving R-boundedness, and to give applications to H*°-
calculus (in the sense of [6, 21]) and to unconditionality in L”-spaces.

We recall the definition of R-boundedness (see [2, 4]). Let (ex)r>1 be a sequence
of independent Rademacher variables on some probability space €2g. That is, the €
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take values in the set {—1, 1} and Prob({e; = 1}) = Prob({e; = —1}) = 1/2. For any
Banach space X, we let Rad(X) C L?(S2; X) be the closure of Span{ey @ x 1 k > 1,
x € X}in L3(Q0; X). Thus, forall xi, ..., x, in X,
2 1/2
dA) .
X

Z €k ® Xk = (/ Z €k (M) x
k Rad(X) Qo Il

By definition, a set T € B(X) is R-bounded if there is a constant C > 0 such that, for
all finite families 7y, ..., T, in t,and x, . .., x, in X,

Z€k®Tkxk Zék ® xi
X X

In this case, we let R(7) denote the smallest possible C. It is called the R-bound of 7.
By convention, we write R(t) = oo if T is not R-bounded.

It will be convenient to let Rad,, (X) denote the subspace of Rad(X) of all finite sums
Zzzl €r ® xi. If X = H is a Hilbert space, then Rad, (H) = Z%(H) isometrically and
all bounded subsets of B(H) are automatically R-bounded. Conversely, if X is not
isomorphic to a Hilbert space, then B(X) contains bounded subsets which are not
R-bounded [1, Proposition 1.13].

In order to provide motivation for the results in this paper, we recall two well-
known properties of C (K )-representations on the Hilbert space H. First, any bounded
homomorphism u: C(K) — B(H) is completely bounded, and ||u|cp < lul|?, that
is for all integers n > 1, the tensor extension Iy, ® u: M,(C(K)) - M,(B(H))
satisfies || 1y, ® u|l < lu||*> when M, (C(K)) and M, (B(H)) are both equipped with
their natural C*-algebra norms. This in turn implies that any bounded homomorphism
u: C(K) — B(H) is similar to a *-representation, a result going back at least to [3].
We refer to [28, 30] and the references therein for some information on completely
bounded maps and similarity properties.

Second, let u: C(K) — B(H) be a bounded homomorphism. Then for all by, .. .,

<C
Rad(X)

Rad(X)

by, lying in the commutant of the range of u and for all f1, ..., f, in C(K),
D uCfoobi| < llull®sup| Y fi(bg. (1.1)
k tek k

This property is essentially a rephrasing of the fact that C(K) is a nuclear C*-
algebra. More precisely, nuclearity means that the above property holds true for
s-representations (see, for example, [19, Ch. 11] or [28, Ch. 12]), and its extension
to arbitrary bounded homomorphisms easily follows from the similarity property
mentioned above (see [25] for more explanations and developments).

Now let X be a Banach space and let u: C(K) — B(X) be a bounded homo-
morphism. In Section 2, we will show the following analog of (1.1):

Y u(fiobi| < ||u||2R<{Z feby 1 € K}) (12)
k

k
provided that the by commute with the range of u.
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Section 3 is devoted to the sectorial operators A which have a uniformly bounded
H™-calculus, in the sense that they satisfy an estimate

I f(AI < Csup|f@)l (1.3)

t>0

for all bounded analytic functions f on a sector Xg surrounding (0, co). Such
operators turn out to have a natural C(K)-functional calculus. Applying (1.2) to the
resulting representation u: C(K) — B(X), we show that (1.3) can be automatically
extended to operator-valued analytic functions f taking their values in the commutant
of A. This is an analog of a remarkable result of Kalton and Weis [21, Theorem 4.4]
which says that if an operator A has a bounded H®°-calculus and f is an operator-
valued analytic function taking its values in an R-bounded subset of the commutant of
A, then the operator f(A) arising from ‘generalized H°°-calculus’ is bounded.

In Section 4, we introduce matricially R-bounded maps C(K) — B(X), a natural
analog of completely bounded maps in the Banach space setting. We show that if X
has property (&), then any bounded homomorphism C(K) — B(X) is automatically
matricially R-bounded. This extends both the Hilbert space result mentioned above,
and a result of de Pagter and Ricker [8, Corollary 2.19] which says that any bounded
homomorphism C(K) — B(X) maps the unit ball of C(K) into an R-bounded set,
provided that X has property (o).

In Section 5, we give an application of matricial R-boundedness to the case when
X = L?. A classical result of Johnson and Jones [ 18] asserts that any bounded operator
T: LP — LP acts, after an appropriate change of density, as a bounded operator on L?.
We show versions of this theorem for bases (more generally, for finite-dimensional
decompositions). Indeed, we show that any unconditional basis (any R-basis) on
LP becomes an unconditional basis (respectively a Schauder basis) on L? after an
appropriate change of density. These results rely on Simard’s extensions of the
Johnson-Jones theorem established in [32].

We end this introduction with a few preliminaries and some notation. For any
Banach space Z, we denote by C(K; Z) the space of all continuous functions f: K —
Z, equipped with the supremum norm

I flloo = sup{ll f(Dlz : 7 € K}.

We may regard C(K) ® Z as a subspace of C(K; Z) by identifying ), fx ® zk
with the function 7 — ), fi(t)zk, for all finite families (fi)x in C(K) and (zx)x
in Z. Moreover, C(K) ® Z is dense in C(K; Z). Note that, for all integers n > 1,
C(K; M) coincides with the C*-algebra M, (C(K)) mentioned above.

We will need the so-called ‘contraction principle’ which says that, for all xq, . . .,
Xp in a Banach space X and all &y, . . ., «;, in C,

Z €k & QX
k

<2 sup Ja] (1.4)

Rad(X) k

Zék@)%
k

Rad(X)
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We also recall that any unital commutative C*-algebra is a C(K)-space (see, for
example, [19, Ch. 4]). Thus our results concerning C (K )-representations apply as
well to all these algebras. For example, we will apply them to £°° in Section 5.

We let Iy denote the identity mapping on a Banach space X, and we let x g denote
the indicator function of a set B. If X is a dual Banach space, we let w*B(X) € B(X)
be the subspace of all w*-continuous operators on X.

2. The extension theorem

Let X be an arbitrary Banach space. For any compact set K and any bounded
homomorphism u: C(K) — B(X), we denote by

E,={beB(X):bu(f)=u(f)bV[feC(K)}

the commutant of the range of u.
Our main purpose in this section is to prove (1.1). We start with the case when C(K)
is finite-dimensional.

