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A GAMMA ACTIVITY TIME PROCESS
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Abstract

We construct a process with gamma increments, which has a given convex autocorrelation
function and asymptotically a self-similar limit. This construction validates the use of
long-range dependent t and variance-gamma subordinator models for actual financial
data as advocated in Heyde and Leonenko (2005) and Finlay and Seneta (2006), in that
it allows for noninteger-valued model parameters to occur as found empirically by data
fitting.
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1. Introduction

Heyde and Leonenko (2005) and Finlay and Seneta (2006) respectively constructed discrete
time t and variance-gamma (VG) distributed subordinator models which exhibit long-range
dependence (LRD) of squared returns, a desirable property for asset price models. This LRD
comes from asymptotically self-similar reciprocal gamma (R�) and gamma (�) based ‘activity
time’ {Tt } processes, respectively, and in particular is driven by the LRD of the increment
processes, denoted by τ(t) = Tt −Tt−1, t = 1, 2, . . . . (A continuous-time process {Yt } is said
to be self-similar with parameter H if Yct

d= cH Yt , where ‘
d=’ denotes equality in distribution;

LRD of a discrete-time stationary process with ultimately nonnegative autocorrelations {γk}
is said to hold if

∑∞
k=1 γk = ∞; and activity time, as opposed to standard clock time, is the

increasing stochastic process over which security prices are taken to evolve.) The {Tt } processes
are scaled such that their increments over unit time have unit expectation, with the τ(t) taken
to be R�(ν/2, ν/2 − 1), ν > 4, and �(ν/2, ν/2), ν ≥ 1, distributed, respectively, having the
following probability density functions for x > 0:

fR�(x) = (ν/2 − 1)ν/2

�(ν/2)
x−ν/2−1e(1−ν/2)/x and f�(x) = (ν/2)ν/2

�(ν/2)
xν/2−1e−(ν/2)x .

The processes constructed in Heyde and Leonenko (2005) and Finlay and Seneta (2006) are
restricted to integer values of ν, however, a condition not consistent with estimation with actual
data. The purpose of this note is therefore to extend the constructions to allow for noninteger ν.
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A gamma activity time process 951

This extension validates the use of the models for real data. Section 2 details this for the
�-based process, while Section 4 details this for the R�-based process. We also include a
brief description of two other possible activity time constructions which result in LRD, given
in Section 5. In the interest of brevity we exclude any nonessential details or references; more
background information can be found in the two papers mentioned.

2. Noninteger ν: the � case

For N = {1, 2, 3, . . . }, let {ηi(t), t ∈ N}, i = 1, . . . , �ν�, ν ≥ 1 (where �·� denotes the
integer-part function), be independent and identically distributed (i.i.d.) stationary Gaussian
processes with zero mean, unit variance, and autocorrelation function (ACF) ρ(s), s ∈ N.
Define the stationary process {τ�ν�(t), t ∈ N} by

τ�ν�(t) = η2
1(t) + · · · + η2�ν�(t)

�ν� .

Then we can set

Tt =
t∑

i=1

τ�ν�(i),

so that, for each integer t ≥ 1,

Tt − Tt−1 = τ�ν�(t)
d= �

(�ν�
2

,
�ν�
2

)

with

cov(τ�ν�(t), τ�ν�(t + s)) = 2

�ν�ρ2(s). (1)

Here we have set T0 = τ�ν�(0) = η1(0) = · · · = η�ν�(0) = 0. This is the discrete {Tt } process
that Heyde and Leonenko (2005) and Finlay and Seneta (2006) worked with and showed,
after appropriate norming, to converge weakly to a continuous-time, self-similar ‘Rosenblatt’
process.

Assumption 1. Set Z(s) = ρ2(s)−ρ2(s+1), and assume that Z(s−1)−Z(s) ≥ 0 for s ∈ N,
which is equivalent to ρ2(s) being convex on the integers. We also require that Z(s) ≥ 0.

Theorem 1. Under Assumption 1 there exists a process τν(t), t ∈ N, with noninteger ν > 0
and marginal �(ν/2, ν/2) distribution such that cov(τν(t), τν(t + s)) = (2/ν)ρ2(s) for s ∈ N,
parallel to (1).

