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The computability

of group constructions Il

R.W. Gatterdam

Finitely presented groups having word problem solvable by

functions in the relativized Grzegorczyk hierarchy,
{En(A) | n €N, AcN (N the natural numbers)} are studied.
Basically the class E3 consists of the elementary functions of

+
ntl is obtained from En by unbounded recursion.

Kaimar and E
The relativization En(A) is obtained by adjoining the character-
istic function of A to the class E' .

It is shown that the Higman construction embedding, & finitely
generated group with a recursively enumerable set of relations
into a finitely presented group, preserves the computational
level of the word problem with respect to the relativized
Grzegorczyk hierarchy. As a corollary it is shown that for
every n 24 and A < N recursively enumersble there exists a

finitely presented group with word problem solvable at level
En(A) but not En-l(A) . In particular, there exist finitely
presented groups with word problem solvable at level & but

not E¥1 for n =z , answering a question of Cannonito.

Introduction

In Part I [0] the concept of the relativized Grzegorczyk hierarchy of
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computable functions was defined, each class being denoted by En(A) for
n=>=2 and A4 C N , the natural numbers. Following Rabin, [9], £ (1)
groups were defined as groups having "indices" which are E'(4)

computable. A particular form of E'(A) index, called a standard index,
was developed, and it was shown that for finitely generated (f.g.) groups
the standard index reflected the computability level of the word problem
and was independent of the particular finitely generated presentation
involved. The effect of the constructions of direct product, free product,

and free product with amaslgamation on the computability levels wvas
investigated leading to the Higman, Neumann, Neumann Theorem for En(A)
groups: every £%ca) group for 7 = 3 can be embedded in a f.g. En+l(A)
standard group and, for n = L , every En(A) standard group can be
embedded in a f.g. E*(4) standard group.

In Part II the group constructions developed in Part I for countable
groups are applied to the Higman construction embedding f.g. groups in
finitely presented (f.p.) groups, [6]. We show that every f.g. £*(a)

standard group, for n =2 4 and A4 recursively enumersble, can be embedded

in a f.g. En(A) standard group. This result is a generalization of
Clapham, [72] and [73], that the Higman construction preserves recursively
enumerable degrees of unsolvability and also of Gatterdam, [4], that the
Higman construction preserves primitive recursive levels of computability.
Whereas Clapham's proof parallels the original construction [6], our proof
uses the technique of Shoenfield [15] as modified in [4]. It was shown in
[4] that this technique also produces the Clapham result. The problems of
generalizing (4] to groups in the Grzegorczyk hierarchy were discussed in
[74]). The stronger results for the usual group constructions and the
techniques developed in Part I, together with a restriction to standard
indices has permitted the resolution of these difficulties.

We also show, as a corollary, the existence of f.p. E? standard

groups for n = 4 which are not En-l standard, answering a question

raised by Cannonito, [11].

Our notation and definitions will be taken from Part I and used
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without further explanation. Frequent references will be made to
statements found in Part I. In particular we begin our numbering of
sections and statements at 6. Reference to sections or statements

preceeding 6 (for example, Theorem 5.5) are to Part I.

6. Higman groups and benign subgroups
We consider the question of embedding particular finitely generated

(f.g.) £ a) groups in finitely presented (f.p.) groups. We assume that

the groups in question are given standard indices or indices related to the

standard by identity isomorphisms which are En(A) computable relative to

either index. In view of Theorem 5.5 the above restriction is not severe

since for n 2 4 any En-l(A) group can be embedded in a f.g. E(4)
group. Also, by Proposition 4.4, Corollary 4.9 and Corollary 5.4 we may
use the indices given for the construction of direct products, free
products, free products with amalgamation and strong Britton extensions
since these indices are related to the standard by identity isomorphisms

computable at the appropriste level. As in Sections 4 and 5 we require all

embeddings to be En(A) embeddings in the sense of Definition 4.1.

DEFINITION 6.1. Let G be a f.g. E'(4) standard group. We say
G is EMA) Higman if there is an E'(4) embedding of G into a f.p.
E*(4) standard group.

The following is immediate from the definition and Proposition 4.2.
PROPOSITION 6.2. If G, and G, are f.g. E'(4) standard and

E*(A) Higman for n = 3 then G, X G, 18 f.g., E'(4) standard and

2

£'(4) Higman. m)

Similarly from Theorem 4.6, Lemma 4.20 and the fact that £%(a)

decideble subgroups are En(A) compatible with the group embedding we
have the following.

PROPOSITION 6.3. Let G, and G, be f.g., £'(4) standard and
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and E'(A) Higman groups for n= 3. Also assume #H, <G, are f.g.

£%(4) decidable subgroupg for a=1,2 and ¢ : H ~H, ig an

igomorphism such that ¢ and ¢-l are En(A) computable. Then Gl * s G2

. +. .
ig f.g., E° l(A) standard and Enﬂ'(A) Higman. o

In Proposition 6.3 the requirement that the Ha are f.g. is needed so
that if Ga -+ La are the original embeddings, the embedding

< . .
Gl *¢ 02 Ll *¢ L2 is such that Ll *q) L2 is f.p.

Recall the construction of strong Britton extensions, G¢ , discussed
in Section 5. For G an En(A) group and H < G an E*(4) decidable
subgroup let GH denote the group G¢ for ¢ the identity isomorphism on
G restricted to H . By Theorem 5.3, if G is f.g. and E'(4) standard
for 23 and H<G is E'(A) decidable then G, is E’'*(4)

standard. We make use of the following slightly stronger result.

PROPOSITION 6.4. Let G be f.g. and E'(A) etandard for n 2k
and H <G E'A) decidable. Then G, is E'(4) standard.

Proof. Consider L = (G¥r; )) *y (Glﬂs; )} for G, & copy of
by g++g, eand ¥ : G+ rirt + G, » 8l st vy gr>g, and

1

-1

rhr 1 .

— shle- Since G and G, have standard indices the encoded

multiplication and inverse in them is bounded by an E3 function. Clearly

the encoded Y is bounded by an E3 function and so using the coset
representative function given by minimalization, Lemma 2.6 can be used to

bound the recursion involved in the encoding of multiplication and inverse

by an Eh function. Since n 24, L[ is £*(4) with respect to this
normal form index. An almost identical argument shows that the process of

rewriting a word in the generators of L into normal form, when encoded,

is bounded by an Eh function and so L 1is En(A) standard with the
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identity isomorphism £%(4) computable relative to these indicies.
Then GH < L 1is the set fixed by the homomorphism T : L + L by

grrg » r—sl g, r*g, and s> 1, which is clearly E*(4)

computable relative to the standard hence normal form index, so GH <L is

E*(4) decidsble. Thus by Corollary 3.7 it is E (A} standard. 0

The construction G, and particularly the special case G, will be

¢ H
used extensively. In some of the proofs which follow it will be convenient
to refer to the construction and notation used in the proof of Proposition
6.4 without specific reference. For more details the interested reader is
referred to the proof of Theorem 3.1 of [4].

DEFINITION 6.5. Let G be a f.g. E'(4) standerd and E*(4)
Higmen group for n = 4 .- An E"(4) decideble subgroup H < G is said to

ve E'(4) benign if G, is E'(4) Higman.

