
14

Grid Coarsening

Over the last decades, methods for characterizing subsurface rock formations have
improved tremendously. This has, together with a dramatic increase in computational
power, enabled the industry to build increasingly detailed and complex models to account
for heterogeneous structures on different spatial scales. Using gridding techniques similar
to the ones outlined in Chapter 3, today one can easily build complex geological models
consisting of multiple millions of cells to account for most of the features seen in typical
reservoirs. In most cases, geocellular models used for reservoir characterization contain
more geological layers and model fine-scale heterogeneity with higher resolution than
what is used for flow simulations.

Through parallelization and use of massively parallel computers it is possible to sim-
ulate fluid flow on grid models with up to a billion cells [84, 85, 240], but such simula-
tions require expensive infrastructure and a very high power budget and are rarely seen
in practice. Contemporary high-fidelity models seem to be in the range of a few million
cells, whereas the majority of asset models have ten times fewer cells, since engineers
usually want to spend available computational power on more advanced flow physics or
on running a large number of model realizations instead of a few highly resolved ones.
To obtain computationally tractable simulation models, it is therefore common to develop
reduced models through some kind of upscaling (homogenization) procedure that removes
spatial detail from the geological description. Typically, a coarser model is developed by
identifying regions consisting of several cells and then replacing each region by a single,
coarse cell with homogeneous properties that represent the heterogeneity inside the region
in some averaged sense. We discuss such upscaling methods in more detail in Chapter 15.

14.1 Grid Partitions

You can obviously generate coarse grids in the same way as the original by simply specify a
lower spatial resolution. However, this approach has two obvious disadvantages: first of all,
if the original grid has complex geometry (and topology), it is very challenging to preserve
the exact geometry of the fine grid for an arbitrary coarse resolution. Second, except in
simple cases, there is generally not a one-to-one mapping between cells in the fine and

518

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.1 Grid Partitions 519

coarse grids. Herein, we therefore choose a different approach. In MRST, a coarse grid
always refers to a grid that is defined as a partition of another grid, which is referred to as
the fine grid.

Tools for partitioning and coarsening of grids are found in two different modules of
MRST: The coarsegridmodule defines a basic grid structure for representing coarse grids
and supplies simple routines for partitioning grids with an underlying Cartesian topology.
The agglom module offers tools for defining flexible coarse grids that adapt to geological
features and flow patterns, e.g., as discussed in [125, 124, 194, 187]. Coarse partitions also
form a basis for contemporary multiscale methods [195] and are used extensively in the
various multiscale modules of MRST (msrsb, msmfem, msfv, etc). In this chapter, we first
discuss functionality for generating and representing coarse grids found in the coarsegrid
module and then briefly outline some of the more advanced functions found in the agglom
module. In an attempt to distinguish fine and coarse grids, we henceforth refer to fine grids
as consisting of cells, whereas coarse grids are said to consist of blocks.

Coarse grids in MRST are represented by a structure that consists entirely of topological
information stored in the same fields as for the general grid structure introduced in Section
3.4. As a naming convention, we use CG to refer to a coarse-grid structure and G to refer to
the usual (fine) grid. A coarse grid is always related to a fine grid in the sense that

• each cell in the fine grid G belongs to one, and only one,
block in the coarse grid CG;

• each block in CG consists of a connected subset of cells
from G; and

• CG is defined by a partition vector p defined such that
p(i) = � if cell i in G belongs to block � in CG.

5

2

2

6

6

1

1

1

4

6

3

1

1

4

4

7

3

1

1

8

7

3

3

8

8

This concept is quite simple, but has proved to be very powerful in defining coarse grids
that can be applied in a large variety of computational algorithms. We will come back to
the details of the grid structure in Section 14.2. First, let us discuss how to define partition
vectors in some detail, as this is more useful from a user perspective than understanding
the details of how the CG structure is implemented.

To demonstrate the simplicity and power of using partition vectors to define coarse
grids, we go through a set of examples. You can find complete codes for all the following
examples in showPartitions.m from the book module.

14.1.1 Uniform Partitions

For all grids having a logically Cartesian topology, i.e., grids that have a valid field
G.cartDims, we can use the function partitionUI to generate a relatively uniform
partition that consists of the tensor product of a load-balanced linear partition in each index
direction. As an example, let us partition a 7× 7 fine grid into a 2× 2 coarse grid:

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

520 Grid Coarsening

G = cartGrid([7,7]);
p = partitionUI(G, [2,2]);

plotCellData(G, p, 'EdgeColor', 'y');
outlineCoarseGrid(G, p, 'k');
axis tight off,
caxis([.5 max(p)+.5]);
colormap(lines(max(p)));
set(colorbar,'YTick',1:max(p));

The call to partitionUI returns a vector with one element per cell taking one of the
integer values 1,2,3,4 that represent the four blocks. Since seven is not divisible by two,
the coarse blocks do not have the same size but consist of 4×4, 3×3, 4×3, and 3×4 cells. To
better distinguish different blocks in the plot, we have used outlineCoarseGrid(G, p)
to find and plot all faces in G whose neighboring cells have different values of p.

The same procedure can, of course, also be applied to partition any grid in 3D that has a
Cartesian topology. As an example, we consider a simple box geometry:

G = cartGrid([10,10,4]);
p = partitionUI(G, [3,3,2]);

plotCellData(G, p, 'Edgecolor', 'w');
outlineCoarseGrid(G, p, ...

'EdgeColor','k','lineWidth',4);
colormap(colorcube(max(p)))
view(3); axis off

Here, we have used the colorcube colormap, which is particularly useful for visualizing
partition vectors, since it contains as many regularly spaced colors in RGB color space as
possible. The careful reader will also observe that the arguments to outlineCoarseGrid
changes somewhat for 3D grids.

14.1.2 Connected Partitions

All you need to partition a grid is a partition vector. This vector can be given by the user,
read from a file, generated by evaluating a geometric function, or given as the output of
some user-specified algorithm. As a simple example of the latter, let us partition the box
model [−1,1] × [−1,1] into nine different blocks using the polar coordinates of the cell
centroids. The first block is defined as r ≤ 0.3, whereas the remaining eight are defined by
segmenting 4θ/π :

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.1 Grid Partitions 521

G = cartGrid([11, 11],[2,2]);
G.nodes.coords = ...

bsxfun(@minus, G.nodes.coords, 1);
G = computeGeometry(G);
c = G.cells.centroids;
[th,r] = cart2pol(c(:,1),c(:,2));
p = mod(round(th/pi*4)+4,4);
p(r<.3) = max(p)+1; 1

2

3

4

5

In the second-to-last line, the purpose of the modulus operation is to avoid wrap-around
effects as θ jumps from −π to π .