PROPOSITION 2.1. Let N > 1 and let u: £5; — B(X) be a bounded homomorphism.
Let (e, ..., eN) be the canonical basis of K% and set pi=u(e;), i=1,..., N.
Then, for all by, . .., by € Ey,

N
> pibi
i=1

PROOF. Since u is multiplicative, each p; is a projection and p;p; =0 when i # j.

< [lul*R({b1, ..., by}).

Hence for all choices of signs («q, ..., ay) € {—1, Iy,
N N
> pibi=)_ aiajpipjbj.
i=1 ij=1
Furthermore,

Zaipi
i

Therefore, for all x € X, we have the following chain of inequalities which prove the

desired estimate:
2
=/ E € (M) pi E €j(M)pjbjx

’ Z pibix
l 2
< / Z € (M) pi
Q0 i

2
< ull /
Qo

= llular, ..., an)|l = lullli(a, ... an)lle = llull.

2
dx

2
dx

Zéj()u)pjbjx
J

2
di

> ej(bjpjx
j
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2
< ||u||2R<{b1,...,bN})2/Q ax
0

Zéj(k)pjx
J
< |ul*R({b1, . ... by} |x]%

This concludes the proof. o

The study of infinite-dimensional C (K )-spaces requires the use of second duals
and w*-topologies. We recall a few well-known facts that will be used later on in this
paper. According to the Riesz representation theorem, the dual space C(K)* can be
naturally identified with the space M (K) of Radon measures on K. Next, the second
dual space C(K)** is a commutative C*-algebra for the so-called Arens product. This
product extends the product on C(K) and is separately w*-continuous, which means
that, for all £ € C(K)**, the two linear maps

veCK)Y* —vEc C(K)™ and veC(K)*+— EveC(K)*™

are w*-continuous.
Equip the space B°°(K) of all bounded, Borel measurable functions from K to C
with the supremum norm. According to the duality pairing

(f, M)=/Kf(t)du(t) Ve M(K), feB*(K),

one can regard B°°(K) as a closed subspace of C(K)**. Moreover, the restriction of
the Arens product to 5°°(K) coincides with the pointwise product. Thus we have the
natural C*-algebra inclusions

C(K) € B¥(K) € C(K)™. 2.1)

See, for example, [7, pp. 366-367] and [5, Section 9] for further details.
Let ® denote the projective tensor product on Banach spaces. We recall that, for
any two Banach spaces Y1, Y2, we have a natural identification

(Y1®Y2)* =~ B(Ya, Y7),

see, for example, [10, Section VIIL.2]. This implies that when X is a dual Banach
space, X = (X,)* say, then B(X) = (X,®X)* is a dual space. The next two lemmas
are elementary.

LEMMA 2.2. Let X = (X4)* be a dual space, S € B(X), and define the right and left
multiplication operators Rg, Ls: B(X) — B(X) by Rs(T) =TS and Ls(T) = ST,
respectively. Then Rg is w*-continuous whereas Lg is w*-continuous if (and only if)
S is w*-continuous.

PROOF. The tensor product mapping Iy, ® S on X, ® X uniquely extends to a
bounded map rg: X4 ®X — X,.®X, and we have Rg = r;“. Thus Rg is w*-continuous.
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Likewise, if S is w*-continuous and if we let S, : X, — X, be its pre-adjoint map, the
tensor product mapping Sy ® Iy on X, ® X extends to a bounded map Ig: X, ®X —
X,®X, and Lg = I5. Thus Lg is w*-continuous. The converse (which we will not
use) is left to the reader. O

LEMMA 2.3. Let u: C(K) — B(X) be a bounded map. Suppose that X is a dual
space. Then there exists a (necessarily unique) w*-continuous linear mapping u
C(K)** — B(X) whose restriction to C(K) coincides with u. Moreover, ||| = ||ul.

Furthermore, if u is a homomorphism and u takes values in w* B(X), then U is also
a homomorphism.

PROOF. Let j: (X*QX ) — (X*®X )" be the canonical injection and consider its
adjoint p = j*: B(X)"" — B(X). Then set

d=pou": C(K)" — B(X).

By construction, ¥ is w*-continuous and extends u. The equality ||| = ||u|| is clear.

Assume now that u is a homomorphism and that u takes values in w*B(X).
Let v, £ € C(K)™ and let (fy)s and (gp)p be bounded nets in C(K) w*-converging
to v and &, respectively. By Lemma 2.2, we have the following equalities, where limits
are taken in the w*-topology of either C(K)** or B(X):

(v€) = i (lim 1ién fagp) =1lim 1i%n u(fugp) = lim 1i%n u( fu)u(gp)
= lim u(f)ii(§) = H(v)ii(§). =

We refer, for example, to [17, Lemma 2.4] for the following fact.

LEMMA 2.4. Consider t € B(X) and set t° ={T"" : T et} C B(X""). Then T is
R-bounded if and only if t** is R-bounded, and in this case

R(t)=R(t™).
For any F € C(K; B(X)), we set
R(F)=R{F(@):t €K}).

Note that R(F) may be infinite. If F =), fr ® by belongs to the algebraic tensor
product C(K) ® B(X), we set

ka@bk =R(F)=R<{ka(t)bk:teK}>.
k R k

Note that, by (1.4),

If ®blr <2l fllcllbll Vf e C(K), be B(X). (2.2)

From this it is easy to check that || - || g is finite and is a norm on C(K) ® B(X).
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Whenever E C B(X) is a closed subspace, we let

R
C(K)Y®E

denote the completion of C(K) ® E for the norm || - || g.

REMARK 2.5. Clearly || - loo < || - |l on C(K) ® B(X), since the R-bound of a set
is greater than its uniform bound. Hence the canonical embedding of C(K) ® B(X)
into C(K; B(X)) extends uniquely to a contraction

J: C(K) (§>B(X) — C(K; B(X)).

Moreover, J is one-to-one and, for all ¢ € C(K) é B(X), we have R(J(¢)) = |l¢llr.
To see this, let (F;),>1 be a sequence in C(K) ® B(X) such that ||F,, —¢|lg = 0
and let F = J(p). Then || F,|lrg = ll¢llg and ||F,;, — F|lcc = 0. According to the
definition of the R-bound, the latter property implies that || F,||g — || F|lg, which
yields the result.

THEOREM 2.6. Letu: C(K) — B(X) be a bounded homomorphism.