Setting Tt = ∑t
i=1 τν(i) and choosing ρ(s) such that τν(t) is LRD results in a discrete LRD

VG process with noninteger ν parameter. In this section we aim to prove Theorem 1, with the
main steps set out in Lemmas 1, 2 and 3.

First we construct two τνs such that they have covariance of the form given by (1). Fix
n ∈ N and set ι = (ν − �ν�)/2 and Yn

i,∗
D= Yn

i,◦
D= �(ι/n, 1/2), i = 1, . . . , n, all independent

and independent of the ηs. Then set

Xn∗ :=
n∑

i=1

Yn
i,∗

d= �

(
ι,

1

2

)
and Xn◦ :=

k∑
i=1

Yn
i,∗ +

n−k∑
i=1

Yn
i,◦

d= �

(
ι,

1

2

)
, (2)
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so there is an overlap of k of the Yn
i,∗s between Xn∗ and Xn◦ . Now set

τν(t) = η2
1(t) + · · · + η2�ν�(t) + Xn∗

ν

and

τν(t + s) = η2
1(t + s) + · · · + η2�ν�(t + s) + Xn◦

ν
,

both �(ν/2, ν/2) random variables.

Lemma 1. For any fixed t ∈ N and fixed single temporal lag s ∈ N, τν(t) and τν(t + s) as
defined above with k = �nρ2(s)� result in cov(τν(t), τν(t +s)) → (2/ν)ρ2(s) as n → ∞, with
the error bounded by 4ι/nν2 independent of t and s. (In this case we do not need Assumption 1.)

Proof. From (2),

cov(Xn∗, Xn◦ ) = var(Y n
1,∗ + · · · + Yn

k,∗) = 4ιk

n
,

so that

cov(τν(t), τν(t + s)) = 1

ν2 cov

( �ν�∑
i=1

η2
i (t),

�ν�∑
i=1

η2
i (t + s)

)
+ 1

ν2 cov(Xn∗, Xn◦ )

= 2

ν
ρ2(s) + 4ι

ν2

�nρ2(s)� − nρ2(s)

n
.

The above shows how we construct a process τν with the desired correlation structure at
lag s. Constructing a stationary process τν that has the correct correlation at all lags is more
involved. We now give a procedure to this end.

Again fix n ∈ N, set

ι = ν − �ν�
2

and Yn
i,j

D= �

(
ι

n
,

1

2

)
,

i = 1, . . . , �nρ2(1)� for j = 0, and i = 1, . . . , n − �nρ2(1)� for j = 1, 2, . . . , with all the
Yn

i,j s mutually independent. Then set

Xn
t =

�nρ2(t)�∑
i=1

Yn
i,0 +

t∑
j=1

(�nρ2(t−j)�−�nρ2(t−j+1)�∑
i=1

Yn
i,j

)
d= �

(
ι,

1

2

)
for t = 1, 2, . . . (3)

(assuming Z(s) ≥ 0, setting Xn
0 = 0, and noting that ρ2(0) = 1), and

τν(t) = η2
1(t) + · · · + η2�ν�(t) + Xn

t

ν

d= �

(
ν

2
,
ν

2

)
,

Tt =
t∑

i=1

τν(i). (4)
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Lemma 2. Under Assumption 1, for any time t ∈ N and temporal lag s ∈ N, with τν(t) and
τν(t + s) as defined above, cov(τν(t), τν(t + s)) → (2/ν)ρ2(s) as n → ∞.

Proof. Consider any Xn
t and Xn

t+s for t, s ∈ N. Then, for any j such that 1 ≤ j ≤ t , Xn
t

contains the first �nρ2(t − j)� − �nρ2(t − j + 1)� of the Yn
i,j s, while Xn

t+s contains the first
�nρ2(t + s − j)� − �nρ2(t + s − j + 1)� of the same Yn

i,j s. But s > 0, so by Assumption 1
�nρ2(t + s − j)� − �nρ2(t + s − j + 1)� ≤ �nρ2(t − j)� − �nρ2(t − j + 1)� for large n, so
the overlap of Yn

i,j s between Xn
t and Xn

t+s is simply �nρ2(t + s − j)� − �nρ2(t + s − j + 1)�.
For j > t , Xn

t contains none of the Yn
i,j s while, for j = 0, Xn

t contains the first �nρ2(t)� of
the Yn

i,0s, while Xn
t+s contains the first �nρ2(t + s)� of the Yn

i,0s. Hence, the total number of
overlapping Yn

i,j s between Xn
t and Xn

t+s is

t∑
j=1

(�nρ2(t + s − j)� − �nρ2(t + s − j + 1)�) + �nρ2(t + s)� = �nρ2(s)�.