The human eye should be able to distinguish nine different coarse blocks in the plot
above, but the partition does unfortunately not satisfy all the criteria we prescribed on
page 519. Indeed, as you can see from the colorbar, the partition vector only has five unique
values and thus corresponds to five blocks, according to our definition of p: cell i belongs
to block � if p(i) = �. Hence, what the partition describes is one connected block at the
center surrounded by four disconnected blocks. To determine whether a block is connected
or not, we will use some concepts from graph theory. We first form a local undirected
graph (or a network) in which nodes are cells and edges are cell faces connecting two
cells with the same partition value. A block is then said to be disconnected if the graph
has multiple connected components. A connected component is defined as the subgraph in
which any two nodes are connected to each other through a path. In other words, a coarse
block is disconnected if there exists at least one pair of cells that cannot be connected by a
continuous path in the local grid graph. To get a partition satisfiying our requirements, we
must split the four disconnected blocks. This is done by the following call:

q = processPartition(G, p);

which splits disconnected components that have the same p-value into separate blocks and
updates the partition vector accordingly. In the current case, Blocks 1–4 will be split in two,
whereas Block 5 remains unchanged, giving the nine blocks separated by solid lines in the
figure.

Let us quickly outline how this routine works. We start by identifying all cells having
the same partition value; the left plot in Figure 14.1 shows these cells for the first block.
The grid graph is the same that we used to construct the discrete divergence and gradient
operators, with the edge list given in terms of the two columns C1(f) and C2(f) from
G.faces.neighbors that specify the cells connected by face f . The only exception is that
we now have to exclude any connections between cells having different p-values. From this
list, we can construct a local adjacency matrix. This symmetric matrix is defined so that all
cells corresponding to nonzero entries in a single row (or column) are directly connected.
In the two adjacency matrices shown in Figure 14.1, we have used different color for cells

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

522 Grid Coarsening

2 1

3 4 5 6 7 8

 9 10 11 12 13 14 15 16

17 18 19 20 21 22

4232

0 5 10 15 20 25

0

5

10

15

20

25
0 5 10 15 20 25

0

5

10

15

20

25

Figure 14.1 Partition of a disconnected block. The left plot shows all cells with the same p-value.
The middle plot shows the adjacency matrix based on the original numbering, whereas the right plot
shows the adjacency matrix after a Dulmage–Mendelsohn permutation has separated the connected
components.

belonging to each of the two components for clarity. The middle plot shows that cell 1 is
connected to cell 3; cell 2 is connected to cell 8; cell 3 is connected to cells 1, 4, and 9; and
so on. To find the connected components, we use a Dulmage–Mendelsohn permutation.
Disconnected components will then appear as diagonal blocks in the permuted adjacency
matrix; see the right plot in Figure 14.1.

Graph operations like this can generally be used to adapt the partition to features in
the geological model. As an example, the processing routine can also take an additional
parameter facelist that specifies a set of faces across which the connections will be
removed before processing:

q = processPartition(G, p, facelist)

Using this functionality one can, for instance, prevent coarse blocks from crossing faults
inside the model.

14.1.3 Composite Partitions

In many cases, it may be advantageous to create partition vectors by combining more than
one partition principle. As an example, consider a heterogeneous medium consisting of two
different facies (rock types), one with high permeability and one with low, that each form
large contiguous regions. If we now let the coarse blocks respect the facies boundaries, we
can assign each block a homogeneous property and avoid upscaling. Within each facies,
we can further use a rectangular partition generated by partitionCartGrid, which is
simpler and less computationally expensive than partitionUI but only works correctly
for a grid having a fully intact logically Cartesian topology with no inactive cells, no cells
that have been removed by removeGrid, and so on. The following code illustrates the
principle:

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.1 Grid Partitions 523

G = cartGrid([20, 20], [1 1]);
G = computeGeometry(G);

% Facies partition
f = @(c) sin(4*pi*(c(:,1)-c(:,2)));
pf = 1 + (f(G.cells.centroids) > 0);

% Cartesian partition
pc = partitionCartGrid(G.cartDims, [4 4]);

% Alternative 1:
[b,i,p] = unique([pf, pc], 'rows');
% Alternative 2:
q = compressPartition(pf + max(pf)*pc);

+

=

The example also shows two alternative techniques for combining different partitions. The
first alternative collects the partitions as columns in an array A. The call
[b,i,p]=unique(A,'rows') will return b as the unique rows of A so that b=A(i) and
A=b(p). Hence, p will be a partition vector that represents the unique intersection of all the
partitions collected in A. In the second method, we treat the partition vectors as multiple
subscripts, from which we compute a linear index. This index is not necessarily contiguous.
Most routines in MRST require that partition vectors are contiguous to avoid having to
treat special cases arising from noncontiguous partitions. To fulfill this requirement, we
use the function compressPartition that renumbers a partition vector to remove any
indices corresponding to empty grid blocks. The two alternatives have more or less the
same computational complexity, and which alternative you choose in your implementation
is largely a matter of what you think will be easiest to understand for others.

Altogether, the examples presented so far in this chapter explain the basic concepts of
how you can create partition vectors. Before we go on to explain details of the coarse-grid
structure and how to generate this structure from a given partition vector, we show one last
and a bit more fancy example. To this end, we create a cup-formed grid, partition it, and
then visualize the partition using a nice technique. To generate the cup-shaped grid, we
use the fictitious-domain technique we previously used to generate the ellipsoidal grid in
Figure 3.4 on page 61.

x = linspace(-2,2,41);
G = tensorGrid(x,x,x);
G = computeGeometry(G);
c = G.cells.centroids;
r = c(:,1).^2 + c(:,2).̂ 2+c(:,3).^2;
G = removeCells(G, (r>1) | (r<0.25) | (c(:,3)<0));

Assume that we wish to partition this cup model into 100 coarse blocks. We could, for
instance, try to use partitionUI to impose a regular 5 × 5 × 4 partition. Because of the

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

524 Grid Coarsening

Figure 14.2 The partition of the cup-formed grid visualized with explosionView.

fictitious method, a large number of the ijk indices from the underlying Cartesian topology
will correspond to cells that are not present in the actual grid. Imposing a regular Cartesian
partition on such a grid typically gives block indices in the range [1, max(p)] that do not
correspond to any cells in the underlying fine grid. In this particular case, only 79 out of the
desired 100 blocks correspond to a volume within the grid model. To see this, we use the
function accumarray to count the number of cells for each block index and plot the result
as a bar chart:

subplot(2,1,1);
p = partitionUI(G,[5 5 4]);
bar(accumarray(p,1)); shading flat

q = compressPartition(p);
subplot(2,1,2);
bar(accumarray(q,1)); shading flat
set(gca,'XLim',[0 100]);

0 20 40 60 80 100
0

20

40

60

0 20 40 60 80 100
0

20

40

60

Figure 14.2 shows the partition obtained after we have compressed the partition vector.
To clearly distinguish the different blocks, we have useed explosionView to create an
explosion view, which is a useful technique for visualizing coarse partitions.

