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POSITIVE DEFINITE AND RELATED 
FUNCTIONS ON HYPERGROUPS 

WALTER R. BLOOM AND PAUL RESSEL 

ABSTRACT. In this paper we make use of semigroup methods on the space of com­
pactly supported probability measures to obtain a complete Lévy-Khinchin represen­
tation for negative definite functions on a commutative hypergroup. In addition we 
obtain representation theorems for completely monotone and completely alternating 
functions. The techniques employed here also lead to considerable simplification of the 
proofs of known results on positive definite and negative definite functions on hyper-
groups. 

1. Positive definite and negative definite functions. The analysis throughout will 
be carried out on a (locally compact) hypergroup X admitting a left Haar measure ra. 
(For a definition and properties we refer to Jewett [6], whose notation we follow.) This 
includes those hypergroups that are compact (Jewett [6], Theorem 7.2A), discrete (Jewett 
[6], Theorem 7.1 A) or commutative (Spector [10], Theorem III.4). The space of measures 
absolutely continuous with respect to left Haar measure will be denoted by Ma{X), and 
the space of bounded Radon measures by Mb{X). We reserve the symbols A/l(X), M\(X) 
for the spaces of probability measures and those that have compact support respectively. 
We also denote the point measure at x G X by EX, and the indicator function of a set A by 
I A . Finally the adjoint v* of a measure v is defined by i/*(A) = v(A~) for all measurable 
A CX. 

For each x, y G X write 

f(x * y) : = Jfdex * ey, \i */(*) := Jf(z~ * x) rf/z(z) 

and 

/ * g(x) '= J fix * y)g(y~) dm{y) = Jf(y)g(y~ * x) dm(y) 

Here f,g are measurable functions on X and \i G Mb{X), and the latter equality holds 
whenever one of'f,g is a -finite (see Jewett [6], Theorem 5. ID). 

The left jc-translate off is writtenfx(y) = f(x * y). In Bloom and Heyer [2], Defini­
tion 2.5 the concept of uniform continuity was introduced, in terms of these translates, 
and it was shown that continuous functions with compact support are indeed uniformly 
continuous. For the work that follows we need to extend this idea. 
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POSITIVE DEFINITE AND RELATED FUNCTIONS ON HYPERGROUPS 243 

DEFINITION 1.1. A locally bounded measurable function/ is called left locally uni­
formly continuous at XQ G X if there exists a neighbourhood U of JCO such that for every 
e > 0 there exists a neighbourhood V of the identity e satisfying 

|/(y**)-/to| < e 

for all x G U, y G V. 
Theorem 2.6 of Bloom and Heyer [2] shows that a continuous function is left lo­

cally uniformly continuous at every point in X. Here we show that every function that 
is left locally uniformly continuous at xo is in fact continuous on a neighbourhood of 
XQ. However, we first need a preliminary result, extending Jewett [6], Theorem 6.2E. In 
the statement of Proposition 1.2, L^iX) denotes the set of locally bounded measurable 
functions on X, and Ll

c(X) the space of integrable functions on X with compact support. 

PROPOSITION 1.2. h\ * Lj£(X) c C(X) 

PROOF. Let k eLl
c(X) and g G ^ ( X ) . Choose x0 G X, U a compact neighbourhood 

of xo, and write C = supp&. Then by Jewett [6], Lemma 3.2B, C~ * U is compact, and 
for all x G U 

k * g(x) = JJ8 dsy- * exk(y) dm(y) 

i j lc-*ugd£y- * exk(y)dm(y) 

= k*{\c-*ug)(x) 

where the middle equality uses the fact that suppC^- * ex) C C~ * U for y € C. We now 
observe that k G Ll(X) and lc*ug G L°°(X) so that Jewett [6], Theorem 6.2E gives 

k * (Icwg) G L1 * L°°(X) C C(X). 

Since /: * g and & * (lc-*t/g) have been shown to agree on a neighbourhood of JCO it 
follows that k * g is continuous at JCO. But xo G X was chosen arbitrarily, and this gives 
the result. • 

COROLLARY 1.3. Every f G L^iX) that is left locally uniformly continuous at xo is 
continuous on a neighbourhood ofxo. 