But from Lemma 1 this delivers the correct correlation.

Lemma 3. Under Assumption 1, {Xn
t } for t ∈ N, as defined by (3), converges weakly to a

well-defined stochastic process {Xt } as n → ∞.

Proof. Fix p ∈ N, and let a1, . . . , ap ∈ R. To ease notation set

f (t) = �nρ2(t)� and g(t) = �nρ2(t − 1)� − �nρ2(t)�.
Then starting from (3), we can show that

∑p
t=1 atX

n
t is given by

f (p)∑
i=1

(( p∑
t=1

at

)
Yn

i,0

)
+

p−1∑
j=1

( f (j)∑
i=f (j+1)+1

(( j∑
t=1

at

)
Yn

i,0

))

+
p∑

k=1

(g(k)∑
i=1

(( p∑
t=p−k+1

at

)
Yn

i,p−k+1

))

+
p−1∑
k=1

(p−k∑
j=1

( g(j)∑
i=g(j+1)+1

((k+j−1∑
t=k

at

)
Yn

i,k

)))
. (5)

Now each Yn
i,j is independent and �(ι/n, 1/2) distributed, so the characteristic function (CF)

of (Xn
1 , . . . , Xn

p) is given by

φn
p(a1, . . . , ap) =

((
1 − 2i

( p∑
t=1

at

))−ιf (p)/n)(p−1∏
j=1

(
1 − 2i

( j∑
t=1

at

))−ιg(j+1)/n)

×
( p∏

k=1

(
1 − 2i

( p∑
t=p−k+1

at

))−ιg(k)/n)

×
(p−1∏

k=1

(p−k∏
j=1

(
1 − 2i

(k+j−1∑
t=k

at

))−ι(g(j)−g(j+1))/n))
.
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As n → ∞, we have

f (t)

n
→ ρ2(t) and

g(t)

n
→ ρ2(t − 1) − ρ2(t) = Z(t − 1),

so that φn
p(a1, . . . , ap) converges to a function φp(a1, . . . , ap) given by

φp(a1, . . . , ap) =
((

1 − 2i

( p∑
t=1

at

))−ιρ2(p))(p−1∏
j=1

(
1 − 2i

( j∑
t=1

at

))−ιZ(j))

×
( p∏

k=1

(
1 − 2i

( p∑
t=p−k+1

at

))−ιZ(k−1))

×
(p−1∏

k=1

(p−k∏
j=1

(
1 − 2i

(k+j−1∑
t=k

at

))−ι(Z(j−1)−Z(j))))
, (6)

which is clearly continuous about the origin (we can also verify that Xt
D= �(ι, 1

2 ) for t =
1, 2, . . . by considering φt (a1, . . . , at ) and choosing a1 = · · · = at−1 = 0). Weak convergence
follows from Theorem 7.6 of Billingsley (1968) (see also the second paragraph on p. 30 of
Billingsley (1968)).

If we choose ρ(s) = (1 + ω|s|α)(H−1)/α for ω > 0, 0 < α ≤ 2, and 1
2 < H < 1 (i.e. an

autocorrelation function from the so-called Cauchy family detailed in Gneiting (2000)), our
construction will lead to an LRD VG model. Actual data estimation results in noninteger-
valued ν estimates, so it is important to show that such LRD VG processes do actually exist.

Now, from (4) we can take our activity time process Tt as the sum of two independent parts:

Tt = 1

ν

�ν�∑
j=1

t∑
i=1

η2
j (i) + 1

ν

t∑
i=1

Xi = At + Bt , (7)

say. Using Taqqu (1975), we can show that var(Ak) and var(Bk) are both O(k2H ), and that
(A�kt� − E A�kt�)/kH converges weakly as k tends to ∞ to a self-similar process with parameter
H (Heyde and Leonenko (2005) and Finlay and Seneta (2006) showed this for ω = 1 and α = 2,
but the proof can be extended to cover the more general case where ω > 0 and 0 < α ≤ 2).