Notice that by Proposition 6.4, for a2 L | Gy in the definition

above is f.g. and En(A) standard and so it makes sense to consider the
question of it being E?(4) Higman. The following characterizations of

£ha) benign subgroups are of technical use.

LEMMA 6.6. Let G be a f.g. E(4) standard and E*(4) Higman
growp for nz b4 and let H< G be an E(4) decidable subgroup. The
following are equivalent:

(i) B is E'(4) benign;

(it) for G, a copy of G, 0*1101:(0’ Gys h=hy Yh €H)

is E'4) Higman;
(iii) there exists an E (A) embedding of G into a f.p. E'(4)
standard group K which has a f.g. E'(4) decidable subgroup

M<K such that MnG=H and G is M, E(4) compatible
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in K via a right coset representative system having an E3 bound.

Proof. (Reference the proof of Proposition 4.3 of [4].)
(i) = (ii) G, <L is E'(A) decidsble and L is E'(4) stendard

from the proof of Proposition 6.4. We consider {G, e lreris} < Gy < L.

Since Gy is assumed to be E*(4) Higman and since {G, 8 trorta} < Gy

is f.g. we show G #, G = {c, s LrGra™1) by an E'(4) computable

isomorphism and {G, e tror~ls} < Gy 1is E*(4) decidsble.

First, (G, s ‘rcrle} = {rGr_l, sGls—l} < L by en inner automorphism

which is therefore E (4) computable. By Lemma L4.19 and the "spelling"
argument. of Proposition 3.2 of [4], rert is G % rHr , E”(A)
compatible in G *{r; ) and simidarly sGls-l is Gl * sHls'l , E™(4)
compatible in Gl # {(8; ). An inspection of this "spelling" argument

reveals that the resulting right coset representative systems in G * (r; )

and G #{8; ) have an 3 bound. Moreover

¥ (rer tngerart) = Y(rirY) = en87! = eGle_l neG * sHla-l .

Thus by Lemma 4.20, with Lemma 2.6 bounding the recursion, L is given an
E™(4) 1index vhich is related to the standard index by the E(4)

computable identity isomorphism and in which {I'Gr-l, sGls_l} is En(A)

decidsble. Thus {G, s rGrls} < I is E™(4) decidable.
Now suppose G has Kk generators and let F2k Qe the free group on

2k generators, @, «-v5 @ and ai, ey a;< . Then the homomorphism

*L by a; rair-l € rorl ena o+ e[ai]ls-l € eGle'l is £(4)

vF 1’

2k

computable (L having standard index). Its image is
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-1 -1\ . -1 -1
{rGr , sGls } = rGr *‘l’l sGls =G *y Gl

vhere Y| = ‘P|rHr-l - Thus G, G is E’(4) standard and is isomorphic

to {G, 8 *rGrls} (which is E™(4) Higmen) by en E'(4) computable

isomorphism.

(i1) = (i) Let G #, G +K be the £%(4) embedding implied by

(i) for K f£.p. and E'(4) stendard. Then the embeddings

G+ G ¥y Gl + K and Gl +~G * G1 + K are also E*(4) embeddings. In
particular Gl <k is F*4) decideble, f.g. and satisfies G N Gl =H.

That G is G , E*(4) compatible follows from Lemma 4.18 and the

"spelling" argument in the proof of Proposition 4.3 of [4]. From the
spelling argument it is clear that the resulting coset representative

system has an E3 bound.
(t3i) = (i) Let K and M be as in (iii). Then X, 1is £44)

standard and f.p. since X is f.p. and M f.g. Moreover since (G is
M, En(A) compatible in X by a right coset representative system bounded
by an E3 function and n =2k , Cyr = Gy < K, 1is an F*(4) enmbedding
by Lemma 5.9 with Lemms 2.6 used to bound the recursion. 0

PROPOSITION 6.7. Let G be a f.g. E'(A) standard E'(4) Higman
grow for n= 4 andlet H<G be a f.g. E'(A) decidable subgroup.

Then H is E'(A) benign.

Proof. Let G+ M be an E'(A) embedding for M f£.p. and E{4)
standard. Since H<G< M, G is 4, En(A) compatible in M and

therefore G is En(A) invariant under the identity isomorphism restrict-
ed to H . HNotice that the encoded identity isomorphism on H has an

E3 bound as does the right coset representative function. Therefore Lemma
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2.6 applies to bound the recursion used in Lemma 5.9 and the embedding

Gy > M, is en £%(4) embedding. Moreover M being f.p. and H f.g.,
MH is f.p. o

A particular technique used in the proofs of Lemma 6.6 and Proposition
6.7 is worth note as it will be used again. Namely we applied Lemms 5.9 to

the situation of ¢ the identity restricted to H sand KA, E(4)

compatible by an E'(A) right coset representative system having an g3
bound (this occurs whenever H < X and also when the coset representative
system arises from a "spelling" argument involving a normal form index).
We were able to conclude that for n 2 4 the embedding KHnK < GH is an

E*(4) embedding.

LEMMA 6.8. Let G be a f.g., E'(A) etandard, E(4) Higman growp
for n=4 and K <G bea f.g. E(A) decidable subgrowp. Then an
£%(4) decidable subgroup H <K is E'(4) benignin K iff H< G is
En(A) benign in G .

Proof. If H is E'(4) benign in G, sey G, +M en £ (4)

embedding for M f.p. and E’(4) standard then it suffices to show

KH < GH is an EH(4) embedding for then KH - GH + M shows H is E*(4)

benign in KX . As before, the bounds being g3 and n 2 4 | Lemma 5.9

applies and the embedding KH < GH is an E'(4) embedding.

Conversely let

L' = (Kelp; )) = (Kl*(s; )) <L = (Gelry )) *y [Gl*(s; ))

Y|

1

for ¥ : G« rHr — » G, * 8H el vy g g, and rhr~t l—*ahls-l . The

1
embeddings Ky * L', L' *L and Gy +L are all E*(4) embeddings as

we have seen (relative to the obvious indices). Now
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Ky * (a5 ) = (K, t, 8 et = @)

= (K, K, r, 8 k=K, Vk €K, rhrl = shls—l Yh € H> =L'.

Here the indices involved are related by rewriting processes having E3
bounds when encoded and therefore the isomorphism is En(A) using Lemma
2.6. Thus K, being E*(4) Higuman, say by kK, >¥, L' is E™a)
Higman by L' =KH*(8; )+ Melg; ).

Define G=G2 by gl——*g2 and m:K—>G2 by kl——»ke. Consider

- -1
L' *m02=<1<, Kjs 2y 8, Gps k =k, vhr S = ehya™t Vh € B, k = ky VK ex)

-1 -1
=<G,r,e,K,62;gl=92,rhr = gh,8 VhéH,k=k2Vk€K>

1 1

-1 -1
=<G, r, 8, G g=gl,rhr =3hls Yh €H>=L .

Again the rewriting process when encoded has E3 bounds and so by Lemma

2.6 the isomorphism is E*a) computeble relative to the indices implied

by the constructions. Notice in this regard that w when encoded will

have an obvious E3 bound.