14.2 Coarse Grid Representation in MRST

When working with coarse grids, it is not always sufficient to only know the partition,
i.e., which cells belong to which blocks. It can often be more advantageous to treat the
coarse partition as a general polyhedral grid and have access to the inherent topology and
possibly also the geometry. In MRST, we have chosen a compromise and use a coarse-
grid structure that represents topology explicitly and geometry implicitly. This choice is
motivated by flow solvers, which we previously have seen can be posed on an arbitrary grid
graph provided each node has associated pore volume and depth value and each connection
has an associated transmissibility.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.2 Coarse Grid Representation in MRST 525

Given a grid structure G and a partition vector p, we generate a structure CG representing
the coarse grid by the following call:

CG = generateCoarseGrid(G, p)

The coarse-grid structure consists entirely of topological information stored in the same
way as described in Section 3.4 for G: The fields cells and faces represent the coarse
blocks and their connections. As a result, we can use CG seamlessly with many of the stan-
dard solvers in MRST. Unlike the original grid structure, however, CG does not represent
the geometry of the coarse blocks and faces explicitly and does therefore not have a nodes
field. The geometry information is instead obtained from the parent grid G and the partition
vector p, copies of which are stored in the fields parent and partition, respectively.

The structure, CG.cells, that represents the coarse blocks consists of the following
mandatory fields:

– num: the number Nb of blocks in the coarse grid.

– facePos: an indirection map of size [num+1,1] into the faces array, which is defined
completely analogously as for the fine grid. Specifically, the connectivity infor-
mation of block i is found in the submatrix

faces(facePos(i): facePos(i+1)-1, :)

You can now compute the number of connections of each block using the state-
ment diff(facePos).

– faces: an Nc × 2 array of connections associated with a given block. Specifically, if
faces(i,1)==j, then connection faces(i,2) is associated with block number
j . To conserve memory, only the second column is actually stored in the grid
structure. The first column can be reconstructed by a call to rldecode. Optionally,
one may append a third column that contains a tag inherited from the parent grid.

In addition, the cell structure can contain the following optional fields, which typically
are added by a call to coarsenGeometry, assuming that the corresponding information is
available in the parent grid:

– volumes: an Nb × 1 array of block volumes

– centroids: an Nb × d array of block centroids in IRd

The face structure, CG.faces, consists of the following mandatory fields:

– num: the number Nc of global connections in the grid.

– neighbors: an Nc×2 array of neighboring information. Connection i is between blocks
neighbors(i,1) and neighbors(i,2). One of the entries in
neighbors(i,:), but not both, can be zero, to indicate that connection i is
between a single block (the nonzero entry) and the exterior of the grid.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

526 Grid Coarsening

– connPos, fconn: packed data-array representation of the coarse → fine mapping.
Specifically, the elements fconn(connPos(i):connPos(i+1)-1) are the con-
nections in the parent grid (i.e., rows in G.faces.neighbors) that constitute
coarse-grid connection i.

In addition to the mandatory fields, CG.faces has optional fields that contain geometry
information and typically are added by a call to coarsenGeometry:

– areas: an Nc × 1 array of face areas.
– normals: an Nc × d array of accumulated area-weighted, directed face normals in IRd .
– centroids: an Nc × d array of face centroids in IRd .

Like in G, the coarse grid structure also contains a field CG.griddim that is used to distin-
guish volumetric and surface grids, as well as a cell array CG.type of strings describing
the history of grid constructor and modifier functions used to define the coarse grid.

As an illustrative example, let us partition a 4×4 Cartesian grid into a 2×2 coarse grid.
This gives the following structure:

CG =
cells: [1x1 struct]
faces: [1x1 struct]

partition: [16x1 double]
parent: [1x1 struct]
griddim: 2

type: {’generateCoarseGrid’}

with the cells and faces fields given as

CG.cells =
num: 4

facePos: [5x1 double]
faces: [16x2 double]

CG.faces =
num: 12

neighbors: [12x2 double]
connPos: [13x1 double]
fconn: [24x1 double]

Figure 14.3 shows relations between entities in the coarse grid and its parent grid. For
instance, we see that block number one consists of cells one, two, five, and six because
these are the rows in CG.partition that have value equal one. Likewise, we see that
because CG.faces.connPos(1:2)=[1 3], coarse connection number one is made up of
two cell faces that correspond to faces number one and six in the parent grid because
CG.faces.fconn(1:2)=[1 6], and so on.

14.2.1 Subdivision of Coarse Faces

In the discussion so far, we have always assumed that there is only a single connection
between two neighboring coarse blocks and that this connection is built up of a set of
cell faces corresponding to all faces between pairs of cells in the fine grid that belong
to the two different blocks. While this definition is useful for many workflows like in

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.2 Coarse Grid Representation in MRST 527

 1 2 3 4

 5 6 7 8

 9 10 11 12

13 14 15 16

1 2

3 4

CG.partition =
(1) 1 (9) 3
(2) 1 (10) 3
(3) 2 (11) 4
(4) 2 (12) 4
(5) 1 (13) 3
(6) 1 (14) 3
(7) 2 (15) 4
(8) 2 (16) 4

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 11

12

CG.faces.connPos = CG.faces.fconn=
1 1
3 6
5 21
7 22
9 5
11 10
13 23
15 24
17 11
19 16
: :

Figure 14.3 The relation between blocks in the coarse grid and cells in the parent grid (top) and
between connections in the coarse grid and faces from the parent grid (bottom).

standard upscaling methods, there are also problems for which one may want to introduce
more than one connection between neighboring blocks. To define a subdivision of coarse
faces, we once again use a partition vector with one scalar value per face in the fine
grid, defined completely analogous to vectors used for the volumetric partition. Assum-
ing that we have two such partition vectors, pv describing the volumetric partition and
pf describing the partition of cell faces, the corresponding coarse grid is built through
the call:

CG = generateCoarseGrid(G, pv, pf);

In my experience, the simplest way to build a face partition is to compute it from an
ancillary volumetric partition using the routine:

pf = cellPartitionToFacePartition(G, pv)

which assigns a unique, nonnegative integer for each pair of cell values occurring in the
volumetric partition vector pv, and hence constructs a partitioning of all faces in the grid.
Fine-scale faces that are not on the interface between coarse blocks are assigned zero value.