PROOF. Let U, e and V be as in Definition 1.1 and write k = m{V)~l\v. We can 
assume without loss of generality that V is symmetric and compact. Now for x G U 

I * */(*) - / (*) | = \Jf(y- * *)*O0 dm{y) -f(x) J k(y) dm(y)\ 

< J \f(y-*x) -f(x)\m(V)-llv(y)dm(y) 

< s. 

But Proposition 1.2 gives that k*f G C(X) from which the continuity of/ on U follows. • 

DEFINITION 1.4. A locally bounded measurable function % on X is called multiplica­
tive if 
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(i) X(e) = 1 

(ii) x(**y) = xWxOO 
for all x,y G X. If in addition x(* ) = x W f° r all JC G X then \ is called a semichar-
acter. A bounded semicharacter will be called a character. It is immediate that every 
semicharacter is real-valued on the set of hermitian elements of X. Write X for the set of 
all continuous characters onX. Note that every character \ satisfies | xQOxOOl < IIXI loo 
for all*,y G Xsothat Hxltëo < llxlU and ||x||oo < 1. Thus ||x||oo = x W = 1. A 
character need not be continuous. Indeed consider any 2-fold absolutely continuous hy-
pergroup X with trivial centre, that is, ex * ey G Ma{X) for all JC, y G X\ { e} . An example 
of such a hypergroup is given in Jewett [6], Section 9.5 (see Example 3.4 below). Then 

i/pi(jc*y) = £JC * £v({^}) = ^' r . 
i e>v " y u i ; \ 0 , otherwise 

from which it follows that l{ey is a character which, in the case X is nondiscrete, cannot 
be continuous. However we do have: 

PROPOSITION 1.5. Every multiplicative function that is not locally null is continu­
ous. 

PROOF. Let \ be a multiplicative function that is not locally null. This entails that \ 
is bounded away from zero on a compact set C with m(C) > 0. Write g = 
m(C-yl lcX""1 • By the choice of C it is clear that g G L\{X). Also x G L£(X) and for 
each x G X 

x *#(•*) = /xU*>;)^(C,"rlicO;_)x""10;")^Cy) 

= / xWxWm(r)-1 lcOOx OO"1 <M>0 

= x(4 

Now appeal to Proposition 1.2 to deduce that \ is continuous. • 
Alternatively we can use Jewett [6], Theorem 6.3F to prove Proposition 1.5. However 

the above proof is more elementary. 

DEFINITION 1.6. We call q G L^(X) a quadratic form if it satisfies 

q(x * v) + q(x * y~) = 2q(x) + 2q(y) 

for all JC, y G X. 
Putting x = y — e gives q(e) = 0; and JC = y, x = y~ successively gives 

q(x * JC) + (̂JC * JC~ ) = 4q(x) 

q(x * JC~) + q(x * x) = 2̂ r(jc) + 2q(x~~) 

so that (̂JC ) = q{x). 
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THEOREM 1.7. Every quadratic form q continuous at e is continuous everywhere. 

PROOF. Let (Va) be a base of symmetric compact neighbourhoods at e, and write 
ka — m(Va)~

llya. For e > 0 choose ao such that for a > ao, \q(y)\ < e whenever 

ye va. 
Now for each x G l , using the symmetry of ka, we have 

\j(q(x*y)-q(x))ka(y)dm(y)\ = - \J{q(x * y~) - q{x))ka(y) dm(y) 

+ /(<l(x * y) - q(x))ka (y) dm(y)\ 

= \j q(y)ka(y)dm(y)\ 

< E. 

It follows that 

|ka * q(x~) - q(x~)\ = \j q(y~ * x~)ka(y)dm(y) - q(x) J ka(y) dm(y)\ 

= / ( ? ( * * y) ~ q{x))ka(y)dm(y)\ < e 

so that ka *q^> q uniformly on X. Appealing to Proposition 1.2 gives the continuity of 
q. m 

Jewett [6], Section 11.1 gives a definition of a positive definite function, which is 
assumed from the outset to be continuous. We note that continuity is not an essential part 
of the definition. 