As we saw, L' is E°(4) Higman, by L' +M % {sg; ) and by
assumption G is £%(a) Higmen sey by G+ P . Since M *(g; ) and P

are E'(4) standard and since ® has an g3 bound, (Mx(s; )) *wP is

En(A) standard and by our special usage of Lemma 5.9 the embedding
Gu<L=L'"# G+ (Mee;)) « P isen £*(4) embedding. Thus since M

and P are f.p. and domain w =K is f.g., (Mxlg; )) *wP is f.p. and

G, is F*(4) Higmen. a

In view of Lemma 6.8 we may speak of an E*(4) - benign subgroup
without regara to the group it is & subgroup of so long as all groups and

subgroups involved are E%(4) @ecidable in some suitable f.g. £*(4)
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standard, £ (4) Higman group.

The next three lemmas are useful for the construction of benign
subgroups. They are similar to lemmas 4.2, 4.3 and 4.4 of [4]) modified and
strengthened for our purposes. The proofs are almost identical to those in
[4] so we only sketch them below indicating the slight modifications.

LEMMA 6.9. Let G be a f.g. E'(A) standard, E*(A) Higman growp

for nzk4 and H<G, K <G FYA) decidable and E*(4) benign

subgrowps. Then H nK is E'(4) benign.

Proof. Clearly H nX is E*(4) Qdecidable. Using the characteriz-

ation of Lemma 6.6 let G =»

H61+M and G *

x 6o > N be £h(a)

embeddings end M, N E'(A) standard and £.p. Then M *, N is f.p.

G
(since G f.g.) and En(A) standard (since M and N are En(A)
standard and the amalgamating isomorphism has an E3 bound). In M *G N,

G n G, = (6nG) n (6nG,) = H n K and so by Lemma 6.6 (iii) it suffices to

show Gl is 62 ,

shown by & "spelling" argument having the property that for any w € M *" N

E'(4) compatible in M %, N . This compatibility is

the right coset representative function is bounded by the index w . m]

Notice that in i..emma 6.6 (iit), M and G being f.g. and E*(4)
decidable in X are then E*(4) benign in K by Proposition 6.7 and so
H=MnG is E*(A) benign in K by Lemma 6.9 and E'(4) benign in €
by Lemma 6.8. Thus the condition "G is M, E*(4) compatible in X ..."
in Lemma 6.6 (Zi{Z) is superfluous.

LEMA 6.10. Let G be a f.g. EWA) standard, E'(A) Higman growp
for n=z4 and H<G, K <G EYA) decidable and E'(A) benign
subgroups. Then if {H, K} < G is E'(A) decidable it ie E'(4) benign.

Proof. Under the notation used in the proof of Lemma 6.9 it is shown

that {H, X} = {Gl, 62} nG<Ms,N . Then since {Gl, 62} and G are
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f.g. they are E'(4) benign if E'(A) decidable and so {H, K} is E*(4)
benign by Lemma 6.9. Thus it is required that

{G)s Gy} < (6 %y G)) *; (6 %, G,)

be E'(A) decidable. This follows from Lemma 14.19,

{(;1, K} nG={H4, K} = {62, H} n G

and the fact that {G, K} is G, E*(4) compatible in G *, G by an

En(A) right coset representative function having an E3 bound (simila.rly

for {G,, H} in G #, G, ). m]

LEMA 6.11. Let G and G' be f.g., E'(4) standard and E*(4)

Higman growps for nz 4 and ¢ : G+ G, be an E'(4) computable

homomorphism. If H < G is an E'(4) decidable, E(4) benign subgroup
and $(H) < G' is E*(A) decidable then ®&(H) is E'(4) benign. If
K<G' is an E'4) decidable, E*(4) benign eubgrowp then ¢ “(X) ie
E'(4) decidable and E'(4) benign.

Proof. We consider G x G' which is f.g., E'(A) standard and
£'(4) Higman by Proposition 6.2. Then § = {(g, o(g)) | g€ect<Gxg
is E*(4) decidable and isomorphic to G hence f.g. and %) benign.
It is shown in (4] that {H, G'} <G x ¢' and {{H, G'}q, G} <G xG'
are E"(A) decidsble and ¢(H) = {{#, G¢'}nQ, G} n G' which is then E°(4)
benign by Lemmas 6.9 and 6.10.

Clearly ¢ Y(k) is FE™(4) decidsble. It is shown that
{G, X} <G x ¢ and {{G, K}Q, G'} < G xG' are F'(4) decidable and so
(k) = {{G, K}@, G'} n G is E*(4) benign by Lemmss 6.9 and 6.10. O

The following proposition provides an example of an Eh benign
subgroups which is not f.g. This particular subgroup is also of use later.
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PROPOSITION 6.12. Let F,=(a, by ) be the free group on two
generators and U < F, the subgroup gemerated by all elements a-ibai for

i>0. Then U is E' decidable and E' bemign in F, .

Proof. By Lemma 3.1, F2 is E3 standard and by Proposition 3.1 of

[4], U< I"2 Cis E3 decidable. We consider a : F2 - F2 by at— a2 .

b+— b and B:F,>F, by ar da® and b+ abal . It is easy to see

o and B are E° isomorphisms in F, (see the proof of Proposition 4.5

of [4]) and so (F2)a 8 is Eh standard by Lemma 5.10. Moreover by a
£

spelling argument U is E3 invariant under o and B and so by Lemma
5.11, for
(FZ)G.,B
_ . -1 _ 2 -1 _ -1 _ 2 -1 _ —1)
={a, b, t, ty tat]t = &, e b = b, tatt = &P, tptt = abdt)

. Y .
{v, ¢, t2} < (F2)a is E° decidable and {U, t , t2} nF,=U. By

»B

the construction {U, ts t2} is generated by alba » ¢ eand t, and

so {U, tl, 7‘:2} is Eh benign. By Lemma 6.9, U is ':J4 benign. 0

The crucial relationship between E {4) benign subgroups and E*(4)
Higman groups now can be established.

LEMA 6.13. Let G be a f.g. E(A) standard growp for n 24 and
1+k+FL g+ a pregentation with F f.g. and free, K < F £44)

decidable. Then G is E'(4) Higman iff K is E'(4) benign in F .

Proof. If G is E*(A) Higman then {1} < G is E’(4) benign and

so K=07% ({1}) is F*(A) benign by Lemms 6.11.

Conversely if K is E'(A) benign then by Lemma 6.6 for FP' a copy
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of F there is an E'(4) embedding F %, F' M for M f.p. and E*(4)

standard. Now F %, F' <Mx G is E'A) decidsble and
¢: Fay F'>MxG by fr> (f,0lf)) VFf €F and f'+> (f', 1)
Vf' € F' is E'(4) computable (notice for k € K =K' , kw+ (k, 1) ).
By considering the first factor we see ¢ 1is monic. Moreover for
- ) I .
q--kplq1 prqr€F*KF , kek, p; €F, q; € F' in normal form

¢lq) = (q, 0(pl pr)) so range ¢ is E(4) decidsble and d)_l is

£*a) computable, that is, ¢ is an E°(4) isomorphism in M X G . Also
observe that since G is E'(A) standard the encoding of O 1is by
minimalization and so ¢ and ¢-l have 53 bounds. Thus since M X G
is En(A) standard end 7 =2 L4 , Lemma 2.6 can be used to show (MXG)¢ is
En(A) standard (the proof would be almost a copy of the proof of
Proposition 6.4 with ¢ replacing the restricted identity).