As an illustration, we continue the example from page 523. We first partition the 8 × 8
fine grid into a 2 × 2 coarse grid and then use facies information to subdivide faces of the
coarse grid so that each coarse connection has a a given combination of facies values on
opposite sides of the interface:

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

528 Grid Coarsening

G = computeGeometry(cartGrid([8, 8], [1 1]));
f = @(c) sin(3*pi*(c(:,1)-c(:,2)));
pf = 1 + (f(G.cells.centroids) > 0);
plotCellData(G, pf,'EdgeColor','none');

pv = partitionCartGrid(G.cartDims, [2 2]);
pf = cellPartitionToFacePartition(G,pf);
pf = processFacePartition(G, pv, pf);
CG = generateCoarseGrid(G, pv, pf);
CG = coarsenGeometry(CG);
cmap = lines(CG.faces.num);
for i=1:CG.faces.num

plotFaces(CG,i,'LineWidth',6,'EdgeColor', cmap(i,:));
end
text(CG.faces.centroids(:,1), CG.faces.centroids(:,2), ...

num2str((1:CG.faces.num)'),'FontSize',20,'HorizontalAlignment', 'center');

 1

 2

 3 4 5

 6

 7

 8 9

10

11

12 13

14

15

16
1718

19

20

21

22
23 24 25 26 27 28 29

30

31

32

As for the volumetric partition, we require that each interface that defines a connection
in the face partition consists of a connected set of cell faces. That is, it must be possible
to connect any two cell faces belonging to given interface by a path that only crosses
edges between cell faces that are part of the interface. To ensure that all coarse interfaces
are connected collections of fine faces, we have used the routine processFacePartition,
which splits disconnected interfaces into one or more connected interfaces.
The same principles apply also in 3D, here illustrated for a rectangular block with a
rectangular cut-out:

G = computeGeometry(cartGrid([20 20 6]));
c = G.cells.centroids;
G = removeCells(G, ...

(c(:,1)<10) & (c(:,2)<10) & (c(:,3)<3));
plotGrid(G); view(3); axis off

We introduce a volumetric partition and a face partition:

p = partitionUI(G,[2, 2, 2]);
q = partitionUI(G,[4, 4, 2]);
CG = generateCoarseGrid(G, p, ...

cellPartitionToFacePartition(G,q));

plotCellData(CG,(1:max(p))','EdgeColor','none');
plotFaces(CG,1:CG.faces.num,...

'FaceColor' , 'none' , 'LineWidth' ,2);
view(3); axis off

The structure CG also contains lookup tables for mapping blocks and interfaces in the
coarse grid to cells and faces in the fine grid. To illustrate, we visualize one connection of

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.3 Partitioning Stratigraphic Grids 529

a subdivided coarse face that consists of several fine faces, along with the fine cells that
belong to the neighboring blocks:

face = 66;
sub = CG.faces.connPos(face):CG.faces.connPos(face+1)-1;
ff = CG.faces.fconn(sub);
neigh = CG.faces.neighbors(face,:);

show = false(1,CG.faces.num);
show(boundaryFaces(CG)) = true;
show(boundaryFaces(CG,neigh)) = false;
plotFaces(CG, show,'FaceColor',[1 1 .7]);
plotFaces(G, ff, 'FaceColor', 'g')
plotFaces(CG,boundaryFaces(CG,neigh), ...

'FaceColor','none','LineWidth', 2);
plotGrid(G, p == neigh(1), 'FaceColor', 'none', 'EdgeColor', 'r')
plotGrid(G, p == neigh(2), 'FaceColor', 'none', 'EdgeColor', 'b')

14.3 Partitioning Stratigraphic Grids

You can also apply the principles outlined in the previous section to stratigraphic grids.
To demonstrate this, we coarsen two corner-point models of industry-standard complexity:
the sector model of the Johansen aquifer introduced in Section 2.5.4 and the SAIGUP
model from Section 2.5.5. We also apply a few more advanced partition methods to the
sector model with intersecting faults from Section 3.3.1. Full details are given in the scripts
coarsenJohansen, coarsenSAIGUP, and coarsenCaseB4.

14.3.1 The Johansen Aquifer

The Johansen models were originally developed to study a potential site for geological stor-
age of CO2 injected as a supercritical fluid deep in the formation. In Section 2.5.4, we saw
that the heterogeneous NPD5 sector model contains three formations: the Johansen sand-
stone delta bounded above by the Dunlin shale and below by the Amundsen shale. These
three formations have distinctively different permeabilities (see Figure 2.15 on page 46)
and play a very different roles in the sequestration process. The Johansen sandstone has
relatively high porosity (and permeability) and is the container in which the CO2 is to
be kept. The low-permeability Dunlin shale acts as a seal that prevents the CO2 from
escaping back to the sea bottom, and we generally expect that the buoyant CO2 phase will
accumulate as a thin plume that migrates upward under the caprock in the up-dip direction.

To accurately simulate the up-dip migration under the top seal, it is highly important to
preserve the correct interface between the Johansen sandstone and the Dunlin shale in the
coarse model. (In general, it is a good advice to avoid creating coarse blocks containing
large media contrasts, which would otherwise adversely affect upscaling accuracy.) We

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

530 Grid Coarsening

Table 14.1 Permeability values used to distinguish the
different formations in the NPD5 sector model of the
Johansen formation.

Dunlin Johansen Amundsen

K ≤ 0.01mD 0.1 mD < K 0.01 mD < K ≤ 0.1mD

Figure 14.4 A 4× 4× 11 coarsening of the NPD5 model of the Johansen aquifer that preserves the
Amundsen, Dunlin, and Johansen formations.

therefore coarsen the three formations separately, using permeability values K as indicator
as shown in Table 14.1. Likewise, to correctly resolve the formation and migration of the
thin plume, it is essential that the grid has as high vertical resolution as possible. Unless
we use a vertically integrated model (as in MRST co2lab [19]), we would normally
only reduce the lateral resolution, say by a factor of four in each lateral direction. Here,
however, we first use only a single block in the vertical direction inside each formation to
more clearly demonstrate how the coarsening can adapt to the individual formations.