DEFINITION 1.8. We call <j> G Lfâ.(X) positive definite if for all choices of n G N, 
ci,C2,... ,cn G C and*i,X2,...,X/z GX 

EEc^te*-*r)>°-
Standard arguments (see, for example, Berg, Christensen and Ressel [1], Chapter 3, Sec­
tion 1) give that every positive definite function <j> satisfies 

<£(jt*jc~)>0, </>0)>0, <j>(x~) = J(xj9 \<t>(x)\2 <<j>(e)(t)(x*x~) 

and, when <f> is bounded, \<j>{x)\ < <f> (e) for all x G X. 
It turns out that the continuity of a positive definite function is determined by its 

continuity at e\ this will follow as a corollary to Theorem 1.10 below. 

DEFINITION 1.9. We call xfj G I^QO negative definite ifi/;(e) > 0, I/J(X~) = ip(x) 
for all x G X, and for every n G N, every choice of c\, C2,..., cn G C with £ a = 0, and 
every choice of x\, X2,..., xn G X 

Y, E c{Cjil) (xt *x]~)< 0. 
It follows from Berg, Christensen and Ressel [1], Lemma 3.2.1 that if) G L^PO is neg­
ative definite if and only if for every choice of c\, c^,..., cn G C and x\, X2,..., xn G X 

E E c«-9 (v> (•*/)+VK^) - v> (^ * * p ) > o. 
Clearly ip(x * x~) G R , ^ ( J C ) + ^(JC~) > -0(JC * jt~), V> — V>(̂ ) is negative definite and, 
if </> is positive definite, (j> (e) — </> is negative definite (see Berg, Christensen and Ressel 
[1], Chapter 3, Section 1). 
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THEOREM 1.10. A negative definite function continuous at e is continuous every­
where. 

PROOF. Since xjj —ifiie) is negative definite we can without loss of generality assume 
that %jj (e) — 0. Taking x\ = x and X2 — y above we see that the matrix 

\\)(x) + ip(x) — \p(x * x~) xjj(x) + ip(y) — xjj(x * y~)\ 
\l>(y)+^(x)-i>(y*x-) ^(y) + ilj(y)-^(y*y~)j 

is positive definite, and hence has nonnegative determinant. This gives 

\ip(x) + i;(y)-il)(x*y~)\2 < (VK*) + ? W - i)(x * x~))(\lj(y) + J(y) - i/j(y * y~)) 

for all x,y G X. Choose xo G X, U a relatively compact neighbourhood of xo, £ > 0, V 
a symmetric relatively compact neighbourhood of e such that \ip(y)\ < e for all y G V, 
and W a neighbourhood of e satisfying W * W~ C V. 

Since i/; is locally bounded there is a constant K such that 

| VK*) + V K J O - - 0 (**•*-)! - K 

for all JC G U. Hence for JC G U, y G W 

| ^ W - ^ U * v - ) | -|V>O0l < |^W + ?W-^(^*y- ) | ^ ^ ^ O e ) 1 / 2 

and 
|V(JC) —-0(JC*^~) | <(3Ke)l/2 + e 

Thus V̂  is locally uniformly continuous at JCO, and the result follows. • 

COROLLARY 1.11. Every positive definite function that is continuous at e is contin­
uous everywhere. 

PROOF. We need only observe that if <j> is positive definite then <f>(e) — (}) is negative 
definite, and then apply Theorem 1.10. • 

2. The Lévy-Khinchin representation for negative definite functions on commu­
tative hypergroups. Negative definite functions allow in many cases a representation 
in terms of a local part and an integral term. This holds for instance on locally compact 
abelian groups (see Heyer [5], Theorem 5.6.19) and on discrete abelian semigroups (see 
Berg, Christensen and Ressel [1], Theorem 4.3.19). Here we establish such a representa­
tion for commutative hypergroups, giving two different versions; the first for real valued 
lower bounded continuous negative definite functions, and the second for complex neg­
ative definite functions with lower bounded real part in the case that the hypergroup is 
discrete. 

Throughout this section assume X to be a commutative hypergroup and write S — 
M\{X). Then (S, *) is an abelian semigroup with neutral element ee and a natural involu­
tion s —> s*. We exploit this by making use of some results from harmonic analysis on 
such semigroups. 
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We shall consider X as subset of S via the mapping x —• ex. A function F: S —• C 
will be called adapted if its restriction/: = F|* is locally bounded and measurable, and 
F(s) = Jfds for all s G S. If for example/: X —* C is continuous then F(s): = J / d s is 
adapted. 