(1) For all finite families ( fy)x in C(K) and (by)y in Ey,

Y ufibx Y fi®b
k

k
(2) There is a (necessarily unique) bounded linear map

2
=< lull

R

u: C(K) (§>Eu —> B(X)

such that u(f @ b) =u(f)b for all f € C(K) and all b € E,,. Furthermore,
Il < flul

PROOF. Part (2) clearly follows from part (1). To prove part (1) we introduce
w: C(K) — BX™), w(f)=u(f)".
Then w is a bounded homomorphism and ||w|| = |lu|. We let w: C(K)** — B(X**)
be its w*-continuous extension given by Lemma 2.3. Note that w takes values in
w*B(X™**), so w is a homomorphism. We claim that
(b :beE,) CEg.
Indeed, let b € E,,. Then, for all f € C(K),

b w(f) = bu(f) = w(Hb)" =w(f)b".
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Next, for all v € C(K)**, let (fy)q be a bounded net in C(K) which converges to v in
the w*-topology. Then, by Lemma 2.2,

b w(v) =1lim b w( fy) = lim w( f)b™ = w(v)b*™™,
o o

and the claim follows.

Now fix f1,..., fue C(K)and by, ..., b, € E,. Foreachm € N, there is a finite
family (#1, . . ., ty) of K and a measurable partition (By, ..., By) of K such that
ul 1
‘fk_ka(fl)XB, <— Vkell,...,n}.
=1 o M

We set £ =N | fit)xs,. Let ¥ €33 — B®(K) be defined by

N
Y@, ... an) =) axs.
=1

Then 1 is a norm 1 homomorphism. According to (2.1), we can consider the bounded
homomorphism
Toy: € — B(X™).

Applying Proposition 2.1 to that homomorphism, together with the above claim and
Lemma 2.4, we find that

YW

k

D ) o yr(enb” H
k,l

< ||wow||2R({Z Selb™ 1 <1 sN})
k
< ||u||2R({Z feb™ it e K})
k

< Il D" fie ® b
k R
: (m)
Since || f;, filloo — O for all &,
S B | — | Y wi o™ H =Y ulfiobi|,
k k k
and the result follows at once. O

The following notion is implicit in several recent papers on functional calculi (see,
in particular, [8, 21]).
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DEFINITION 2.7. Let Z be a Banach space and let v: Z — B(X) be a bounded map.
We set
Rw)=R{v():zeZ, |z| =1},

and we say that v is R-bounded if R(v) < oo.

COROLLARY 2.8. Suppose that u: C(K) — B(X) is a bounded homomorphism and
that v: Z — B(X) is an R-bounded map. Assume further that u( f)v(z) = v(Q)u(f)
forall f € C(K) and all z € Z. Then there exists a (necessarily unique) bounded
linear map

u-v: C(K; Z) — B(X)

such thatu- v(f ® z) =u(f)v(z) forall f € C(K) and all z € Z. Moreover, we have
- vl| < luell* R(w).

PROOF. Consider any finite families (f;)x in C(K) and (zx)x in Z and observe that

=R({“<Z fk(t)zk) ite K}) < R(v) ka ® Zk
R k k

Then, from Theorem 2.6 and the assumption that v takes values in E,,, we find that

Y hi®u
k

which proves the result. o

> i ®v(zx)
k

o

D u(fiv@o| < lul*R@)

k

9

o]

REMARK 2.9. As a special case of Corollary 2.8, we obtain the following result due
to de Pagter and Ricker [8, Proposition 2.27]: let K1, K> be two compact sets, and let

u: C(Ky) — B(X) and v: C(K2) — B(X)

be two bounded homomorphisms which commute, that is, u(f)v(g) = v(g)u(f) for
all feC(Ky) and g € C(K3). Assume further that R(v) < co. Then there exists a
bounded homomorphism

w: C(K| x Ky) — B(X)

such that w|c(g,) = u and w|c(k,) = v, where C(K) is regarded to be a subalgebra
of C(K| x K3) in the natural way.

3. Uniformly bounded H *°-calculus

We briefly recall the basic notions on H *°-calculus for sectorial operators. For more
information, we refer, for example, to [0, 21, 23, 24].

https://doi.org/10.1017/51446788709000433 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788709000433

214 C. Kriegler and C. Le Merdy [10]

For all 8 € (0, 2rr), we define
Yo ={re'?:r>0,|p| <6)

and H°°(Xy) to be the set of all bounded analytic functions from ¥4 to C. This space
is equipped with the norm || f|lcc,0 = sup,cyx, |f(2)| and is a Banach algebra. We
consider the auxiliary space H(S’O(Zg) consisting of all functions f in H%(Zy) for
which there exist positive constants € and C such that

|fG)] < Cmin A5, A7 VA€ Sp.

A closed linear operator A: D(A) € X — X is said to be w-sectorial, Whei w € (0, 2m),
if its domain D(A) is dense in X, its spectrum o (A) is contained in X, and for all
6 > w there is a constant Cy > 0 such that

IA(x— A7 <Cp VA eC\Zy.
In this case, we define
w(A) = inf{w : A is w-sectorial}.

For all 6 € (w(A), m) and all f € H(())O(E.g), we define
1
f(A)=T/ FMO— A" dx, (3.1
Tl r,

where w(A) <y <0 and I', is the boundary 9%, oriented counterclockwise. This
definition does not depend on y and the resulting mapping f +— f(A) is an algebra
homomorphism from HOOC> (Xg) into B(X). We say that A has a bounded H*>(Xy)-
calculus if the latter homomorphism is bounded, that is, if there exists a constant C > 0
such that || f(A)|| < C|l fllco,e for all f e Hé’o(Eg). If, in addition, A is one-to-one
and has a dense range, then this homomorphism extends to a bounded homomorphism
H*®(Zy) — B(X).
We will now focus on the sectorial operators A such that w(A) = 0.

DEFINITION 3.1. We say that a sectorial operator A with w(A) = 0 has a uniformly
bounded H°°-calculus if there exists a constant C > 0 such that || f (A)|| < C|| fllco.6
forall & > 0 and f € HJ®(Zs).

The space Cy ([0, 00)), consisting of all continuous functions f : [0, co) — C for
which lim) ., f(A) exists, is a unital commutative C*-algebra when equipped with
the natural norm

ll.flloo,0 = sup{lf(£)] : 1 = 0}

and involution. For all 6 > 0, we can regard H(S’O(Zg) as a subalgebra of C, ([0, 00)),
by identifying f € HOOO(Z(;) with its restriction f[0,c0)-
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For all A € C\[0, o0), we let R; € C¢([0, c0)) be defined by R; () = (A — nH~ L
Then we let R be the unital algebra generated by the R,. Equivalently, R is the
algebra of all rational functions of nonpositive degree, whose poles lie outside the half
line [0, o). We recall that, for all f € H0°° (Zp) N'R, the definition of f(A) given
by (3.1) coincides with the usual rational functional calculus.

The following lemma is closely related to [22, Corollary 6.9].

LEMMA 3.2. Let A be a sectorial operator on X with w(A) =0. The following
assertions are equivalent.