Assuming that the grid G and the permeability field K have been initialized properly as
described in Section 2.5.4, the coarsening procedure reads

pK = 2*ones(size(K)); pK(K<=0.1) = 3; pK(K<=0.01)= 1;
pC = partitionUI(G, [G.cartDims(1:2)/4 1]);
[b,i,p] = unique([pK, pC], 'rows');
p = processPartition(G,p);
CG = generateCoarseGrid(G, p);
plotCellData(G,log10(K),'EdgeColor','k','EdgeAlpha',.4); view(3)
outlineCoarseGrid(G,p,'FaceColor','none','EdgeColor','k','LineWidth',1.5);

Figure 14.4 shows the coarse grid obtained by intersecting the partition vector pC, which
has only one block in the vertical direction, with the partition vector pK that represents the

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.3 Partitioning Stratigraphic Grids 531

different formations. In regions where all formations are present, we get three blocks in the
vertical direction. In other regions, only the Dunlin and Amundsen shales are present and
we hence have two blocks in the vertical direction.

The aquifer model contains one major and several minor faults. As a result, 1.35% of the
cells in the original grid have more than six neighbors. Coarsening a model with irregular
geometry (irregular perimeter, faults, degenerate cells, etc.) uniformly in index space will in
most cases give many blocks with geometry that deviates quite a lot from being rectangular.
The resulting coarse grid thus contains a larger percentage of unstructured connections than
the original fine model. For this particular model, 20.3% of the blocks have more then six
coarse faces. If we look at a more realistic coarsening that retains the vertical resolution of
the original model, 16.5% of the blocks have more than six neighboring connections. This
model is obtained if we repeat the earlier construction using

pC = partitionUI(G, G.cartDims./[4 4 1]);

Figure 14.5 shows six different coarse blocks sampled from the top grid layer of the
Dunlin shale. Block number one is sampled from a part of the aquifer perimeter that does
not follow the primary grid directions and thus has irregular geometry. The other five blocks
contain (parts of) a fault and will therefore potentially have extra connections to blocks in
grid layers below. Despite the irregular geometry of the blocks, the coarse grid can be
used directly with most of the solvers discussed earlier in the book. In our experience, the
quality of the coarse solution is generally more affected by the quality of the upscaling of
the petrophysical parameters (see Chapter 15) than by the irregular block geometry. In fact,
irregular blocks that preserve the geometry of the fine-scale model respect the layering and
connections in the fine-scale geology and therefore often give more accurate results than a
coarse model with more regular blocks if upscaled correctly.

1

2
3

4
5

6

Figure 14.5 Six coarse blocks sampled from the top grid layer of the Dunlin formation in a 4× 4× 1
coarsening of the NPD5 sector model of the Johansen formation.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

532 Grid Coarsening

14.3.2 The SAIGUP Model

The SAIGUP model, introduced in Section on page 97, has six user-defined rock types
(also known as saturation regions; see Figure 2.20) that are used to specify different rock-
fluid behavior (relative permeability and/or capillary pressure functions). Depending upon
the purpose of the reduced model, we may want to preserve these rock types using the
same type of technique as described in the previous example. This has the advantage that
if each coarse block is made up of one rock type only, we would not have to upscale
the rock-fluid properties. On the other hand, this typically leads to coarse grids with
(highly) irregular block geometries and large variations in block volumes. To illustrate this
point, we start by partitioning the grid uniformly into 6 × 12 × 3 coarse blocks in index
space:

p = partitionUI(G,[6 12 3]);

This introduces a partition of all cells in the logical 40 × 120 × 20 grid, including
cells that are inactive. To get a contiguous partition vector, we remove blocks that
contain no active cells, and then renumber the vector. This reduces the total num-
ber of blocks from 216 to 201. Some of the blocks may contain disconnected cells
because of faults and other nonconformities, and we must therefore postprocess the
grid in physical space and split each disconnected block into a new set of connected
sub-blocks:

p = compressPartition(p);
p = processPartition(G,p);

The result is a partition with 243 blocks that each consists of a set of connected cells in the
fine grid. Figure 14.6 shows an explosion view of the individual coarse blocks. Whereas
all cells in the original model are almost exactly the same size, the volumes of the coarse
blocks span almost two orders of magnitude. In particular, the irregular boundary near the
crest of the model introduces small blocks consisting of only a single fine cell in the lateral
direction. Large variations in block volumes will adversely affect any flow solver if we later
run a flow simulation on the coarsened model. To get coarse blocks with a more even size
distribution, we therefore pick the smallest blocks and merge them with the neighbor that
has the largest block volume. We repeat this process until the volumes of all blocks are
above a prescribed lower threshold.

The merging algorithm is quite simple: we compute block volumes, select the block
with the smallest volume and merge this block with one of its neighbors. Next, we
update the partition vector by relabeling all cells in the block with the new block number
and compress the partition vector to get rid of empty entries. Finally, we regenerate a
coarse grid, recompute block volumes, pick the block with the smallest volume in the
new grid, and repeat the process. In each iteration, we plot the selected block and its
neighbors:

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.3 Partitioning Stratigraphic Grids 533

Figure 14.6 Logically Cartesian partition of the SAIGUP model. The plot to the left shows an
explosion view of the individual blocks colored with colorcube. The bar graph to the right shows
the volumes in units [m3] for each of the blocks in the partition.

blockVols = CG.cells.volumes;
meanVol = mean(blockVols);
[minVol, block] = min(blockVols);
while minVol<.1*meanVol

% Find all neighbors of the block
clist = any(CG.faces.neighbors==block,2);
nlist = reshape(CG.faces.neighbors(clist,:),[],1);
nlist = unique(nlist(nlist>0 & nlist�=block));
plotBlockAndNeighbors(CG, block, ...

'PlotFaults', [false, true], 'Alpha', [1 .8 .8 .8]);

% Merge with neighbor having largest volume
[�,merge] = max(blockVols(nlist));

% Update partition vector
p(p==block) = nlist(merge);
p = compressPartition(p);

% Regenerate coarse grid and pick the block with the smallest volume
CG = generateCoarseGrid(G, p);
CG = coarsenGeometry(CG);
blockVols = CG.cells.volumes;
[minVol, block] = min(blockVols);

end

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

534 Grid Coarsening

To find the neighbors of a given block, we first select all connections that involve block
number block, which we store in the logical mask clist. We then extract the indices
of the blocks involved in these connections by using clist to index the connection list
CG.faces.neighbors. The block cannot be merged with the exterior or itself, so values 0
and block are filtered out. A pair of blocks may generally share more than one connection,
so unique is used to remove multiple occurrences of the same block number.