We give a proof in Theorem 2, below, that (1/kH )(Bk −E Bk) converges in probability to 0,
which is enough to demonstrate that our new discrete-time {Tt } process (7) has asymptotically
a self-similar limit structurally coincident with that of the original {Tt } process used in Finlay
and Seneta (2006).

3. Convergence of the add-on term

Theorem 2. When ρ(s) is given by a member of the Cauchy family, the sequence

ζk =
(

1

kH

) k∑
i=1

(Xi − E Xi) for k = 1, 2, . . . ,

converges in distribution, and therefore probability, to 0 as k tends to ∞.
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Proof. We give the proof taking ρ(s) as any member of the Cauchy family which satisfies
Assumption 1, in order to use (6) from Lemma 2.

First consider the CF φ∗
p(a1, . . . , ap) of (X1 − E X1, . . . , Xp − E Xp). By replacing each

Yn
i,j in (5) with Yn

i,j − E Yn
i,j = Yn

i,j − 2ι/n, we can show that φ∗
p(a1, . . . , ap) is given by (6),

but with each expression of the form (1 − 2ix)−ιy replaced by (1 − 2ix)−ιye−2ixιy . Now, for
a ∈ R, the CF of ζk is given by

ϕk(a) = E

{
exp

(
ia

kH

k∑
j=1

(Xj − 2ι)

)}
= φ∗

k

(
a

kH
, . . . ,

a

kH

)
.

From (6), ϕk(a) is a product comprising the following four factors:

(1 − 2iak1−H )−ιρ2(k) exp(−2iak1−H ιρ2(k)), (8)
k−1∏
j=1

((1 − 2ijak−H )−ιZ(j) exp(−2ijak−H ιZ(j))), (9)

k∏
j=1

((1 − 2ijak−H )−ιZ(j−1) exp(−2ijak−H ιZ(j − 1))), (10)

k−1∏
m=1

k−m∏
j=1

((1 − 2ijak−H )−ι(Z(j−1)−Z(j)) exp(−2ijak−H ι(Z(j − 1) − Z(j)))). (11)

We shall use Markov’s inequality to show that the random variables whose CFs are given by (8),
(9), and (10) converge in probability to 0 as k tends to ∞, and show directly that the moment
generating function (MGF) of the random variable with CF given by (11) converges to 1 as k

tends to ∞, thus establishing the result.
First note that, for a nonnegative random variable Yk , say, Markov’s inequality states that,

for any fixed ε > 0,

P(Yk > ε) ≤ E Yk

ε
,

so that if E Yk → 0 then Yk
p−→ 0 and, therefore, (Yk − E Yk)

p−→ 0, where ‘
p−→’ denotes

convergence in probability. Note also that each of (8), (9), and (10) represent the CF of a
sum (mean-corrected) of independent and nonnegative � random variables, so that if we show
that the mean of each such sum (before mean correction) converges to 0, we have completed
the proof.

Now (8) before mean-correction is the CF of a �(ιρ2(k), 1/(2k1−H )) random variable with
mean of 2k1−H ιρ2(k). For ρ(s) = (1 + ω|s|α)(H−1)/α , ρ2(k) = O(k2H−2), so that

2k1−H ιρ2(k) = O(kH−1) → 0

as k → ∞. Similarly the mean of the sum of � random variables with CF (9) is given by
2k−H ι

∑k−1
j=1 jZ(j). Here we have

0 ≤ k−H
k−1∑
j=1

jZ(j) = k−H

((k−1∑
j=1

ρ2(j)

)
− (k − 1)ρ2(k)

)
,
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but both k−H (k − 1)ρ2(k) and k−H
∑k−1

j=1 ρ2(j) are O(kH−1) → 0 as k → ∞, so that
2k−H ι

∑k−1
j=1 jZ(j) → 0. A similar result holds for (10).