A function F: S —•» C is called locally weakly continuous if for every net (s\ ) in S of 
measures having a common compact support such that s\ —> s weakly (being equivalent 
in this case to vague convergence) it follows that F(s\) —• F(,s). It is easy to see that 
if F is locally weakly continuous and affine then it must be adapted. Indeed/ := F\x 
is continuous and F(s) — Jfds for each finitely supported s G S. For general s G S 
there is a net (s\ ) in S of finitely supported measures converging to s with the property 
that supp s\ C supp s for all A. By the local weak continuity of F we have F(s) = 
limA F(sx) = limA Jfds\ = J /ds . 

LEMMA 2.1. L r̂ 0 (respectively \/J ) be a continuous positive (respectively negative) 
definite function on X and define O, *¥: S —> C by Q>(s): — J </> ds> *F(s): — i' ̂  ds respec­
tively. Then O is positive definite and *F w negative definite on S. 

PROOF. First consider {s\,S2,...,sn} C S with finite support, that is si = £* Pi,k£xiJc 

with p/^ > 0 and Y,kPi,k — 1 for all /. Then for { c\, Q , . . . , cn } C C we have 

J2 CiCj^(si *s*)= ]T CiPifiCjpjj<t> (Xi,k * jc^ ) > 0 

using the positive definiteness of </>. 
If in addition £/ Q = Owe also have £/,* Q/7/^ = 0, and t/; being negative definite 

guarantees that 

y' 

The general case follows by approximation with measures of finite support. • 

As a first application we give a short proof of the following result, established in Voit 
[12], Corollary 3.6. 

PROPOSITION 2.2. For every bounded continuous negative definite function iftiX —• 
C there exists c E R such that c — \j) is positive definite. 

PROOF. The function 4/: S —> C introduced in Lemma 2.1 being likewise bounded 
we may apply Berg, Christensen and Ressel [1], Proposition 4.3.15 to find c G R and a 
bounded positive definite function O: S —• C such that ^ = c—O, and then c—ip= 0|x 
is positive definite (on the hypergroup). • 

In Section 1 we introduced the notion of a quadratic form on a hypergroup. These 
functions play a crucial role in the decomposition of negative definite functions. 

PROPOSITION 2.3. Nonnegative quadratic forms are negative definite. 

PROOF. Let q\ X —* R+ be a quadratic form and, for each s G S, put Q(s): = Jqds. 
Applying Jewett [6], Lemma 3. IE we obtain for s,t G S 

Q(s * t) + Q(s * f) - J j q(x * y) ds(x) dt(y) + f f q(x * y~) ds(x) dt(y) 

= J J 2[q(x) + q(y)] ds{x) dt(y) = 2[Q(s) + Q(t)] 
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showing that Q is a nonnegative quadratic form on S. By Berg, Christensen and Ressel 
[1], Theorem 4.3.9, Q is negative definite, and hence so is q = Q\x. • 

A proof of the above result, assuming continuity of q, was given in Lasser [8], Propo­
sition 1.10. 

Our first Lévy-Khinchin-type decomposition reads as follows: 

THEOREM 2.4. Let xp:X —• R be a lower bounded continuous negative definite func­
tion on the commutative hypergroup X. Then there exist a nonnegative quadratic form q 
on X and a Radon measure p, on X\ { 1} such that for all x G X 

xl>(x) = V>(*) + q(x) + j [ ( l - RexW) dp(X). 

Both q and the integral part \\) — ^ (e) — q are continuous negative definite functions. 
The pair (q, p) is uniquely determined by X/J, with q being given by 

, . y W) , r 1>((X*X-)*n) 
q(x) — hm — + lim —-— . 

n—KX> n n—*oo 2n 

PROOF. Put ^(s): = J\p ds for all s G S. Since *F is negative definite, real and 
bounded below it follows from Berg, Christensen and Ressel [1], Corollary 4.3.2 that 
xjj > xp(e). But ip — xp(e) is negative definite so, without loss of generality, we can 
assume \p to be nonnegative with X/J (e) — 0. 