(@) A has a uniformly bounded H*°-calculus.
(b)  There exists a (necessarily unique) bounded unital homomorphism

u: C¢([0, 00)) — B(X)
such that u(Ry) = (A — A)~! for all » € C\[0, c0).
PROOF. Assume (a). We claim that, for all > 0 and all f € Hy®(Zy),
£ I < Cl f lloo.0-

Indeed, if 0# f € H(S’O(Zgo) for some 6y > 0, then there exists some 7y > 0 such
that f(#p) # 0. Now take r and R such that r < R and |f(2)| < |f ()| when |z| <7
or |z] > R. Choose, for every n €N, a t, € Xg,/, such that | f ()] = || flloo,60/n-
Necessarily, |t,| € [, R], and there exists a convergent subsequence f,, whose limit
o is real. Then

1/ lloo.0 = 1f (too)| = Tim inf || flloc.p = cIf A

This readily implies that the rational functional calculus (R, || - ||cc,0) = B(X) is
bounded. By the Stone—Weierstrass theorem, this extends continuously to C, ([0, 00)),
which yields (b). The uniqueness property is clear.

Assume (b). Then for all 6 € (0, 7) and all f € H;*(Zs) N'R,

ILF A=< Tl flloo6-

By [24, Proposition 2.10] and its proof, this implies that A has a bounded H*(Xg)-
calculus, with a boundedness constant uniform in 6. O

REMARK 3.3. An operator A which admits a bounded H°(Zy)-calculus for all 6 > 0
does not necessarily have a uniformly bounded H *°-calculus. To get a simple example,

consider
1 1 5 )

Then o (A) = {1} and, forall ® > 0 and all f € H(‘)’O(Zg),

_(f @
=78 1)
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Assume that 8 < /2. Using Cauchy’s formula, it is easy to see that | f/(1)| <
(sin(0))~! | flloo,6 forall f € H3°(Xg). Thus A admits a bounded H °°(Xg)-calculus.

Now let & be a fixed function in H()OO(Z,,/Q) such that 2(1) =1, set g; (1) = Al for
all s > 0, and let f; = hgy. Then | gs]lco,0 =1, and hence || filloo.0 < [/ ]lcc.0 for all
s > 0. Furthermore, g’ (A) = isA*~! and f/ = h'g; + hg.. Hence f/(1) =h'(1) +is.
Thus

1A fill o = L DN L — 00

when s — oo. Hence A does not have a uniformly bounded H *°-calculus.

The above result can also be deduced from Proposition 3.7 below. In fact we will
show in that proposition and in Corollary 3.11 that operators with a uniformly bounded
H*°-calculus are ‘rare’.

We now turn to the so-called generalized (or operator-valued) H®°-calculus.
Throughout, we let A be a sectorial operator. We let £4 € B(X) denote the commutant
of A, defined as the subalgebra of all bounded operators 7: X — X such that
T(h—A) =G —=A)"IT for all A belonging to the resolvent set of A. We let
HSO(EQ; B(X)) be the algebra of all bounded analytic functions F: ¥y — B(X)
for which there exist €, C > 0 such that | F(1)|| < C min(|A|¢, |A]|7€) for all A € Xy.
Also, we let H;°(Xg; E4) denote the space of all E4-valued functions belonging to
HOOO(EQ; B(X)). The generalized H®°-calculus of A is an extension of (3.1) to this
class of functions. Namely, for all F € Hy®(XZq; Ea), we set

F(A) = L. / FOG — A,
2mi r,

where y € (w(A), ). Again, this definition does not depend on y and the mapping
F +— F(A) is an algebra homomorphism. The following fundamental result is due to
Kalton and Weis.

THEOREM 3.4 [21, Theorem 4.4], [23, Theorem 12.7]. Let wy > w(A) and assume
that A has a bounded H® (Zg)-calculus for all 6 > wy. Then, for all 0 > wy, there
exists a constant Cg > 0 such that, for all F € H(S’O(Zg; E),

[F (A = CoR{F(2):z € Xp}). (3.2)

Our aim is to prove a version of this result in the case when A has a uniformly
bounded H°-calculus. We will find in Theorem 3.6 that in this case the constant Cy
in (3.2) can be taken to be independent of 6.

The algebra C, ([0, 00)) is a C(K)-space and we will apply the results of Section 2
to the bounded homomophism u appearing in Lemma 3.2. We recall Remark 2.5.

LEMMA 3.5. Let J: Cy([0, 00)) % B(X) — Cy([0, 00); B(X)) be the canonical
embedding. Let 0 € (0, ), let F € HOOO(EQ; B(X)), and let y € (0, 0).
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(1) The integral
1
@FI—.‘/ R, ® F(A) dA (3.3)
2mwi r,

is absolutely convergent in Cy([0, 00)) R B(X), and J(pF) is equal to the
restriction of F to [0, 00).
(2) The set {F(t):t > 0} is R-bounded.

PROOF. Part (2) readily follows from part (1) and Remark 2.5. To prove part (1),
observe that, forall A € 9%,

R, ®@ F(M)Ir = 2[Rilloo,0l FA)] = [EM

sin(y ) |2
by (2.2). Thus, for appropriate constants €, C > 0,

IRy ® FO)lIr < ——— min(|A]*~", [A]77h).
sin(y)
This shows that the integral defining ¢F is absolutely convergent. Next, for all ¢ > 0,
1 1 F)
el == [ (R®FA)W)dri=5— [ ——dr=F()
2mi r, 2mi r, A —t
by Cauchy’s theorem. O

THEOREM 3.6. Let A be a sectorial operator such that w(A) = 0 and assume that A
has a uniformly bounded H*°-calculus. Then there exists a constant C > 0 such that,
forall® > 0andall F € H{®(Zo; En),

[F (A < CR{F():1>0}).

PROOF. Letu: C¢([0, 0c0)) — B(X) be the representation given by Lemma 3.2. It is
plain that £, = E 4. Then we let

2 Co(10, 00)) ® E4 —> B(X)

be the associated bounded map provided by Theorem 2.6.
Let F € H3"(Zg; E) for some 6 > 0, and let g € C¢([0, 00)) ®R E 4 be defined
by (3.3). We claim that
F(A) =u(pr).
Indeed, for all A € 3%, we have u(R;) = (A — A)~!, and hence u(R, @ F(A)) =
(A — A)"'F (). Thus according to the definition of ¢ and the continuity of i,

ﬂ(goF):i.f AR, ® F(V)) di =i.f (h— A)'FO) dh = F(A).
27i Jr, 2mi Jr,

Consequently,
IF (A < l@lllerliz < lul*lerlg.

It follows from Lemma 3.5 and Remark 2.5 that ||or||[g = R({F(¢) : t > 0}), and the
result follows at once. O
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In the rest of this section we will investigate further the operators with a uniformly
bounded H*°-calculus. We start with the case when X is a Hilbert space.