Now G - (MXG)¢ is clearly an E'(4) embedding and (MXG)¢ is f.g.
The relations of (MXG)¢ are those of M (finitely many), those of G ,
the commutators of generators of M with generators of G (finitely
many), and those of the form t-lft = (f, o(f)) for f a generator of F
and t-lf't = f' for f' a generator of F' (finitely many). Let
w €F, w' correspond in F' and essume w € K . Then

wo(w) = (w, o)) =t wt =t W't =w

and so o(w) =1 . That is, the relations w =1 for w € K are
redundant in (MXG)¢ which is then f.p. 0

7. Benign sets and benign predicates

Lemma 6.13 reduces the study of Higman groups to a consideration of
benign subgroups of f.g. free groups. As a next step we reduce further to
a study of subsets of f.g. free groups.
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DEFINITION 7.1. Let F =(a a,; ) be a f.g. free group and

12 eees
PcF be an E'(A) decidable subset for n = L (that is, P is any

En(A) decidable set of freely reduced words on the ai ) Define

E, = (XaX™" VX €P} <F itz ). Then P is EM4) benign iff E, is

E*4) benign as a subgroup of F * (z; ).

Notice F » (gz; )=(al, REPRC N H ) is the free groupon m+ 1

. generators and so the words Xz)(-l freely generate EP which is then an

En(A) decidable subgroup of F +«(z; ). Thus it makes sense to ask if

Ep is F*(4) venign. If P is in fact a subgroup of F , then it may be

said to be E'(4) benign as a subgroup (that is, if Fp is ' (4)

Higma.n) or as a subset. The next two lemmas state that for P a subgroup
the two notions of benign coincide.

LEMMA 7.2. Let P <F ={a, ..., a,; ) bean E(4) decidable
subgrow for n=h . If P is E'(4) benign as a set then it is E'(4)
as a subgroup.

Proof. (This proof is very similar to the proof of Lemma 5.1 of [4]
and is based on Shoenfield [15]; however this lemma being the crucial step

in the argument, details are reproduced here.)

The tactic of the proof is to embed F in a f.p. Eh standard group

K by an Eh embedding and then use the properties of En(A) benign
subgroups to show P < K is En(A) benign in KX and hence in F by

Lemma 6. 8.

Let G=F*(c,d;)=(al,...,am,c,d;)and- X, , X be an

10 Ko e
E3 enumeration of the elements of F . For {c} < G eand {qu} < G, for

every Xq € F , define ¢q : {c}"{qu} by cHqu . Then G is E3
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standard and each ¢q is an 53 isomorphism in G so

G =

-1
G = (G, t, VX 5 = >
o= g sy - ( y VX € F3 totl” = X VX € F

is a countably generated, Eh standard group (it is Eh by Lemma 5.9 and

; R L
the quotient homomorphism (al, cees Gy, O, d, tX VX €eF; )+ G, is E

computsble since G was E3 standard and each of the ¢q, ¢;l , when

encoded, has an E3 bvownd using Lemma 2.6). Now let ‘l’j : G+ G, by

o (-]

a;vra, , cr—ec, d*—'daj and tXHtaJX for =1, .., m.

Observe that the conditions defining ‘~PJ. yield an E3 automorphism of

(al, cres Qps O d, tX VX € F; ) which permutes the relations of G, and

so the ‘l’j are Eh automorphisms of G . Let K = (Ga]w y - Then
100t

G, being Eh standard and each ‘PJ. having an E3 bound when encoded,

(Gm)\y ¥ is Eh standard using Lemma 2.6 as before with respect to
IERRER L.

the generators a,, ..., a,, ¢, d, t, VX € F, a]'_, cers ar;‘ for a';.

corresponding to ‘PJ. . We show K is f.p. and so Eh standard relative

to any finite set of generators by Theorem 3.4. The relations of X are

(1) tyet,=dX, VX E€F,

(2) aéajaé-l=aj, vi=1, ..., m and j=1, ..., m,
(3) aéca;:'l=c, Vi=1, ..., m,

(W) aldalt=da,, V=1, ..,m,

(5) aét{z{l=ta‘x, ¥i=1, ..., m end VX €F .
1

Let t=1t, for A the identity (empty word) in F. For X €P an
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arbitrary (freely reduced) word on the a, , let X' be the corresponding

=l - ¢ ana so

word formed by replacing each a, by a_i . By (5), Xx'tx' Y

the generators tX for X # A are redundant and K 1is f.g. by

Qs e @, d, ¢, a]'_, oo a”’1 . Also the relations (5) can be deleted
and (1) replaced by

-l)—l -

") e e ex dx , VX €F .

~1 1

From (3), X'eX =c¢ and X" Yex' =z end from (1'), tet~ =d . Thus

e Nt ™) = xrexlox et = xtter e = prax' ™t = ax

the latter by (2) and (4). Thus (1') can be replaced by
(") tett =4,
L

end K if f.p. and Eh standard. The embeddings F + G * K are E
embeddings.

To show P <K is E'(4) benign we show P =X n {e, d, ty VX € P}

and {e, d, t, VX € P} is F'(4) benign. Then F is E' benign being
f.g. and P is £ (4) benign by Lemme 6.9. As a first step we show
{e, d, t, VX € P} is E'(4) decidsble in G_ and hence in K . Let

G =G < G_ for =1, 2, ... and
A RPN |
= . -1 =
G(P) = <G, tX YX € P; tXctX dx VX € P> .

Clearly from the construction of G (see Lemms 5.10), Gq < G_ are Eh

o

decidable for all ¢ and for any g € G, the minimal ¢ so that g ¢ Gq
can be obtained by an £3 process. Thus to show G(p) <G, is £'(4)

decidable it suffices to show G(P) n Gq < Gq is F*(A) decidsble for all

q . We proceed by induction on ¢ noting that for gq =0 , Gq = G and
G( y 0 G=G . Assume G(P) n Gq < Gq is FY4) decidsble. If

P Xq+l P
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= < < is E* i
then G(P) n Gq+l G(P) n Gq Gq Gq+l and is (A) decidable since
. < <
P is. If Xq+1 €erP, {e} G(py O Gq and {dxqﬂ} G(P) n Gq s0

. n . . : 3
G(P) n Gq is E'(4) invariant under ¢q+l . Moreover ¢q+l is E
computable and the right coset representative functions for
< < G G <G<G@G G i
{e} <@ ®) "% and {d.Xq+1} (p) "G, can be given by

minimelization and so have obvious E3 bounds. By Lemma 2.6 and Lemma

G is E*(4) decidable.