When selecting which neighbor a block should be merged with, there are several points
to consider from a numerical point of view. We typically want to keep blocks as regular and
uniformly sized as possible, make sure that the cells inside each new block are well con-
nected, and limit the number of new connections we introduce between blocks. Figure 14.7
shows several of the small blocks and their neighbors. In the algorithm shown in the most
recent code box, we have chosen a simple merging criterion: each block is merged with the
neighbor having the largest volume. In iterations one and three, the blue blocks are merged
with the cyan blocks, which is probably fine in both cases. However, if the algorithm later
wants to merge the yellow blocks, using the same approach may not give good results as
shown in iteration ten. Here, it is natural to merge the blue block with the cyan block that
lies in the same geological layer (same K index) rather than merging it with the magenta
block that has the largest volume. The same problem is seen in iteration number four, where
the blue block is merged with the yellow block, which is in another geological layer and
only weakly connected to the blue block. As an alternative, we could choose to merge with
the neighbor having the smallest volume, in which case the blue block would be merged
with the yellow block in iterations one and three, with the magenta block in iteration four,
and with the cyan block in iteration six. This would tend to create blocks consisting of cells
from a single column in the fine grid, which may not be what we want. Another solution
would be to merge across the coarse face having the largest transmissibility (sum of fine-
scale transmissibilities).

Altogether, we see that there are several issues we need to take into consideration
and these could potentially lead to mutually conflicting criteria. This obviously makes it
difficult to devise a good algorithm that merges blocks in the grid in a simple and robust
manner. A more advanced strategy could, for instance, include additional constraints that
penalize merging blocks belonging to different layers in the coarse grid. Likewise, you
may want to avoid creating connections that only involve small surface areas. However,
such connections may already be present in the coarsening we start from, as illustrated by
the yellow and cyan blocks in the lower-right plot in Figure 14.7, which were created when
partitioning the grid uniformly in index space.

The basic processPartition routine only checks that there is a connection between
all cells inside a block. A more sophisticated routine could obviously also check the face
areas associated with each connection, or the magnitude of the associated transmissibility,
and consider different parts of the block to be disconnected if the area or transmissibil-
ity that connects them is too small. As a step in this direction, we could consider the
face area when we postprocess the first uniform partition, e.g., do something like the
following,

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.3 Partitioning Stratigraphic Grids 535

Iteration 1:
blue→ cyan

Iteration 4: blue→ yellow

Iteration 6:
blue→ yellow

Iteration 3: blue→ cyan

Iteration 10:
blue→ magenta

Figure 14.7 Examples of small blocks (in blue) being merged with one of their neighbors shown in
semitransparent color with fault faces in gray.

p = partitionUI(G,[6 12 3]);
p = compressPartition(p);
p = processPartition(G, p, G.faces.areas<250);

This increases the number of blocks in the final grid obtained after merging small blocks
from 220 to 273, but avoids constructing blocks looking like the yellow and cyan block in
the lower-right plot in Figure 14.7. On the other hand, this approach obviously involves a
threshold parameter that will vary from case to case and has to be set by an expert. The

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

536 Grid Coarsening

result may also be very sensitive to the choice of this parameter. To see this, you can try to
redo the initial partition with threshold values 300 and 301 for the face areas.

14.3.3 Near Well Refinement for CaseB4

In this example1, we consider the smallest 36×48×12 pillar grid from CaseB4 (see Section
3.3.1) describing a reservoir section with two intersecting dip-slip faults. The reservoir is
known to have four distinct geological layers with k indices 1, 2–7, 8–11, and 12. We start
by making a standard load-balanced partition in index space:

p0 = partitionUI(G, [7 9 1]);
pf = processPartition(G, p0, find(G.faces.tag==1));

In the second line, we identify all fault faces and ask the processing routine to remove any
connections across these faces when examining whether any of the 63 original blocks are
disconnected or not. Blocks that are fully penetrated by a fault will contain at least two
connected components and will hence be split. After splitting, the partition has 79 blocks.
Although not needed for this model, it is quite simple to also split blocks that are only
partially penetrated by faults; see [187] for more details. The disadvantage of imposing
hard constraints like fault faces on the partitioning process is that it tends to increase the
variation in block sizes, as shown in Figure 14.8.

Pressure gradients and flow rates are usually much larger near wells than inside the
reservoir. How accurate we are able to capture the flow solution in the near-well region
strongly influences the accuracy of the overall simulation. It may therefore be desirable to
have higher grid resolution in the near-well zone than inside the reservoir. To refine blocks
near the two wells, we use refineNearWell from the coarsegrid module, which takes
a set of points and partitions these into cylindrical sectors around a single point in the xy-
plane. The first well is placed in the corner of the reservoir section and we partition the
perforated well block into five radial sections. The width of the radial sections is set to
decay as the logarithm of the radial distance:

[wc,p] = deal(W(i).cells(1), pf); % Pick well cell in top layer
wpt = G.cells.centroids(wc,:); % Center point of refinement
cells = (p == p(wc)); % All cells in block
pts = G.cells.centroids(cells,:); % Points to be repartitioned
out = refineNearWell(G.cells.centroids(cells,:), wpt, ...

'angleBins', 1, 'radiusBins', 4, ...
'logbins', true, 'maxRadius', inf);

p(cells) = max(p) + out; % Insert new partition in block
p = compressPartition(p); % and compress vector

The second well is perforated in the middle of a coarse block. It is therefore natural to
refine both in the radial and the angular directions. The number of blocks in the angular

1 Complete code: coarsenCaseB4.m in the book module.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.3 Partitioning Stratigraphic Grids 537

7× 9× 1 partition + split across faults

+ near-well refinement + adapt to layers

Rectangular

METIS: 63 blocks + near-well refinement

METIS

Figure 14.8 Partitioning of the CaseB4 pillar grid. The rectangular partition starts by a call
to partitionUI, followed by the splitting of blocks across faults, near-well refinement by
refineNearWell, and finally, vertical partition following geological layers. The METIS partition
starts by a graph partitioning with transmissibility as edge weights followed by a near-well
refinement. The large plots show how the partition is gradually refined by including new partition
principles. The small plots show the variation in block volumes relative to the volume of the smallest
block.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

538 Grid Coarsening

direction can be set for each radial section. Here, we therefore let the number of blocks
increase outward, starting with a single block in the innermost layer, and then four, six, and
nine blocks in the next three layers. To be able to place such a refinement, we repartition
not only the well block but also the eight surrounding neighbors. To find these blocks, we
construct a temporary coarse grid structure and use the topology from CG to construct an
adjacency matrix similar to the one we discussed on page 522.