PROPOSITION 3.7. Let H be a Hilbert space and let A be a sectorial operator on H,
such that w(A) = 0. Then A admits a uniformly bounded H°-calculus if and only if
there exists an isomorphism S: H — H such that S™'AS is self-adjoint.

PROOF. Assume that A admits a uniformly bounded H ®-calculus and denote the as-
sociated representation by u: C¢ ([0, co)) — B(H). According to [28, Theorems 9.1
and 9.7], there exists an isomorphism S: H — H such that the unital homomorphism
us: Ce([0, 00)) - B(H) defined by us(f) = S_lu(f)S satisfies |lug| < 1. We let
B =S"'AS. For each s € R*, we have |Ris|loo,0 = |s| and furthermore ug(R;s) =
S~l(is — A)7'S = (is — B)~!. Hence

IGs —B)~ | <|s| VseR"

By the Hille—Yosida theorem, this implies that i B and —i B both generate contractive
co-semigroups on H. Thus i B generates a unitary cg-group. By Stone’s theorem, this
implies that B is self-adjoint.

The converse implication is clear. O

In the non-Hilbertian setting, we will first show that operators with a uniformly
bounded H *°-calculus satisfy a spectral mapping theorem with respect to continuous
functions defined on the one-point compactification of o (A). Then we will discuss the
connections with spectral measures and scalar-type operators. We mainly refer to [13,
Chs. 5-7] for this topic.

For any compact set K and any closed subset F' C K, we let

Ip={f eC(K): fir =0}

We recall that the restriction map f +— f|r induces a x-isomorphism C(K)/Ir —
C(F).

LEMMA 3.8. Let K CC be a compact set and let u: C(K) — B(X) be a
representation. Let k € C(K) be the function defined by x(z) = z and take T = u(x).
(1) Then o(T) € K and u vanishes on I (7).

Letv: C(o(T)) = C(K)/IysTy —> B(X) be the representation induced by u.
(2) Forany f € C(o(T)), we have o (v(f)) = f(a(T)).
(3) v is an isomorphism onto its range.

PROOF. The inclusion o(T) C K is clear. Indeed, for all A ¢ K, we have that

rA=T)"1is equal to u((A—- )~1). We will now show that u vanishes on Is(T).
Define w: C(K) — B(X*) by w(f) = [u(f)]*, and let @w: C(K)"" — B(X*) be

its w*-extension. Since w takes values in w*B(X*) >~ B(X), this is a representation
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(see Lemma 2.3). Let Ak be the set of all Borel subsets of K. It is easy to check that
the mapping
P: Ax — B(X"), P(B)=w(xs),

is a spectral measure of class (Ag, X) in the sense of [13, p. 119]. According
to [13, Proposition 5.8], the operator T* is prespectral of class X (in the sense
of [13, Definition 5.5]) and the above mapping P is its resolution of the identity.
Applying [13, Lemma 5.6] and the equality o (7*) = o (T), we find that W(xs (1)) =
P(o(T)) = Ix~. Therefore, for all f € I5(7),

u(f)* =w(f(1 = xor)) = B(HWA = Xo (1)) =0.

Hence u vanishes on I, (7).

The proofs of parts (2) and (3) now follow from [13, Proposition 5.9] and the above
proof. O

In what follows we consider a sectorial operator A such that w(A) =0. This
implies that 0 (A) C [0, 00). By C¢(c(A)), we denote either the space C (o (A)) if A is
bounded, or the space { f: 6(A) — C| f is continuous and lim;_, o, f(¢) exists} if A
is unbounded. In this case, C¢ (o (A)) coincides with the space of continuous functions
on the one-point compactification of o (A). The following strengthens Lemma 3.2.

PROPOSITION 3.9. Let A be a sectorial operator on X with w(A) = 0. The following
assertions are equivalent.

(1) A has a uniformly bounded H®°-calculus.
(2)  There exists a (necessarily unique) bounded unital homomorphism

V: Ce(o(A)) — B(X)
such that W ((A— )" = (A — A)~! forall » € C\o (A).
In this case, V is an isomorphism onto its range and, for all f € C¢(0(A)),
o(W(f) = fo(A)U foo, (3.4
where foo =0 if A is bounded and foo =lim;_, o f(¢) if A is unbounded.

PROOF. Assume part (1) and let u: C¢([0, 00)) — B(X) be given by Lemma 3.2.
We introduce the particular function ¢ € C,([0, o0)) defined by ¢(¢) = (1 + L
Consider the *-isomorphism

t: C([0, 1)) — C¢([0, 00)),  T(8) =go 9,

and set T = (1 + A)~!. We define x(z) = z as in Lemma 3.8, and so (u o 7)(k) = T.
Letv: C(o(T)) — B(X) be the resulting factorization of u o t. The spectral mapping
theorem gives o (A) = ¢ (o (T)\{0}) and 0 € o (T) if and only if A is unbounded.
Thus the mapping

a1 C(0(T)) —> Ce(o(A))
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defined by t4(g) = g o ¢ is also a *-isomorphism. Take ¥: Cy;(c(A)) - B(X) to be

ro rgl. This is a unital bounded homomorphism. Note that ¢~ (z) = (1 — z)/z for
all z € (0, 1]. Then, for all . € C\o (A),

-1
U((—) ) =v(—)"ogph = ”(ZH (k - 1_Z> )

Z
N Z
_”<Z'_> (A+1)z—1)
=T(A+DT - "= —-Aa)"L

Hence W satisfies part (2). Its uniqueness follows from Lemma 3.2. The fact that &
is an isomorphism onto its range and the spectral property (3.4) follow from the above
construction and Lemma 3.8. Lemma 3.2 shows that (2) implies (1). O

REMARK 3.10. Let A be a sectorial operator with a uniformly bounded H *°-calculus,
and let T = (1 + A)~!. It follows from Lemma 3.8 and the proof of Proposition 3.9
that there exists a representation

v: C(o(T)) — B(X)

satisfying v(k) =T (where k(z) =z), such that o (v(f)) = f(o(T)) for all f €
C(o(T)) and v is an isomorphism onto its range. Also, it follows from the proof
of Lemma 3.8 that 7* is a scalar-type operator of class X, in the sense of [13,
Definition 5.14].

Next, according to [13, Theorem 6.24], the operator 7' (and hence A) is a scalar-type
spectral operator if and only if, for all x € X, the mapping C(c(T')) — X taking f to
v(f)x forall f e C(o(T)) is weakly compact.