We introduce Af*F defined by 

(£,¥)($): = - V¥(s * t) + *¥(s * t*)] - *¥(s) 

for every t G S. It is easy to see that A,*F is locally weakly continuous and affine, hence 
adapted. Furthermore by Berg, Christensen and Ressel [1], Proposition 4.3.11, A, 4* is 
bounded and positive definite on S. Therefore appealing to Bochner's theorem for hy-
pergroups (Jewett [6], Theorem 12.3B) 

(AtV)(s) = fkpx(s)dat(X) 

for some at G M+(X), where we denote the canonical extension of x G X to a function on 
S by px where px(s): = SxX ds, this extension being an affine character on S. A simple 
calculation yields 

-ArAtV(s) = jf Px(s)[l - Re px(r)] dcrt(X) 

= -AtArV(s)=^px(s)[l-Repx(t)]dcjr(x) 

for r, t, s G S, implying 

[1 - Re px(r)] dcjtix) = [1 - Re px(t)] dar(X) 
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by the uniqueness of the Fourier transform (Jewett [6], Theorem 12.2A). Noting that the 
{ x £ X | Re x (0 < 1} are open sets in X with union (over t) given by X\ { 1}, we find 
a Radon measure /i on X\ { 1} such that for each t G S 

[1 - Repx(0]d/i(x) = dotix) on A { 1}. 

The set S of all (bounded semigroup) characters on the (discrete) semigroup 5 is a com­
pact Hausdorff space with respect to the topology of pointwise convergence. The canon­
ical mapping Ç:X —+ S, ( (x) : = px is continuous, and obviously A^ is the Laplace 
transform of of (the image measure of ot under Ç) for each t G S, showing ^ to be 
the Levy measure for the negative definite function *F, cf. Berg, Christensen and Ressel 
[1], Lemma 4.3.12 and Definition 4.3.13. By Berg, Christensen and Ressel [1], Theorem 
4.3.19 (Levy functions always exist, see below), taking into account that *F is real valued, 
there exists a nonnegative quadratic form Q on S such that for all s G S 

= Ô(5) + 4{ i } ( 1 ~ R e ^ ( ' ) )^ ( x ) -

The function *Fo(.s): = S%\ {\\ {} ~^e Px(s)) dp(x) *s adapted by Fubini's theorem, (JC, x) 
—> xW being continuous. Since *F is adapted it follows that Q is adapted as well. Ap­
proximating \i by measures with compact support (or by applying Berg, Christensen and 
Ressel [1], Theorem 2.1.12), -00- = ^o|x ^s lower semicontinuous. In particular it is mea­
surable and hence so is q: — Q\x. We have thus reached the decomposition \j) = q+ifto in 
which all three functions are nonnegative and negative definite. Since \j) is continuous, 
q and V̂o are continuous at e. An application of Theorem 1.10 finishes the main part of 
the proof. 

The uniqueness of q and \x as well as the formula for q follow immediately from the 
corresponding statement for semigroups; see Berg, Christensen and Ressel [1], Theorem 
4.3.19. • 

REMARK 2.5. Under the assumption of a further technical condition on the hyper-
group itself, called "property (F)'\ this theorem was proved in Lasser [8], Theorem 3.9. 
The assumptions on if; in that paper also differ in so far as the author assumes the Levy 
measure to be symmetric, a property not easily expressible directly in terms of the given 
function ^ • However under this assumption the general Levy formula for semigroups can 
be used as above to show that Im V> is then necessarily a continuous homomorphism, that 
is, Im \\) (x * y~) = Im ̂  (x) — Im ̂  (y) for x,y e X. The real part has the representation 
as stated, and so property (F) can be dispensed with. 

In the remainder of this section we shall assume X to be a discrete commutative hy-
pergroup. The semigroup S now consists of all probability measures on X with finite 
support. We can then prove a Lévy-type decomposition for arbitrary negative definite 
functions with lower bounded real part. The corresponding theorem for semigroups was 
shown in Berg, Christensen and Ressel [1], Theorem 4.3.19 under the condition that the 
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semigroup in question has a so called Levy function. That this is always true was shown 
in 1986 by Buchwalter [3], who proved that there is a function L: S x S —• R with the 
following properties: 

(i) For every p G S the function L(-yp) is *-additive on S, that is, L(s * f,p) — 
L(s, p) - L(r, p) for s, t G S. 