59, G(p) N Ggar = (G(P)naq)¢q+1 < (&) q+1

By relation (1), f{e, d, ty VX € P} = {e, d, ty VX €P, P} . Since P <F

is E'4) decidable, {e, d, P} =P #(c, d; > <G is E'(4) decidable.
Moreover for all X €¢ P , {e} < {e, d, P} and {dx} < {e, d, P} so

{e, d, P} is F*(4) invariant wnder ¢q for all Xq € P . Again the
required right coset representative functions can be given by

minimalization and so have E5 bowunds as do the ¢q so by Lemma 2.6 and

Lemms 5.11, {e, d, ty VX € P} = {e, d, ty VX €P, P} <G, <K is £ (4)
decidable in X . Also by Lemma 5.11, {e, d, t, VX € P} n G = {e, d, P}

so f{e, d, tXVX €P)nF=1{e,d, PYnF=P,

The proof is completed by showing {e, d, tX VX € P} is En(A)

benign in K . Let E'=(al,...,am, e, d, 3 )=Fxfec,d, 3 ). As

previously observed (X2t yx € P} < F » (z; ) is E(4) decidable and
by assumption En(A) benign. Since F #{z; ) <E is obviously an (2
embedding, {XzX' VX € P} is EYA) decidable and E'(A) benign in E
by Lemma 6.8. Now {e, d} < E is B gecidasble ana B benign so

{e, d, XaXt VX € P} = {xaX’! VX € P} #(c, d; ) <E is EYA) decidable

and EYA) benign by Lemma 6.10. Let n: E > K by ail'"’a;:, eH—ec,

d—d, z+r+t., Clearly n is é‘ computable and
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n({e, d, xax™* VX € P}) = {e, d, t, VX €} since X'tx'" T =t, in K.
Therefore since {c, d, t, VX € P} <X is E*(4) decidsble, it is E*(4)

benign by Lemms 6.11. (§]
LEMA 7.3. If P<F=(a,...,a;) isan EY(4) decidable,

E*(4) benign subgrouwp for n =4 then P is an E(A) benign subset.
Proof. Consider ¢ : F *(3; ) +F by a, — a, and 2> 1 . Then

¢ is £3 computable and ker¢ = {x2xL vx € F} is E3 decidable and Eh

benign by Lemma 6.11 since {A} < F is Eh benign. Moreover, P < F
being E'(4) benign, {P, 2} < F#{z; > is E'(4) decidesble and E(4)

benign by Lemma 6.10. Therefore

Ep = {XzX' VX € P} = {XaX" VX € F} n (P, 2}

is En(A) benign by Lemma 6.9. O
It should be observed that for PCF = (al, cevs G ) the

decidability of E'P < F#«(z; ) is the same as the decidability of P .

This observation together with Proposition 6.7, Lemma 6.8, Lemma 6.9 and
Lemma 6.10 yield the following statements.

PROPOSITION 7.4. Every finite subset of F = (al, ceesa s ) is
Eh benign. 0
PROPOSITION 7.5. If PcF=(a;; ..., a; ) ti8 £"(4) decidable
and E'(4) benignin F for n 2k then
PcG = (al, cees G bl’ censy bq; )
is E'(4) decidable and E'(A) benign in G and conversely. a
PROPOSITION 7.6. If PCF=(aj,...,a,; » ad QCF are E'l4)

decidable and E'(A) benign for n= 4 then PnQ and PuQ are
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EY4) decidable and E'(4) benign. o

Let F=(al, cees Q3 ) an@ G =(b s b 3 ). We consider

10 e By
set maps ¢ : F > G . The reader is warned that in the following the above
notation is used for set maps which may or may not be homomorphisms. We
restrict our attention to a certain class of computable set maps from F
to G .

LR bq; ) and

DEFINITION 7.7. Let F=(al, cees @3 ), G=<(b
¢: F+G be an E'(4) computable set map for n =3 . An E(4)
associate of ¢ 1is an’ E(4) computsble homomorphism
Y:Fwela; )>Gwe(z; ) such that for X € F , ¥(XaX">) = ¢(X)a¢(x)™* .
If ¢ : F+F is an E*(4) computsble bijection such that ¢ 1 is also
E*(A) computable then ¢ is E(4) nice if it has an E'(4) associate

Y which is e&n automorphism of F «{(z; ) with yL En(A) computable.

Of course if ¢ is an E'(4) computable homomorphism then

Y:Falz; )+Gx{3; ) by air-—>¢(ai] , 8>z is an E*(4)

associate. In particular if ¢ is an E'(4) computeble automorphism of
F such that 4)-1 is E*4) computable then ¢ is £%(A) nice. It is
immediate from the definition that the composition of En(A) computable
maps having En(A) associates has an En(A) associate and the composition
of E*(A) nice bijections is an E'(A4) nice bijection.

PROPOSITION 7.8. Let F=(al, cees a3 ) and Y € F . Define

L,:F+F by Xvr>YXVYX €F and R, : F>F by X+— XY VX € F, Then

Y Y

Ly and R, are g3 computable and E3 nice.

Proof. Clearly LY and Ry, are £3 computable bijections with g3

computable inverses. Inner automorphismby Y € F«(z; )} is an E3

computable automorphism with E3 computable inverse and is an E3
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1

associate of L, since xaxt — yxax iyt = ¥xz(¥x)™1 . To construct an

associate for R, let Y : Fwlz; Y+ P *x(z; ) by a;a, and

z — YzY-l . Then Y is an E3 computable esutomorphism with E3
computable inverse given by a; - a , = — Y-le and an E3 associate

1

of R, since XaX % xvarly? = XYz(XY)-l . (]

Y
The following is analagous to Lemma 6.11.

LEMMA 7.9. Let F =(a vees @3 Y, G=(bl, vees b 3 ) and

1’ q
¢ : Fr—>G an E4) computable set map having an £'(4) associate for
nzh. Thenif PcF is E(4) decidable and E'(4) benign and

®(P) c G is F*A) decidable, ¢(P) is E*(A) benign.

Proof. EP <F«{z; ) is En(A) decideble and E™(4) benign,

E¢(P) < Gw(z; ) is E'(A) decidable and there is an E'(4)
homomorphism ¥ : F *{(z; >+ G *(z2; ) satisfying

Y(xax?) = o(x)26(x)™2 Vx € F

by assumption. Then E(b(P) = ‘P[E’p) which is E'(A) benign by Lemma
6.11. O

The following definition and Lemma describe a technique used to
construct E(4) benign sets.

DEFINITION 7.10. Let F=(a, ..., a; >, PCF end QCF and

¢ : F~F be a set map having an associate. We say P is (¢, Q)
invariant if VX €Q (X € P« ¢(X) € P) . Ve say P is invariant wunder

¢ if it is (¢, F) invariant.

- ) n
LEMN!A_ 7.11. Let F—(al, cees a3 ) and P, Ql, ""Qq be E(4)
decidable E'(A) benign subsets of F for n=h . Let $1s -ees ¢q be

E*(4) computable bijections of F onto F which have E'(A) computable
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inverses and are E'(4) nice via associates Y , ¥ . PFurther assume

10 e g
the ¥; and their inverses have E”'l(A) bounds. Let R be the smallest

subset of F containing P and [¢i, Qi) invariant for 1 =1, ..., q

and assume R is E(4) decidable. Then R is E(4) benign. In
particular, if the smallest subset of F containing P and invariant

wnder the ¢, ie E"(4) decidable, it i E*(4) benign.