Finally consider (11). In this case the mean is O(k1−H ) → ∞ and so we cannot use Markov’s
inequality. Instead change the order of multiplication to write the MGF of the negative of the
random variable with CF (11) as

Mk(a) = exp

(
ι

k−1∑
j=1

(Z(j − 1) − Z(j))(k − j)(2jak−H − log(1 + 2jak−H ))

)
. (12)

Working with the MGF instead of the CF simplifies matters, since Mk(a) is well defined for
all a ≥ 0 and, from Theorem 2 of Mukherjea et al. (2006), pointwise convergence of Mk(a)

in some fixed interval (b, d), 0 < b < d < ∞, as k tends to ∞, to the MGF M(a) of some
random variable implies weak convergence to the associated limit distribution. Thus, if Mk(a)

converges to 1, the MGF of 0, we have completed the proof. Now,

x ≥ x − log(1 + x) ≥ 0 and x2 ≥ x − log(1 + x) ≥ 0 for x ≥ 0,

so that

0 ≤
k−1∑
j=1

(Z(j − 1) − Z(j))(k − j)(2jak−H − log(1 + 2jak−H ))

≤
�kH �−1∑

j=1

(Z(j − 1) − Z(j))(k − j)(2jak−H )2

+
k−1∑

j=�kH �
(Z(j − 1) − Z(j))(k − j)2jak−H

≤ c1k
−2H

�kH �−1∑
j=1

j2H−2(k − j) + c2k
−H

k−1∑
j=�kH �

j2H−3(k − j) (13)

for constants c1 and c2, since Z(j − 1) − Z(j) = O(j2H−4) by repeated application of the
mean value theorem, using Assumption 1 and the explicit form of ρ2(s). But

k−2H

∫ kH

1
j2H−2(k − j) dj = k1−3H+2H 2 − k1−2H

2H − 1
− k2H(H−1) − k−2H

2H

converges to 0 as k tends to ∞, since each exponent of k is negative for 1
2 < H < 1, and

k−H

∫ k

kH

j2H−3(k − j) dj = kH−1 − k1−3H+2H 2

2H − 2
− kH−1 − k2H(H−1)

2H − 1

converges to 0 as k tends to ∞, so that (13) converges to 0 and (12) converges to 1.

Finally, recall that, for Z(s) = ρ2(s)−ρ2(s +1), we require Z(s) ≥ 0 and Z(s) decreasing
with s. It is clear that all members of the Cauchy family satisfy the first property, but the
same is not true of the second. For example, α = ω = 2 satisfies the second property for any
1
2 < H < 1, whereas α = 2 and ω = 1 for 0.648 < H < 1 does not. In the latter case the ACF
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value for {Xt } at lag 1 will be 1 − ρ2(1) + ρ2(2) instead of the larger ρ2(1), but ACF values at
larger lags will be unaffected (at lags greater than 1, the requirement on Z(s) is satisfied if

1 − α + ω|s|α(3 − 2H) ≥ 0,

which, for any given ω > 0, 0 < α ≤ 2, and 1
2 < H < 1, will be the case for sufficiently large

values of s). Before leaving this section, we briefly discuss how our results are affected when
the second property fails to hold for the first few lags s.

As touched on above, if Z(s) does not decrease with s for the first m lags, say, then Lemma 2
will fail and the first m ACF values will be lower than those given by ρ2(·) (ACF values at lags
greater than m will be unaffected).

Considering Lemma 3, we undertook to partition
∑p

t=1 atX
n
t into groups of i.i.d. Yn

i,j s
with the same coefficients (some sum of at s). Now, for each t , and ignoring rounding issues
associated with taking the integer part, from (3) the first nZ(t − j) of the Yn

i,j s for j = 1, . . . , t

are included in Xt . Hence, the relative sizes of Z(0), Z(1), . . . , Z(p − 1) determine which of
the Yn

i,j s are included in which Xt , and so determine the groupings of Yn
i,j s. For example, if we

set

Z0 = max(Z(0), Z(1), . . . , Z(p − 1)),

with Z1 the next biggest through to

Zp−1 = min(Z(0), Z(1), . . . , Z(p − 1)),

then there would be Zp−1 of the Yn
i,j s with coefficient

∑p
t=1 at , Zp−2 − Zp−1 of the Yn

i,j s with
a coefficient of all bar one of the at s, and Z0 − Z1 of the Yn

i,j s with a coefficient of only 1 of
the at s. If Assumption 1 holds then Zj = Z(j), but if it does not hold then the order of the
largest few Zj s may change. With this in mind, we can modify (5) by replacing each g(j) by
gj defined analogously to the Zj s (note that the composition of the sum of at s associated with
each Yn

i,j will change too, but the total number of at s summed will not change). From (5) we
can carry through the changes to arrive at a new version of (6), with the Zj s in place of the
Z(j)s and the composition of the sums of the at s changed for the last two factors, but Lemma 3
otherwise unaffected.