(ii) For every s G S the function L(S, •) is continuous on S and L(s, p) — — L(s, p). 
(iii) For every measure À G M+(S\ { 1} ) such that j ( 1 — Re p(s)) d\(p) < 00 for all 

s G S it follows that 

J\\ - p(s) + iL(s,p)\dX(p)< 00. 

(In fact there is even a fourth property of L but we do not need this here.) 
Let SCS denote the (closed) subset of all affine semigroup characters on S. We want 

to modify L to a function L$: S x S —* R in such a way that Lo(-, p) is affine for each 
p G 5, noting that S is in fact a so-called convex semigroup, cf. Ressel [9]. We define LQ 
on S x 5 by 

Lo(s,p):= J L(ex,p)ds{x). 

Obviously Lo(-, p) is affine. Furthermore 

Lo(s*t*,p) = JJ Lfe * ey-, p) <fo(*) df(y) 

- Jf(L(eX9 p) - L{£y9 p)) &(*) A(y) 

= Lo(s,p)-Lo(f,p) 

and Lo(.s, •) is still continuous and satisfies Lo(s,p) — —Lo(s,p). Finally if À G 
M+(S\ { 1} ) satisfies j ( l - Re p(s)) dX ( p ) < 00 for all s G S we see that 

/ 11 - p(s) + iLo(s,p)\ d\(p) < / / 11 - Pfe) + iUex,p)\ dX(p)ds(x) 

is finite since s has finite support. 

THEOREM 2.6. Lef -0 : X —• C be a negative definite function on the discrete com­
mutative hypergroup X with a lower bounded real part. Then xj) has the representation 

$(x) = V(e) + ih(x) + q{x) + j (l - x(*) + ^o(*, x)) ^P(x) 

/or a//x G X, where h:X —>Risa homomorphism, q:X —• R+ is a nonnegative quadratic 
form, and p is a measure on X\{\} such that the integrals on the right hand side all 
exist. Given L$ the triple (h, q, p) is uniquely determined, q and p not depending on LQ. 

PROOF. AS before we define (Ar
vF)(.y): = \ [^(s * t) + ^(s * / * ) ] - *¥(s) and observe 

that A, 4* is affine. By Ressel [9], Theorem 1 the unique measure ot representing A ^ is 
concentrated on S, and S of course is in one-to-one correspondence with X via px = \. 
The unique measure p on S\ { 1} such that for all t G S 

[1 - Re p(t)] dii(p) = dat(p) on S\ { 1} 
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is therefore concentrated on S\ { 1}, that is, on X\ { 1}. By Berg, Christensen and Ressel 
[1], Theorem 4.3.19, *¥ has the representation 

¥(*) = Yfe) + iH(s) + Q(s) + [ (\-p(s) + iLo(s, pj) dii(p) 
JS\{ 1} 

where H: S —» R is *-additive, and Q is a nonnegative quadratic form on S. From Re *¥(s) 
— ̂ (Ee) + Q(s) + j ( l — Re p(s)) dp,(p) we see that g is affine, and this in turn implies 
that H is affine. Putting h: = H\x and q\ — Q\x we get the required representation of 0 . • 

3. Completely monotone and completely alternating functions on hyper-
groups. Let X denote a hermitian hypergroup which, by Jewett [6], Theorem 9.1 A, 
must be commutative. For real valued </> G L^C(X) and a G X we define Va<j> : X —> R by 

(V«M*):=^(*)-^(**a). 

We call </> completely monotone if </> > 0 and 

vfllvfl2---vfl> >o 

for all n G N and {a\,a2,...,an} C X. The function </> is said to be completely alter­
nating if 

vaivfl2---vfl> <o 

for all n G N and { a\,a2,...,««} C X. With A ^ : = — Vai> we see from 

Vfll Va2 • • • Vfl„(Aa^ ) = -V f l l Vfl2 • • • VflBVfl^ 

that ^ G Z^^(X) is completely alternating if and only if A ^ is completely monotone for 
each a G X. 

In the following X+ will denote the set of all nonnegative continuous characters on X, 
the elements of which of course take their values in [0,1]. 

LEMMA 3.1. If' <j> is completely monotone on X then O: S —• R defined by O(s): = 
J (f> ds is completely monotone on the semigroup S. A similar statement holds for com­
pletely alternating functions. 