COROLLARY 3.11. Let A be a sectorial operator on X, with w(A) =0, and assume
that X does not contain a copy of cyo. Then A admits a uniformly bounded H®-
calculus if and only if it is a scalar-type spectral operator.

PROOF. The ‘only if” part follows from the previous remark. Indeed, if X does not
contain a copy of cp, then any bounded map C(K) — X is weakly compact [10, VI,
Theorem 15]. (See also [8, 31] for related approaches.) The ‘if* part follows from [16,
Proposition 2.7] and its proof. g

REMARK 3.12.

(1) The hypothesis on X in Corollary 3.11 is necessary. Namely, it follows from [11,
Theorem 3.2] and its proof that if ¢y € X, then there is a sectorial operator A with
a uniformly bounded H *°-calculus on X which is not scalar-type spectral.

(2) An operator on a Hilbert space is scalar-type spectral if and only if it is similar to
a normal operator (see [13, Ch. 7]). Thus, when X is a Hilbert space, the above
corollary reduces to Proposition 3.7.
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4. Matricial R-boundedness

For all integers n > 1 and all vector spaces E, we denote by M,,(E) the space of n x
n matrices with entries in £. We will be concerned mostly with the cases E = C(K)
or E = B(X). As mentioned in the introduction, we identify M,(C(K)) with the
space C(K; M,) in the usual way. We now introduce a specific norm on M, (B(X)).
Namely, for all [T;;] € M, (B(X)), we set

n
||[T,~,~]||R=sup{ Y & ®Ti(x)) (X1 € X,
i,j=1 Rad(X)
n
Z €; QX < 1}.
j=1 Rad(X)
Clearly || - ||g is a norm on M,(B(X)). Moreover, if we consider any element of

M, (B(X)) as an operator on Z% ® X in the natural way, and if we equip the latter
tensor product with the norm of Rad, (X), we obtain an isometric identification

(Mp(B(X)), || - lr) = B(Rad,(X)). (4.1)

DEFINITION 4.1. Letu: C(K) — B(X) be a bounded linear mapping. We say that u
is matricially R-bounded if there is a constant C > 0 such that, for all » > 1 and all
[fij] € Mu(C(K)),

IMu(fiplr < ClLfijlllck:m,)- 4.2)

REMARK 4.2. The above definition obviously extends to any bounded map E —

B(X) defined on an operator space E, or more generally on any matricially normed

space (see [14, 15]). The basic observations below apply to this general case as well.
(1) In the case when X = H is a Hilbert space,

n n 1/2
Y € ®x; = (Z lej||2>
j=1

Rad(H) =1
for all x1, ..., x, € H. Consequently, writing that a mapping u: C(K) — B(H) is
matricially R-bounded is equivalent to writing that u is completely bounded (see, for
example, [28]). See Section 5 for the case when X is an L?-space.
(2) The notation || - ||z introduced above is consistent with that considered so
far in Section 2. Indeed, let by,..., b, in B(X). Then the diagonal matrix
Diag{by, ..., by} € M,,(B(X)) and the tensor element Zzzl ex @ by € £;° ® B(X)

satisfy .
Z ei @ by
k=1

(3)If u: C(K) — B(X) is matricially R-bounded (with the estimate (4.2)), then u
is R-bounded and R(u) < C. Indeed, consider f1, ..., f, in the unit ball of C(K).

|Diag{by, ..., bp}llr = R({b1, . .., bu}) =

R
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Then we have ||Diag{ fi, ..., fulllccx.m, < 1. Hence, forall xy, ..., x, in X,
‘ > e @ ulfi)xk < [Diag{u(f1). ..., uCfYIR| Y & ® xt
k Rad(X) k Rad(X)
= C‘ Y@ ®x
% Rad(X)

Let (gr)k>1 be a sequence of complex-valued, independent, standard Gaussian
random variables on some probability space 2. For all xq, ..., x, in X let

2 1/2
‘ng@axk =(/ > ax dx) :
k G(X) Qg Il 7% X

It is well known that for each scalar-valued matrix a = [a;;] € My,

n
Z aij8i ®Xxj

ij=1

, 4.3)
G(X)

< llalia,
G(X)

n
gj®xj
—

J

see, for example, [9, Corollary 12.17]. For all n > 1, introduce o, x: M, —
B(Rad, (X)) by letting
on,x ([aij]) = laijIx].

If X has finite cotype, then we have a uniform equivalence

Zek®Xk ng®Xk
k k

between Rademacher and Gaussian averages on X (see, for example, [9, Theo-
rem 12.27]). In combination with (4.3), this implies that

4.4)

~
~

Rad(X) G(X)

sup [lon, x || < oo.
n>1

Following [29] we say that X has property («) if there is a constant C > 1 such that,
for each finite family (x;;) in X and each finite family (#;;) of complex numbers,

. (4.5

Z € Q€j Q xjj
Rad(Rad(X))

i,j

Z € Q€jRlijxij
i,

< C sup [1j]
Rad(Rad(X)) ij

Equivalently, X has property («) if and only if we have a uniform equivalence

'E € Q€j® xjj €ij @ Xij
L]

i,j

’

Rad(X)

Rad(Rad(X)) '

where (¢€;;);,j>1 is a doubly indexed family of independent Rademacher variables.
The following is a characterization of property («) in terms of the R-boundedness
of o, n,X-
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N
N

3

LEMMA 4.3. A Banach space X has property («) if and only if

sup R(oy x) < 00.

n>1
PROOF. Assume that X has property (o). This implies that X has finite cotype, and
hence X satisfies the equivalence property (4.4). Let a(l), ..., a(N) be in M,, and
let z1, ..., zy be in Rad, (X). Let x j; be in X such that z; = Zj €; ® xj for all k.
We consider a doubly indexed family (€;x); k>1 as above, as well as a doubly indexed
family (gix)i r>1 of independent standard Gaussian variables. Then

Y a@oux@h)u=) a®e®akjx. (4.6)
k k.i,j

Hence, using the properties reviewed above,

> e ® ou x (@)
k Rad(Rad(X))
= Z €ik @ a(k)ijxjk =< Z gik ® a(k)ijxjk
ki, j Rad(X) ki, j G(X)
a(l) 0... 0
S 0 e 0 Z 8jk ® Xjk
0 ...0 a)/ |, k. G

< . .
S max fla(k)llw, || €k ® xj

Smax fla(k)lu, |3 e ® € @ ¥

Rad(Rad(X))

< max fla (k) |, ;ek ® 2k

Rad(Rad(X)) '
This shows that the o, x are uniformly R-bounded.