% Adjacency matrix
CG = generateCoarseGrid(G, pw);
N = getNeighbourship(CG);
A = getConnectivityMatrix(N,true,CG.cells.num);

% Find all axial/diagonal neighbors
rblk = zeros(CG.cells.num,1);
rblk(pwv)=1;
rblk((A*A*rblk)>1) = 1;
cells = rblk(pw)>0;

r = 1

Ar = 11 1
1

1

A2r = 2 2
2

2

2

22

2
51 1

1

1

We start by defining an indicator vector rblk equal one in the well block and zero in all
other blocks. Multiplying by the adjacency matrix A will set the value in each block equal
the sum over the block and its face-neighbors. After one multiplication, rblk therefore
has ones in all the face-neighbors, and after two multiplications all blocks surrounding the
initial block should have value larger than one. Next, we reset rblk to one in all blocks
with A*A*rblk > 1 and index the resulting vector by the partition vector pw to extract all
cells inside these blocks. These cells can be repartitioned as for the first well:

out = refineNearWell(pts, wpt, 'angleBins', [1,4,6,9],...
'radiusBins', 4, 'logbins', true, 'maxRadius', inf);

Altogether, this increases the number of coarse blocks to 93. Finally, we can impose vertical
refinement that follows the four geological layers. Assuming the indices of these layers are
given as an indirection map, this partition is constructed as follows:

% Here: layers = [1 2 8 12 13]
pK = rldecode((1:numel(layers)-1)',diff(layers));
[�,�,k]=gridLogicalIndices(G);
pk = compressPartition((pK(k)-1)*max(pw)+pw);
pk = processPartition(G, pk);

The resulting partition shown in Figure 14.8 has 372 blocks and significant variation in
block sizes. This does not necessarily make the coarse grid ill-suited for flow simulations,
but in a more careful implementation it would have been natural to postprocess the grid
to get rid of small blocks away from the near-well regions that can be merged with their
neighbors.

As an alternative to the regular partition in index space, we can use a standard soft-
ware like METIS [154], which offers state-of-the-art partitioning of graphs and meshes
based on multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.3 Partitioning Stratigraphic Grids 539

algorithms. METIS generally tries to make blocks that are as uniform as possible and
at the same time have as few connections as possible. If we let fine-scale transmissi-
bilities measure connection strengths between cells for the edge-cut minimization algo-
rithm, the software tries to construct blocks without crossing large permeability contrasts.
The coarsegrid module implements a wrapper that greatly simplifies the task of calling
METIS. The following call gives a partition with approximately the same number of blocks
as in the structural partition with four vertical layers, just discussed:

mrstModule add incomp
hT = computeTrans(G, rock);
p0 = partitionMETIS(G, hT, 7*9*4, 'useLog', true);

The partitioning function uses the standard incompTPFA solver from the incomp module
to set up a fine-scale discretization matrix that describes how cells are connected. Here, we
take the logarithm of the transmissibilities before the connection strength is constructed.
Experience shows that this gives better partitions when transmissibilities vary several orders
of magnitude locally. The resulting partition is shown in the lower-left plot in Figure
14.8. Compared with the rectangular partition, the grid blocks are more irregular and
have more connections and larger variation in block sizes. Also for this partition, we can
introduce near-well refinement exactly as described in this subsection. The first well falls
within a smaller grid block and hence gives slightly different local blocks. For the second
well, our detection of neighboring blocks selects a larger region to repartition and hence
refineNearWell is able to generate a refinement that looks more circular compared our
first partition method.

A technical note: To inform the system where to find METIS, we use a global variable
METISPATH that can be set in your startup_user function. If you, like me, use Linux
and have installed METIS in, e.g., /usr/local/bin, you add the following line to your
startup_user.m file:

global METISPATH; METISPATH = fullfile('/usr','local','bin');

Computer exercises

14.3.1 Rerun CaseB4 with the stair-stepped model instead. Why does the code not work?
(Hint: check the number of active cells.) Can you make a partition that splits blocks
properly on opposite sides of faults?

14.3.2 The code example also contains a set up that tries to force METIS to split blocks
across faults, which does not work well. Can you develop an alternative strategy
to ensure that fault faces are also preserved in the METIS partition? (Hint: try to
partition each fault block separately.)

14.3.3 Try to implement the merging technique from the SAIGUP example to reduce the
large difference in cell volumes. (Hint: make sure that you do not merge any blocks
in the near-well regions.)

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

540 Grid Coarsening

14.4 More Advanced Coarsening Methods

The previous section outlined two main types of partitioning methods. Systematic graph
partitioning algorithms like those implemented in METIS are widely used and very robust,
but do not necessarily give you the desired control over the coarsening process. In par-
ticular, it can be quite difficult to rigorously formulate the desired coarsening as a set of
cost functionals and constraints that are well posed and computationally tractable. More ad
hoc and straightforward approaches that explicitly impose a structured partition in index
space or use features from the model as partition vectors (Section 14.1.3) leave you in full
control, but can easily lead to undesired artifacts like large variations in block volumes as
we saw for SAIGUP and CaseB4. For large and complex models one cannot rely on visual
quality control and manual repair of individual blocks. A significant body of research has
therefore been devoted to develop automated or semiautomated coarsening procedures that
incorporate certain features of the geology or flow physics.

Most methods reported in the literature try to generate a coarser and more optimal
grid consisting of standard grid blocks with spatially varying resolution. The size of each
grid block is usually determined by equilibrating a density measure or by introducing a
background indicator whose variation is minimized within blocks and maximized between
blocks. In particular, it is common to impose constraints on the geometrical shape of the
new grid blocks (Delaunay/Voronoi) and the degree to which they align with the cells in
the original grid [257, 47, 100]. Density measures and indicators can be defined using
geological quantities like permeability [116, 160]; flow-based quantities like fluid velocity
[101], vorticity [201], or streamlines [301, 72, 59, 310, 126]; local a priori error measures
[162]; or statistical or a posteriori goal-oriented error indicators that measure how a par-
ticular point influences the error in production responses or other predefined quantities.
Flow-based coarsening has been shown to be a powerful approach in combination with
upscaling, and has been developed both for structured and unstructured grids. The basic
goal of flow-based griding [93] is to introduce higher resolution in regions of high flow and
coarser resolution in regions of lower flow.