Next consider Theorem 2 in light of our new CF (6). Both (10) and (11) will change, but the
mean of the random variable with CF (10) will still be O(kH−1) → 0 as k → ∞, while the first
few Zj−1 − Zj values will still be bounded by c∗j2H−4 for some constant c∗, and so (13) will
be unaffected and (12) will still converge to 1. Hence, the activity time process generated from
a member of the Cauchy family that does not satisfy Assumption 1 will still be LRD and have a
self-similar limit, but the first few ACF values will be lower than in the integer ν construction.

4. Noninteger ν: the R� case

To construct their LRD t process, Heyde and Leonenko (2005) started with � distributed
increments with integer ν. Their construction from then on does not require integer ν however;
see Heyde and Leonenko (2005, Sections 3.3 and 5.1). As such, our � distributed increments
from Section 2 can be ‘plugged in’ to their construction to show that LRD asymptotically self-
similar t processes with noninteger ν values also exist. (Note that Heyde and Leonenko also
required that ν > 4 to ensure that var(τ (t)) < ∞, although Sly (2006) has since developed an
approach which allows for 2 < ν ≤ 4.)
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5. A brief outline of other possible activity time processes

We briefly describe two other activity time constructions which lead to LRD subordinator
models with a self-similar limit. The aim is only to introduce other possible approaches, with
proofs and greater detail available in the papers mentioned.

From Sly (2006) (see also Taqqu (1979)), for η1(t) as in Section 2, set �(·) as the distribution
function of a standard normal, and set F as the distribution function of a � or R� random variable
for example. Then, for each t , �(η1(t)) has the uniform distribution and τt = F−1(�(η1(t)))

has the distribution of F . When τ1 has finite variance, a normed Tt = ∑t
i=1 τi converges in

finite-dimensional distribution to fractional Brownian motion, while in the R� case, for τ1 with
infinite variance but finite mean, a normed Tt converges to a Lévy-stable process.

From Taqqu and Levy (1986) (see also Liu (2000)), set

W(t) =
∞∑

k=0

WkI (Sk−1 < t ≤ Sk) = WN(t),

where Sk = S0 + ∑k
j=1 Uj is a renewal sequence with positive integer-valued interarrival

times Uj , and N(t) is the associated counting process. Therefore, W(t) takes the random
value Wk for the duration of the kth interarrival time. Also assume that the {Uk} are i.i.d. with
P(U1 ≥ u) ∼ u−ah(u) for 1 < a < 2 and h(·) is slowly varying with E U1 = µ, that the
{Wk} are i.i.d. with E W1 = 0 and E W 2

1 < ∞, and that the {Uk} and {Wk} are independent.
So that {Sk} is stationary choose P(S0 = u) = µ−1 P(Ui ≥ u + 1), u = 0, 1, . . . , so that, by
Karamata’s theorem,

P(S0 ≥ u) =
∞∑

k=u

P(S0 = k) ∼ µ−1(a − 1)−1u−(a−1)h(u),

which implies that E S0 = ∞. Then we obtain

cov(W(t), W(t + s)) = E W 2
k

∞∑
k=0

P(Sk−1 < t < t + s ≤ Sk) = E W 2
k P(S0 ≥ s),

so that ∞∑
s=0

cov(W(t), W(t + s)) = ∞,

giving LRD. In fact, the quantity

ζTL
k (t) =

∑�kt�
i=1 W(i)

k1/aL(k)

for L(·) slowly varying and t ∈ [0, 1], converges in finite-dimensional distribution as k tends to
∞ to a self-similar Lévy-stable process with parameter a. Using the notation from Section 2,
we could set τt = W(t)+ 1 and Tt = ∑t

i=1 τi , taking Wk, k = 1, 2, . . . , to be mean-corrected
i.i.d. � or R� random variables for example.

However, there is no distribution of Ui which gives P(S0 ≥ s) = (1 + ω|s|a)(H−1)/a , where
a = 2 and ω = 1 for 0.648 < H < 1.
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