Conversely, assume that for some constant C > 1 we have R(o, x) < C for all
n>1. Let (tjx)jx € C" where ltjx] <1 and, for all k=1, ...,n, let a(k) e M,
be the diagonal matrix with entries t, . . . , t,x on the diagonal. Then |la(k)|| <1 for
all k. Hence, applying (4.6), we find that, for all (x ;) x in X ”2,

Z € Q€ 1jkXjk
j.k Rad(Rad(X))

<R(a(D),...,am)|Y e ®e; @xk

j.k Rad(Rad(X))
<C Z€k®€j®xj'k .
Tk Rad(Rad(X))
This means that X has property (o). O
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PROPOSITION 4.4. Assume that X has property (). Then any bounded homo-
morphism u: C(K) — B(X) is matricially R-bounded.

PROOF. Let u: C(K) — B(X) be a bounded homomorphism and let w: C(K) —
B(Rad, (X)) be defined by

w(f) = Irad, ® u(f).

Clearly w is also a bounded homomorphism, with ||w| = ||«||. Recall the identifica-
tion (4.1) and note that w(f) = Diag{u(f), ..., u(f)} for all f € C(K). Then, for
alla = [a,‘j] eM,,

w(f)on,x(a) = laiju(f)] = on x(@w(f).
By Corollary 2.8 and Lemma 4.3, the resulting mapping w- o, x satisfies
lw- ox: C(K: My) — B(Rad,(X))|| < Cllul|®

where C does not depend on n. Let E;; denote the canonical matrix units of M,, for
i,j=1,...,n. Consider [f;;] € C(K; M) ~ M,(C(K)) and write this matrix as
Zi,j Eij %) f,J Then

w-on x (i)=Y wlfiponx(Eij) =Y u(fij) ® Eij = [u(fip)].
i,j=1 i,j=1

Hence [|[u(fi)1lIr < Cllul*lILfijlllcck:m,)» which proves that u is matricially R-
bounded. O

When X = H is a Hibert space, it follows from Remark 4.2(1) that the above
proposition reduces to the fact that any bounded homomorphism C(K) — B(H) is
completely bounded.

We also observe that by applying the above proposition together with Remark 4.2(3)
we obtain the following corollary originally due to de Pagter and Ricker [8, Corol-
lary 2.19]. Indeed, Proposition 4.4 should be regarded as a strengthening of their result.

COROLLARY 4.5. Assume that X has property (o). Then any bounded homo-
morphism u: C(K) — B(X) is R-bounded.

REMARK 4.6. The above corollary is nearly optimal. Indeed, we claim that if X does
not have property («) and if K is any infinite compact set, then there exists a unital
bounded homomorphism

u: C(K) — B(Rad(X))

which is not R-bounded.
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To prove this, let (z,),>1 be an infinite sequence of distinct points in K and let u be

defined by
u(f) (Z & ® Xk) =Y e ® xx.

k>1 k>1

According to (1.4), this is a bounded unital homomorphism satisfying |u| < 2.
Assume now that u is R-bounded. Let n > 1 be an integer and consider families

(tij)i,j in (C”2 and (x;;);,j in X”Z. Foralli =1, ..., n, there exists f; € C(K) such
that || fi || = sup ; |£ij| and fi(z;) =t;j forall j =1, ..., n. Then

>N ®u(ﬁ>(z ¢, @x,.]) =Y e @ @,
i J i,j
and hence

E lijei ® €; @ xij
irJ

< R(u) sup ||fi||‘

Z € Q€; Q xjj
Rad(Rad(X)) i,j Rad(Rad(X))

Z€i®€j®xij

=< R(u) sup |1;;]
bi ij

Rad(Rad(X))

This shows (4.5).

5. Application to L?-spaces and unconditional bases

Let X be a Banach lattice with finite cotype. A classical theorem of Maurey asserts
that, in addition to (4.4), we have a uniform equivalence

1/2
\ Yaou| = H (32 )
k Rad(X) k

for finite families (xx)x of X (see, for example, [9, Theorem 16.18]). Thus a bounded
linear mapping u: C(K) — B(X) is matricially R-bounded if there is a constant
C >0 such that, for all n>1, for all matrices [f;;] € M,(C(K)) and for all

X1, ..., X% €X,
2\ 1/2 12
) (Zwr)

(=
i J
Mappings satisfying this property were introduced by Simard in [32] under the name
of £2-cb maps. In this section we will apply a factorization property of ¢?-cb maps
established in [32], in the case when X is merely an L”-space.
Throughout this section, we let (€2, 1) be a o-finite measure space. By definition,
a density on that space is a measurable function g: 2 — (0, co) such that ||g||; = 1.
For all such functions and all 1 < p < 0o, we consider the linear mapping

(Pp’g: LP(Q7 M’) — LP(Q, g/,L), ¢p,g(h) — gil/ph,

Zu(fij)xj

J
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which is an isometric isomorphism. Note that (€2, gu) is a probability space. Passing
from (€2, u) to (2, gu) by means of the maps ¢, , is usually called a change of
density. A classical theorem of Johnson and Jones [18] asserts that, for all bounded
operators 7: LP(u) — LP (), there is a density g on €2 such that ¢, o 0T o ‘15;,1;;’
initially defined on LP(gu), extends to a bounded operator on L?(gu). The next
statement is an analog of that result for C (K)-representations.

PROPOSITION 5.1. Let 1 < p <00 and let u: C(K) — B(LP(u)) be a bounded
homomorphism. Then there exists a density g: Q2 — (0, 0co0) and a bounded homo-
morphism w: C(K) — B(Lz(gpb)) such that

bpgou(f)od,,=w(f) forfeCK),

where equality holds on L*(gu) N LP (gu).

PROOF. Since X = L”(u) has property («), the mapping u is matricially R-bounded
by Proposition 4.4. According to the above discussion, this means that u is £2-cb in
the sense of [32, Definition 2]. The result therefore follows from [32, Theorems 3.4
and 3.6]. O

We will now focus on Schauder bases on separable L”-spaces. We refer to [27,
Ch. 1] for general information on this topic. We simply recall that a sequence (ex)x>1
in a Banach space X is a basis if, for every x € X, there exists a unique scalar sequence
(ar)k=1 such that ), arex converges to x. A basis (ex)x>1 is said to be unconditional
if this convergence is unconditional for all x € X. We record the following standard
characterization.

LEMMA 5.2. A sequence (ex)r>1 C X of nonzero vectors is an unconditional basis
of X if and only if X = Span{ex : k > 1} and there exists a constant C > 1 such that,
for all bounded scalar sequences (,)r>1 and for all finite scalar sequences (ar)ik>1,

Z Akajey Z aiey
k k

We will need the following elementary lemma.

. (5.1)

< C sup |Ax|
k

LEMMA 5.3. Let (2, v) be a o-finite measure space, let 1 < p < oo and let Q:
LP(v) — LP(v) be a finite rank bounded operator such that Q|;2,)nrr(,) €xtends

to a bounded operator L*>(v) — L?*(v). Then Q(LP(v)) C L?(v).