PROOF. Applying Jewett [6], Lemma 3.IE we obtain for sjeS 

( V , * ) ( J ) : = O(J ) - 0(s * 0 = //[</> (x) - <t> (x * y)] ds(x) dt(y) 

and by straightforward extension 

V„ V,2 • • • V, B O(J) = / / • • • / Vy]Vy2 • • • Vy>(*) Ai(yi) • • • dtn(yn)ds(x) 

implying immediately both assertions. • 
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THEOREM 3.2. 

(i) A continuous function </> : X —> R is completely monotone if and only if there 
exists p, G M+(X+) such that for all x G X, <f> (x) = J \ (x) dp(x)-

(ii) A continuous function ip:X —> R is completely alternating if and only if there 
exists an additive continuous function h: X —> R+ and p G M+(X+\ { 1} ) such 
that for all x £ X 

1>(x) = V>(e) + h(x) + J(l - X W) dp(Xl 

/n both cases the representations are unique. 

PROOF. Immediate inspection shows that it is sufficient to prove the necessity of the 
respective representations. 

(i) By Berg, Christensen and Ressel [1], Theorem 4.6.5 the function O has the unique 
decomposition 

<!>(s) = J^p(s)dfi(p) 

where p G Af+(5+). In particular O is positive definite, and so is therefore </>, implying 
the existence of a unique measure p G M+(X) such that for all x G X 

</>(*) = / x W ¥ x ) -

Using again the canonical continuous embedding £ : X —• S, £ (x): = P*, and the conti­
nuity of (x>*) —• x W ' w e obtain 

° ^ = f Lx(x)dp(X)ds(x) = [ [ X(x)ds(x)dp(x) 
/J. \ «/A ./A ^A JX 

= J^Px^dpix) = f§ p(s)d^(p) 

for all s G S. Hence by uniqueness /i^ = p is concentrated on 5+. 
We now observe that because of the equivalence \ > 0 ^ £ (x) > 0 the canonical 

embedding £ : X —• S restricts to £+: X+ —-• £+. It follows from (f ) that /i is concentrated 
onX+. 

(ii) It follows from the definition that xj; is lower bounded by xp (e). The function *F, 
being completely alternating by Lemma 3.1, is negative definite, cf. Berg, Chris­
tensen and Ressel [1], Theorem 4.6.7. By Theorem 2.4 we have the representation 

xl>(x) = 4>(e) + h(x)+ [ (l-x(x))dfi(x) 
JX\{i> 

where p G M+(X\ {1}) and h:X —• R+ is a continuous quadratic form, the 
latter property reducing to h being additive since X is assumed to be hermitian. It 
remains to show that p is concentrated on X+\ { 1}. From 

V(s) = ¥ f e ) + /f(*) + j j ^ ( l - px(s))dp(X) 
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we infer that ^ is the representing measure of *F on the (discrete) semigroup S. 
As *F is completely alternating ^ must be concentrated on S+\ { 1} implying as 
before that \x is concentrated on X+\ { 1}. • 

In the locally compact abelian group case the absence of nontrivial nonnegative con­
tinuous characters means in view of Theorem 3.2 that the only completely monotone 
functions are those that are constant. In contrast there are (hermitian) hypergroups that 
admit a range of nonnegative continuous characters. We present here two such hyper­
groups that are discrete, nondiscrete respectively. 

EXAMPLE 3.3. The following hypergroup structure on No was introduced by Lasser 
[7], Section 2. Let (an), (bn) and (cn) be real sequences indexed by N with an+bn+cn — 1, 
an, cn > 0 and bn > 0. Define a sequence (Pn) of orthogonal polynomials by 

P0(x) =hP{(x)= x,Px(x)Pn(x) = anPn+l(x) + bnPn{x) +cnPn_l(x) 

for all x G R , n G N. If the coefficients g(ra, n, k) in the linearisation formula 

m+n 

PmPn= E g(m,n,k)Pk 
k=\m—n\ 

are nonnegative then we can define a convolution structure on No via 

m+n 

£m*£n = J2 g(m,n9k)ek. 
k=\m—n\ 

With this convolution, E0 as unit and the identity involution, No becomes a discrete her­
mitian hypergroup. 