Proof. (This proof is similar to the proot of Lemma 5.4 of [4]; some

details are reproduced here for completeness. )

Let G=F « 3; and Wir-‘l’ilE‘Qi - Since the Y; and ‘l’;:l are

F*(4) computable and 1) bounded, the Vi are EY(4) isomorphisms

in G also having E”_l(A) bounds. Thus by Lemma 2.6 and Theorem 5.3,

G - =
Y ,...,‘l’q
1.1 -1 ;
= <F,_z, tiy cees tq; tiXaX" t, = ¢i(X)z¢i(X) ¥X ¢ Qi Vi=1, ..., q>
and
< {r . -1 _
G‘yl"""yq = <F, B, 81, «vey 83 8,507 = \l’i[aj],
aizs;l =¥ (a) V=1, ..., q V=1, ..., m)
are E'(A) standard. Also [Gg \—y] ’ is then EX(4)
1""’q‘{1,...,\l’q :
standard and [0‘{71""’Wq]\l/ v = (G\l’l""’wal . for 1 the
10000ty 12000y
identity on E’Q by Tietze transformations. Moreover since these groups

1.
are E*(A) stendard the identity isomorphisis between the various standard
and normal form indices are E(4) computable. Thus

7 ¥ <Gy

is E™MA4) decidable and, since
1oy Laeees -

‘l’q,ll,...,lq
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G,

'y ¥ 1 . s E*(4) Higman, it suffices to show Ep is E™(4)
1°°°° qs 10"

q

benign in 0“7 7 - By assumption R is E*(A4) decidable in F and
FEXEE

thus E, < G < G= = is E'4) decidsble.
R VsV

Let H < G be the smallest subgroup of (G containing EP and

satisfying Wi(HnEQ ] =W.[EQ] nH for 1=1, ..., q . Then
1

(2 .
1

{Ep, ts -

other hand one can verify

e tq} NG<{H, t;y «v0y tq} NG=H by Lemma 5.11. On the

] = Wi(EQ.] n ({E’p, Bl eees tq}nG]

‘Pi(({E'p, tys vees tq}nG)nEQ. ;

1
and so H being the smallest subgroup satisfying these conditions,

H<{E'p,t ..,tq}nG so in fact H={E’p,t ..,tq}nG.

1’ " 1>

+
If g €E is the product of words of the form Xzt

QZ

-1

X for X € Qz
> +] -1

then Y¥(g) is a product of words ¢£(X)z ¢i(X) which are free in G .

Thus Wi(g) € Ep iff all of the ¢1:(X) involved are in R , iff all of

the X involved are in R , iff g € E'R . Thus
7, (Earee ) = %, [7o,) =

€ €
so ER >H . Conversely if X € R then X = ¢il ¢ia(Y) for Y €P,
1 a

sJ. = %1 where QJ. is applied only to a word in QJ. and cb;.l only to a
word in ¢J-(QJ-] since otherwise X could be deleted from KR contrary to

the minimality of R . Then

-1
- £ € € € _€ _E

xax =9t L MMalet et =¥ L T (rarY) e,
1 [+ ] 1 a 1 a

so ER<H and hence ER=H.
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The ER’ EQ and Wi [EQ ] are all generated by words of the form
1 2

-1

Xax™l for X € P and are free in G . Thus for w € G , it is an E'(4)

procedure to determine if w = w for u € EH and v € EQ (respectively
1

W[E’Q ] ] and if so the corresponding u is £ (4) computable and has
i

index less than that of w . Thus E'R is En(A) invariant under the ?1:

with the right coset representative functions having an E3 bound so by

Lemmes 2.6 and 5.11, {Ep, ), ..., tq} < o“-,l’qu is FE*(4) decidable.

Now {A} < G is FE*(4) invariant under the Wi with trivial
compatibility so {A, t1s eees tq} = {tl, cees tq} < G;Fl’“.ﬁq is E*4)

decidable end E’(4) benign being f.g. Thus since Ep is E’(4) benign

t

by assumption and {EP, t 1

s tl=1(E
q

2 tq} is F*4)

1 e
decidasble it is FE*(4) benign by Lemma 6.10. Therefore

Ep=Gn{Bp t, ..oy tq} is EF'(4) benign by Lemma 6.9.

Since F is f.g. it is f:h benign and so may be substituted for the
Qi yielding the final statement. a

Lemma 7.11 is used particularly with the 53 nice maps Ly, Ry and

E3 computable automorphisms of F 8o the hypotheses are automatically
satisfied. We next obtain some useful examples of Eh benign subsets by
the above technique.

PROPOSITION 7.12. Let F =(a,b; ) and b, =b'ab ™" for
. =0, £1, 2, ... . Congider P the set of all words in F of the form

i
blbi "'bi for 05i1<i2... <12q and any (finite) q . Then P
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18 Eh benign in F .
Proof. Let H={b,, ¢ >0} <F ana H' ={b,i20}<F, £3
decidable in F since the bi are free. Then H is Eh benign by

Proposition 6.12 and H' = {{al}, H} is Eh benign by Lemma 6.10. Let
Y. F+F bethe E> automorphism defined by a+* bab™> and b+ b .
Then Y is E3 nice as is La of Proposition 7.8. By a simple spelling
argument P is the smallest subset of F containing {A} (Eh benign)
and (La’ H), (Y, ') dinvariant. D

DEFINITION 7.13. Let F=(al, vees @3 ). Awordin F is

q

positive if it does not contain any occurances of a;l for

T=1, «.., q «

PROPOSITION 7:14. Let W c (ag, --es ) be the set of

q-1°
positive words. Then Wois £ benign.

Proof. Let

= . -1 _ -1 _
D= <a0, ey aq_l, 2, t; tait a(i+l)modq’ t3t ~ = z> N

so D 1is f.p. and g standard being of the form ({a,, ..., aq-l’ 23 ))4’
X 3
for ¢ defined by a; — a(i#l)modq , 3z an E° computable

automorphism. Let F=(a, b; ) and PC F be the Eh benign subset as

in Proposition T7.12. Consider Y : F«{(z; )+ D by a++* a5 > bt |
£ i *
2+ 2 an computable homomorphism. Then if w = a, ... a €NV .
1 k

+
w = W(bi bi PO bi +(k—l)n] so Y(P) = W . Therefpre ‘Y(E'P) =F .
172 k W
which is E3 decidable hence Eh benign by Lemma 6.11 since P and
hence E, are Eh benign. 0
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We now restrict our attention to subgroups of F =(a, b; } . The
notation W © F , the set of all positive words, and Wb C Wc F , the set

of all positive words beginning in b , will be used in the following.
Observe that W and W, are E3 decidable and also W and Wy = Lb(W)
b

are € benign by Proposition 7.14 and Lemma 7.9. The convention p and

q are natural numbers and % is an integer wherever they occur will be in

effect.
DEFINITION 7.15. Let x(k) = [:cl, ceey :ck) be a k-tuple of natural

z, =z x
(k) the word alba 2b bak

numbers and associate with <« €W . In
this way a subset of Nk is associated with & subset of W . A k-ary
predicate is £*(a) benign if the corresponding subset of W 1is E%(a)
decidable and ET(A) benign.