PROOF. Let E = Q(LP(v) N L*(v)). By assumption, E is a finite-dimensional sub-
space of L?(v) N L2(v). Since E is automatically closed under the L”-norm and Q is
continuous, we find that Q(L?(v)) = E. O

THEOREM 5.4. Let 1 < p < 0o and assume that (ex)i>1 is an unconditional basis

of LP(2, w). Then there exists a density g on Q such that ¢, ¢(ex) € Lz(gpL) for all
k > 1, and the sequence (¢p ¢(ex))k>1 is an unconditional basis osz(g,u).
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PROOF. Property (5.1) implies that, for all A = (Ax)k>1 € €*°, there exists a (neces-
sarily unique) bounded operator 7j : L? () — L?(w) such that T (ex) = Arex for all
k > 1. Moreover, ||T)|| < C||M|lco. We can therefore consider the mapping

u: L — B(LP(w), u) =T,

and u is a bounded homomorphism. By Proposition 5.1, there is a constant C; > 0 and
a density g on €2 such that the mapping

¢Tigp~': LP (gu) —> LP(gp)

(where ¢ = ¢ ;) extends to a bounded operator

Sy L*(gu) —> L*(gp)

for all A € £°°, where ||Si|| < Ci||Allco-

Assume first that p > 2, so that L”(gu) C L*(gu). Let A = (M)k>1 in £ and let
(ar)k>1 be a finite scalar sequence. Then S (¢ (ex)) = dThd~ (P (er)) = A (ex) for
all k > 1, and hence

Z Akar (ex)
k

s () akqs(ek))
k L%(g)
> agler)
k

Moreover, the linear span of the ¢ (e;) is dense in L”(g), and hence in L?(gu). By
Lemma 5.2, this shows that (¢ (ex))«>1 is an unconditional basis of L2(g,u,).

Assume now that 1 < p < 2. Foralln > 1, let f;, € £*° be defined by (fu)r = dn i
forall k > 1, and let Q,: L?(gu) — L?(gu) be the projection defined by

L2(gp) ‘

< C1II)~IIOO‘

L2(gp)

0.(>° ak¢<ek>> = 4 (en).
k

Then Q, = qufnq)_l and hence Q, extends to an L? operator. Therefore, ¢ (e,)
belongs to L?(gu) by Lemma 5.3.

Let p’ = p/(p — 1) be the conjugate number of p, let (¢})r>1 be the bi-orthogonal
system of (ex)r=>1, and let ¢’ = ¢*~!. (It is easy to check that ¢’ = ¢,r,q, but we will
not use this point.) The linear span of the e; is w*-dense in LP (w). Equivalently,
the linear span of the ¢’(e;‘;) is w*-dense in L”' (gw), and hence it is dense in Lz(gp,).
Moreover, for all 1 € £°° and for all k > 1, we have T, (e}) = Ake;. Thus, for all finite
scalar sequences (ax)k>1,

Y ad' (€)= @Tp™H* (Z akqs’(e;;)) =S; (Z akqb’(e?;))-
k k k

https://doi.org/10.1017/51446788709000433 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788709000433

228 C. Kriegler and C. Le Merdy [24]

’ > ad'(ef)
k

According to Lemma 5.2, this shows that (¢’ (€{)k=1 is an unconditional basis of
L*(gw). It is plain that (¢(ex))k=1 C L?(gu) is the bi-orthogonal system of
(¢’(e;§))k21 C Lz(gu,). This shows that, in turn, (¢ (ex))r>1 is an unconditional basis
of L*(gu). O

Hence

<C
L2(gu)

> g’ ()
k

L2(gu)

We will now establish a variant of Theorem 5.4 for conditional bases. Recall that
if (ex)n>1 is a basis on some Banach space X, then the projections Py: X — X

defined by
N
Py <Z ak€k> = Z aiey
k k=1

are uniformly bounded. We will say that (ex)x>1 is an R-basis if the set {Py : N > 1}
is actually R-bounded. It follows from [4, Corollary 3.15] that any unconditional basis
on L? is an R-basis. See Remark 5.6(2) for more details on this.

PROPOSITION 5.5. Let 1 < p < oo and let (ex)i>1 be an R-basis of LP (2, ). Then
there exists a density g on Q such that ¢p ¢(ex) € L%(gp) for all k> 1, and the
sequence (¢p ¢ (er))r>1 is a basis osz(g,u).

PROOF. According to [26, Theorem 2.1], there exists a constant C > 1 and a density g
on 2 such that, taking ¢ = ¢, ,,

lpPnd ™'l < Cllhlla YN =1, he L*(gu) N LP(gu).

Then the proof is similar to that of Theorem 5.4, using [27, Proposition 1.a.3] instead
of Lemma 5.2. We skip the details. O

REMARK 5.6. (1) Theorem 5.4 and Proposition 5.5 can be easily extended to finite-
dimensional Schauder decompositions. We refer to [27, Section 1.g] for general
information on this notion. Given a Schauder decomposition (X)x>1 of a Banach
space X, let Py be the associated projections; namely, for all N > 1, Py: X - X
is the bounded projection onto X1 @ - - - @ Xy vanishing on Xj for all k > N + 1.
We say that (Xy)ir>1 is an R-Schauder decomposition if the set {Py : N > 1} is
R-bounded. Then we find that, for all 1 < p < oo and for all finite-dimensional
R-Schauder (respectively unconditional) decompositions (Xy)x>1 of LP(u), there
exists a density g on £2 such that ¢, ,(Xy) C Lz(gu) forall k > 1, and (¢ ¢ (Xi))k>1
is a Schauder (respectively unconditional) decomposition of L(gp).

(2) The concept of R-Schauder decompositions can be tracked down to [2], and
it played a key role in [4] and in various works on LP”-maximal regularity and
H-calculus; see, in particular, [20, 21]. Let C, denote the Schatten spaces. For
1 < p #2 < oo, an explicit example of a Schauder decomposition on L?([0, 1]; C »)
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which is not R-Schauder is given in [4, Section 5]. More generally, it follows
from [20] that whenever a reflexive Banach space X has an unconditional basis and
is not isomorphic to ¢2, then X admits a finite-dimensional Schauder decomposition
which is not R-Schauder. This applies, in particular, to X = L”([0, 1]), for all
1 < p #2 < oco. However, whether L? ([0, 1]) admits a Schauder basis that is not
R-Schauder is apparently an open question.

We finally mention that, according to [21, Theorem 3.3], any unconditional decom-
position on a Banach space X with property (A) is an R-Schauder decomposition.
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