Lasser [7], Proposition 4 showed that the continuous semicharacters of No are given 
by ax: n —> Pn(x) where x G R, and 

No = { ocx: x G R and ax is bounded }. 

Under the homeomorphism between R and the continuous semicharacters on No given 
by x —> ax, the Plancherel measure 7r on No can be identified with the orthogonality 
measure of (Pn), and suppîr C [—1,1]. 

Write xo: = sup(supp ir). Now the orthogonality measure of (Pn) is supported by the 
smallest closed interval containing all the zeros of (Pn). Since the zeros of Pn-\ separate 
those of Pn for n > 2, and Pn(l) = 1 for all n G No, it is easily seen that ax > 
0 if and only if x > xo. It is known that there are such hypergroup structures on No 
for which xo < 1; for example (cf. Voit [11], Example 2.18) take a > 2, cn = \j a, 
an = 1 — cn and bn = 0 for all n G N. In this case XQ = 2a~l(a — l)1 /2 , and since 
N0 — [—1,1] it follows that the positive characters in No can be identified with [JCO, 1]. 
In view of Theorem 3.2 such hypergroups admit a rich supply of completely monotone 
and completely alternating functions. 
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EXAMPLE 3.4. An early example of a hermitian hypergroup structure on R+ was 
given by Naimark; see Jewett [6], Example 9.5. Here eo is the identity, and for x,y > 0 

ex * ey: = (2 sinh JC sinh y) / (sinht)etdt. 
J\x-y\ 

Jewett showed that 
(R+)A = { X c : - l < c < c x ) } 

where Xc(x): = sin bxj (b sinhx) and c — b2 (the identity character is just x-i)> a nd that 

SUpp 7T = { Xc' 0 < c < °°} • 

It is easy to see that xo(X) = xj sinh x and for — 1 < c < 0, (5 — yj\ c\, 

sinh/3x 
X c W = Q • u 

p s i nhx 

so that the Xc are positive for all c G [—1,0]. All of these functions are completely 

monotone. 

REFERENCES 

1. Christian Berg, Jens Peter Reus Christensen and Paul Ressel, Harmonic analysis on semigroups. Graduate 
Texts in Mathematics, 100, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. 

2. Walter R. Bloom and Herbert Heyer, Characterisation of potential kernels of transient convolution semi­
groups on a commutative hypergroup. Probability measures on groups IX (Proc. Conf., Oberwolfach Math. 
Res. Inst., Oberwolfach 1988), Lecture Notes in Math., 1379, Springer-Verlag, Berlin, Heidelberg, New 
York, London, Paris, Tokyo, 1989, 21-35. 

3. Henri Buchwalter, Les fonctions de Levy existent!, Math. Ann. 274(1986), 31-34. 
4. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, vol II. Die Grundlehren der mathematis-

chen Wissenschaften, 152, Springer-Verlag, Berlin, Heidelberg, New York, 1970. 
5. Herbert Heyer, Probability measures on locally compact groups. Ergebnisse der Mathematik und ihrer 

Grenzgebiete, 94, Springer-Verlag, Berlin, Heidelberg, New York, 1977. 
6. Robert I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math. 18(1975), 1-101. 
7. Rupert Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. (Series VII)3(1983), 185-209. 
8. , Convolution semigroups on hypergroups, Pacific J. Math. 127(1987), 353-371. 
9. Paul Ressel, Integral representations on convex semigroups, Math. Scand. 61(1987), 93-111. 

10. René Spector, Mesures invariantes sur les hypergroupes, Trans. Amer. Math. Soc. 239(1978), 147-165. 
11. Michael Voit, Positive characters on commutative hypergroups and some applications, Math. Z. 198( 1988), 

405-421. 
12 , Negative definite functions on commutative hypergroups. Probability measures on groups IX(Proc. 

Conf., Oberwolfach Math. Res. Inst., Oberwolfach 1988), Lecture Notes in Math., 1379, Springer-Verlag, 
Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989, 376-388. 

School of Mathematical and Physical Sciences 
Murdoch University 
Perth WA 6150 
Australia 

Mathematisch-Geog raphische Fakultàt 
Katholische Universitdt Eichstdtt 
D-8078 Eichstdtt 
Federal Republic of Germany 

https://doi.org/10.4153/CJM-1991-013-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-013-2