Observe that by definition an E'(4) benign predicate must be E*(4)
decidable. Moreover by Proposition 7.6 the conjunction and disjunction of

£%(4) benign predicates are again E'(A) benign. For f:IVk*IV let

Pf denote the k+l-ary predicate Pf(x(k), y] g f(x(k)) =Y -

PROPOSITION 7.16. The predicates = , Pf corresponding to the
0

succegsor function, P o corresponding to addition, and P f correspond-
1 2

ing to multiplication are Eh benign.
Proof. @ € F the smallest set containing b and invariant under

['aRa is Eh benign so since = corresponds to W n g it is Eh benign.

R C F the smallest set containing Lb(WnQ) and invariant under LaRa

is Eh benign and consists of words of the form a“baba**? so P

fl
corresponds to R n ¥ and is E,4 benign. Also P corresponds to

%o

Ra(WnQ) and is Eh benign.
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Let F' ={a, b, c;) and W' C F' be the set of positive words.
Set T equal to the smallest set of words in F' containing » and
invariant under LaRc and set T' = ch(TnW') so T' consists of words
of the form cbabe? ana is Eh benign. Let ¢ =P > F' by at+a,
br—b , e+*eca an E3 automorphism so 7" +the smallest set containing
7' and invariant under ¢ is lfh benign and consists of words of the
form caibaqb(cai)q . For Y:F P by a—~+a , b+>Db and c+ A,

an E3 homomorphism, Pf corresponds to Y(T"rW') and so is Eh
2
benign. ]

PROPOSITION 7.17. If Py, x(k)) is EYA) benign for n2h and
Q(:c(k), y) ~ Ply, z(k)) then Q@ is E*(4) benign.

Proof. Let P C F correspond to the predicate P and P' be the
smallest set containing P and invariant under L _ Ra . Then ¢

1
a

corresponds to L _l(P'erJ .and so is Eh benign. 0
b

PROPOSITION 7.18. If P(zX)) is E™(4) benign for n>4 and
ey, x(k)) *—*P(:c(k)] then @ is E'(A) benign.

Proof. Let P C F correspond to the predicate P and P' be the
smallest set containing Lb(P) and invariant under La . Then &

corresponds to P' n W so is E'(A) benign. (|

PROPOSITION 7.19. Assume Py, «'X)) is E(4) benign for n =k
and Q(x(k)) — Py, x(k))] . Then if Q ies E'(A) decidable it is
£%(4) benign.

Proof. Let P c F correspond to the predicate P and P' be the
smallest set containing P and invariant under L, . Then P' consists
of words aibw such that there exists g so that a%bw € P and P' is

E*(4) @ecidable by assumption and so E*(4) benign. @ corresponds to
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Lb_l(P'nWb) so is E(4) benign. (m]

PROPOSITION 7.20. IFf P(y, X)) s E™4) benign for n 2k and

Q(z, x(k)) = (Vy) P[y,x(k)] then Q@ is E™(4) benign.

y<a
Proof. Let U, ©F be the smallest set containing {A} and

invariant under Ra and inductively define Uq to be the smallest set

containing Lb (Uq_lrW) and invariant under Ra . Then U= Uk n W

™, T "% 3
consists of all words of the form a "ba © ... ba and is E° decidable

and Eh benign.

Let P C F correspond to the predicate P and V be the smallest
set containing Lb(U) and (La, P) invariant. Then € corresponds to V

and is E*(4) benign. ]

PROPOSITION 7.21. Let g : N+ N be an E'(A) computable function
for n = 4 such that Pg is EM4) benign. Then if f 1i8 defined from

g by pure iteration, f(0)=p, flz+l) = g‘ﬂl(p) = gf(x) then Pf' ig

E"M4) bemign. If flz) ie EMA) computable (that is, has an E*(4)
bound) then P, is E(4) benign.

Proof. Let S € F correspond to Pg end F' =(a, b, ¢; . Then

S is En(A) benign in F by Proposition 7.5. Let S' < F' be the
smallest set containing Lc(S) and invariant under I’a and Lb so §'

consists of words wcazbag(z) for w €F and x €N . Let W' € FP' be
the set of positive words and ¢ : F' +F by at++a , b+—b , or—b ,
an g3 homomorphism. Then S" = ¢(W'nS') is E(4) benign and consists
of words wbaxbag(z) for w €EWCP.

Let TC F be the smallest set containing bd’b ana (S", Rb)

invariant and invariant under Ra . T consists of words
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) ) 2 ko o\ .
bdba®, bPradPlra®, ..., b9 Pbad Py ... paf Plpgt, .

so is En+l(.4) decidable and En+l(A) benign. Also T' =L_1(TnS")
b

k
consists of words apbag(p), eens apbag(p) ... bd? (p)’ ... sois E™4)

Erz+1

decidable and (A) benign.

Let F'=(a, b, e, d, e; ) and W' C F' be the set of positive

words. Then U C F' the smallest set containing d and LR, invariant
i
is Eh benign as is U' +the smallest set containing Le(ll) and invariant

under La and Lb . U' consists of words wea’bdc"' for w € F . Define

the E3 homomorphism ¥ : F' ~FP"=(q, b, e, d; ? by at+*a, b+ b ,
er+c, dr—d and e+*b so U' = (U'W') is i benign consisting
of words wba?da? for w €WCF.

In F", let T' be the smallest set containing Rd(T') and

invariant under Rc . Thus T" consists of words

k. .
Frd Py .. b Plat |

is En+l(A) decidable, and Enﬂ‘(A) benign. Define the g3 homomorphism
n: P +F by at+ A, brra, d+—Db and e+*a . Then

k
™ = (I"nU") consists of words akbag (p) _ akbaf(k) for k >0 so is

En+1(.4) decidable and E° +1(A) benign. Moreover Pf corresponds to
b U " and is therefore Enﬂ'(A) benign.

If f is E'(4) computsble then T, T', T" end T are E'(4)

decidable hence E*(4) bvenign as is bd® uT" . 0

LEMMA 7.22. If f:Iv’k +N8 i8 an E'(4) computable function for
n 24 and A recursively enumerable then Pf ie E'U) benign.

Proof. Referring to Definition 2.3, we must show that the predicates
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corresponding to the initial functions

Z(x)

Ug(xl, cees xp)

o,

z , for 1 =2q= R
q qQ=p

fo(zsy)=x+l s
fi(x, y)=zxz+y,
fn(z’ y) s

E(x) = x - [x%]z s

0 if x €4,
cylx) =
1 if zf4,
are E'(A) benign and that the class of E'(4) computable functions

having E'(A) benign predicates is closed under substitution and limited

iteration.

The set corresponding to PZ consists of words &b and is Rb(QnW)

for Q@ the smallest set containing {A} and invariant under L, so PZ

is Eh benign. The set corresponding to Pul is the same as that
1

corresponding to and thus is Eb benign by Proposition T7.16. Then

P are Eh- benign by repeated applications of Propositions T7.17 and

4
q

7.18. P and P are Eh benign by Proposition 7.16 as is P, .
%o f ~ T2

Since fh is obtained from f Y by iteration, Pf is E? benign by
n n

induction and Proposition 7.21.
Consider the predicates "<" and "<" defined by

x <y Bsz {z, 2, y) and z <y +> 33[3 #0 A Pf (x, =z, y)] vhich are
1 1
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£ benign by Proposition 7.19. Then for E'(z) = [x)q .

PEl(xs y)

- vaHu[sz(y, Yy, u) A (usz) A Pfo(y, V) A sz(v, v, W) A (x< w)}

vhich is Eh benign by Propositions 7.6, 7.16, 7.18 and 7.19. Thus

Pets )+ 33aPya (e, 2) A Py (5, 2, 10 1 7y 4, w0, 5)

is E)'l benign by the same argument.

(k))

It flo [a:(k))]

where g and hi for ¢ =1, ..., q are E*(4) computeble and Pg and

is defined by f(:z:(k)) = g(hl(:c(k)], oo hq

Ph are E7(4) benign then
i

(k)
Pf(x s 2)

— 3_;,131,2 Byq[Phltx(k), yl] Aces APh [x(k), yq] A Pg(yl, e Y s z)]

q q

which is EM(4) decidesble so E{A) benign by Proposition 7.19.
Therefore the class of E(A) computable functions having corresponding

En(A) benign predicates is closed under substitution and, by Proposition
T7.21, it is also closed under limited iteration.

It remains to show that if A is recursively enumersble then Pc is
A

is Eh(A) benign. Let F : N - N be a recursive function and
A=reange f. Then by [7], p. 288, fly) = U (weT(e, y, 2)) for U, E3

computable and T , E3 decidable. Using the pairing functions J, X and
L of 82, = €4 « % (T(e, XK(y), L(y)) A UL(y) = =) and so, since X and

L are e computable and the predicate x €4 is E3(A) decidable the

.predicate x €A, that is, Pc is Eh(A) benign.
A
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Recall PC F =(a, b; ) of Proposition 7.12. We apply Lemma T7.22 to

subsets R C P to obtain the following E (A) benign sets.

PROPOSITION 7.23. Let P be ag in Proposition 7.12 and RC P be
an E(A) decidable subset for n 2 L4 and A recursively enumerable.
Then R i8 E'(A) benign.

Proof. Let F'=(qg, z; > and ¢ : F' = F' be the g3 isomorphism
2

in P' Qdefinedby a4, z+*+z . Then

Fy = (a, z, by bab™t = a°, bab ™t = 2)

4 ) b
is E standard. Let n : F * (gz; )+F¢ be the E  computable quotient
homomorphism a++a , b++>b , z++z . Recall the notation
T A -3
b.=b"ab end observe n(b.) =a° . Thus for w=5b. ...b. €P,
i i iy i
i i

0 =iy <. <4y, nlw)=d" for z=2Y+...+2% ang

n(wzw-l) = axba-x . EBvery x>0, x €N has a unique representation
i i

=2 1, eee + 2 k for O Sil < ... < ik and such a representation is
£3 computsble. In particular, n restricted to Ep, is then monic.
Aword in F' is in n(R) iff it is of the form & for
il ik
=274+ ... +2 end b.b. ...b. €R. Thus n(R) <{a; ) <F is
B % *k

F*(4) decidable and so there exists an E'(4) computable characteristic

x

function f such that f(x) =0 if a €n(R) and flx) =1 if

& En(R) . By Lemma 7.22, Pf is F*(4) benign corresponding to T C P

consisting of words of the form d“ba for a° f N(R) and &b for

a €n(R) . Thus n(R) = W nR (D) s E%(4) benign in F . Moreover
b
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n(Bp) = {a"2a™" for &° € n(R)} < F' is then E'(4) benign in F' by
definition and in Fé by Lemina 6.8.

-1
Since n restricted to E, is monic, Ep =Epnn (n(ER)) . By

Lemma 6.11, n'l(n(E‘R)) is E'(A) venign as then is E, by Lemma 6.9 and

R

the fact Ep is Eh benign. a

LEMA 7.24. Let E=(a),...,a; ) ard QCE be an E'(4)
decidable gset for n =4 and A recursively enumerable. Then @ 18
£*(4) benign.

Proof. We first assume & consists only of positive words. We will
freely use the notation and observations of the proofs of Propositions
7.12, T7.14 and 7.23. Since § is assumed positive, @ < ¥(P) so

\l’-l(Q) is E*4) decidable in F . Moreover \l’(‘l’-l(Q)nP) =f so*

‘*’[E -1 } = E, . Since ¥71(@) nP is an E'(4) decidable subset of
¥ Q)P

positive words in F , it is E'(4) benign by Proposition 7.23 so

E is an E'(A) benign subgroup of F #(z; ) . Then E, being
@) q

E"(4) decidable in E #{z; ) , it is E(A) decidable in D and hence
E*(4) benign by Lemma 7.9. Thus every positive, E'(4) decidable subset

of E is FEY(A4) benign.

Now let @ be an arbitrary E'(4) decidsble subset of E and
E' = (al, cres Qs ai, cees ar;1; ) with W' c E' the set of positive
words. Define an E3 homomorphism ¢ : E' = E by a, — a; and

aéb——’a;:l for ¢ =1, ..., m . Then Q'=§-1(Q)nW’ is an E™4)

decidable set of positive words so En(A) benign by the preceeding.
Therefore since @ = £(Q') is E(A) decideble and ¢ has an g3

associate, @ is E%(4) benign by Lemma 7.9. a
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Our main result is now completed.
THEOREM 7.25. Every finitely gemerated E(A) standard grouwp for
n2b and A recursively enumerable can be embedded in a finitely

presented E'(A) standard grouwp by an E'(4) embedding.

Proof. We must show every f.g. | £%(4) standard group is E*(4)
Higmen. By Lemma 6.13, it suffices to show every E'(A) decidsble
subgroup of a f.g. free group is £*(a) benign. By Lemmas 7.2 and '.7.3 an
E*(A) aecidsble subgroup of & f.g. free group is £*(a) ‘benign iff it is
£'(4) benign as a subset. Finally, by Lemma T.24, every E'(4) decidsble
subset of a f.g. free group is FHa) benign. o

Together with the Higman, Neumann, Neumann Theorem, Theorem 5.5 we
have the following result.

COROLLARY 7.26. Every E'(A) group with n2 3 and A recursively
enumerable can be embedded in a f.p. Y 4) standard growp by an
£ (a) embedding. Every E(4) standard growp with n = L4 and 4
recursively enumerable can be embedded in an E(A) standard group by an
£8(4) embedding. (m]

Together with Corollary 4.1l and Proposition 4.16, we have the
following results.

COROLLARY 7.27. Por any recursively enumerable A C N and any
n =l there exists a f.p. E(A) standard group G which is not E1(4)
standard. If G is E'(B) standard for m=2 3, then A is E (B)
decidable. o

COROLLARY 7.28. For oy n 2 b there exists a f.p. E' standard
growp which is not E' ! etandard. For n > 5 there exists a f.p. E°
standard growp which ie not EV 2 computable. o
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