An alternative approach is to generate coarse blocks by agglomerating cells that are
similar in a sense prescribed by the user. This gives coarse blocks with complex polyhedral
forms that follow the geometries of the original fine grid. An early approach in this direction
[3] was aimed at coarse-scale discretization of transport equations and suggested to group
cells according to the magnitude of the velocity (or flux) field so that each coarse block con-
sists of a collection of cells through which the flow has approximately the same magnitude.
Later research has shown that the original nonuniform coarsening method is just a special
case of a much wider set of heuristic methods for producing coarse partitions that adapt
to various types of geological or flow constraints. These methods have been developed
for three different purposes: (i) to increase the accuracy of multiscale pressure solvers by
adapting to fine-scale geological features [5, 6, 222, 194, 17, 191]; (ii) to define partitions
that preserve rock types or relperm regions and thereby reduces the need for upscaling; and
(iii) to find flow-adapted partitions suitable for coarse-scale transport solvers [3, 125, 124].

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.5 A General Framework for Agglomerating Cells 541

These methods can, in turn, be incorporated into a more general framework that tries to
impose various types of geological/flow constraints in a hierarchical manner [187]. Similar
aggregation-based methods have been applied to fractured media [153, 138]. The agglom
module implements a set of modular components that can be combined in different ways
to create various types of agglomerated partitions as outlined in the next section.

14.5 A General Framework for Agglomerating Cells

This section outlines the general agglomeration framework implemented in the agglom
module. The agglomeration process can be viewed as governed by three rules:

• a neighbor definition that gives the permissible directions one can search for new cells to
agglomerate;

• a set of indicator functions that determine the feasible directions among all the permissi-
ble directions;

• one or more indicators to determine how far the agglomeration should proceed, i.e.,
indicators that can be used to locally determine the size of each grid block.

Permissible directions are given by the grid topology and will in the default setup consist of
all face neighbors. However, the permissible directions can also be extended to include cells
sharing a common edge/node or cells whose centroids lie within a prescribed geometric
distance. Likewise, the permissible directions can be restricted locally so that blocks cannot
be agglomerated across faults or boundaries between different facies types, initialization
regions, saturation regions, etc. The feasible directions are defined through a set of cell-
based indicator functions that may contain geological or petrophysical features, flow-based
quantities, or general user-set expert knowledge. One can also impose additional rules that
prevent the total indicator function from growing too large within blocks, try to regularize
the outline of the blocks, minimize aspect ratios. Altogether, this gives a very flexible
framework that can be used to construct many different types of grids.

To realize this framework, the agglom module implements a set of source functions that
create new partition vectors, and a set of filter functions that take one or more partitions as
input and create a new partition as output. Examples of filter operations include combin-
ing/intersecting multiple partition vectors; performing sanity checks and modifications to
ensure that no blocks are disconnected or contained within other blocks; or modifying the
partition vector by merging small blocks or splitting large blocks.

14.5.1 Creating Initial Partitions

You have already seen several examples of topological partitions, e.g., generated by
partitionUI from the coarsegrid module. Another way to create initial partitions is
to segment indicator functions representing the heterogeneity of the medium. Examples
of such indicator functions include the logarithm of permeability, velocity magnitude,

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

542 Grid Coarsening

Figure 14.9 Segmentation with permeability as indicator for CaseB4 with four lognormally dis-
tributed layers (left). The right plot shows the resulting bins.

time-of-flight or residence time, vorticity, etc. Assuming we have an indicator function I
that takes a single value in each cell of a grid G, the indicator can be segmented into bins
by calling

p = segmentIndicator(G, I, bins)

Constructing indicator functions and making initial partitions will typically involve some
kind of expert knowledge, and hence the MRST module does not offer specific routines.
However, the tutorials contain several examples that should be instructive. To illustrate
this function, let us revisit the CaseB4 example from Section 14.3.3 and see if we can use
this function with permeability as an indicator to automatically detect the four geological
layers in the model. The permeability is lognormal within each layer. The histogram of
permeability values in Figure 14.9 has four distinct peaks, but the different layers are not
clearly separated. We thus pick limits for the bins in the local minima of the distribution (K
is given in md):

p = segmentIndicator(G, K, [0 30 80 205 inf], 'split', false);

Here, we have asked the function to only output the segmented bins. These bins, shown
to the right in Figure 14.9, do not follow the layers exactly since permeability values are
not unique to a single layer. If it is important to preserve the layering exactly, we would be
better off by using the k index for the initial partition. In other cases like the SPE 10 model,
all we have to bin different rock types are the permeability and/or porosity values.

14.5.2 Connectivity Checks and Repair Algorithms

Partitions defined by segmenting indicator functions usually give bins that consist of
multiple connected components. These can be split by the function processPartition as
discussed in Section 14.1.2. This function is called by default from within

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.5 A General Framework for Agglomerating Cells 543

1

2
3

4

confined blocks

Figure 14.10 The left plot shows coarse blocks from the initial segmentation of CaseB4; the
histogram of cells per block has logarithmic y-scale. Blocks 1,2 and 3,4 are disconnected components
from layers two and three, respectively. The right figure shows isolated blocks that are completely
confined within another block.

segmentIndicator, and if we drop the optional 'split' flag from the call, the initial
bins are split so that they form blocks satisfying MRST’s basic requirements for a coarse
grid. Figure 14.10 shows that the resulting partition consists of six large coarse blocks and
a number of smaller ones. Layers two and three are not fully connected across all faults
and the corresponding bins have therefore each been split in two large blocks (1 and 2, and
3 and 4 in the plot). The remaining small blocks are the result of permeability variations
inside the layers.

Blocks that are entirely confined within other blocks only have a single interface. When
the resulting grid is used for flow simulation, the only flow that can pass the interface
between the block and its surrounding neighbor must be caused by source terms or com-
pressible effects. This tends to create numerical artifacts unless the block contains a well.
For incompressible flow, in particular, the corresponding block interface will act as an
internal no-flow boundary. An additional sanity check should therefore be performed to
detect such blocks:

cb = findConfinedBlocks(G, p);
[cb,p] = findConfinedBlocks(G,p);

The first call just outputs a list of confined blocks, whereas the second also merges these
blocks with their surrounding neighbor. The right plot in Figure 14.10 illustrates confined
blocks for CaseB4.

The detection algorithm is somewhat simplified and the function cannot handle nested
cases properly. In the case of recursively confined blocks, only the outermost and the
innermost blocks are listed in cb. To find a more general solution, we can look to algorithms
for detecting biconnected components from graph theory. Let me explain the idea by a
simple example: Figure 14.11 shows a 7×7 grid partitioned into six coarse blocks together

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

544 Grid Coarsening

1

1

2

2

3

3

4

4

5 5

6

6

Coarse grid graph

findConfinedBlocks removeConfinedBlocks

Figure 14.11 Detection and repair of recursively confined blocks by use of functionality from the
MATLAB Boost Graph Library. The simple findConfinedBlocks function fails to detect and repair
cases where a set of blocks are confined within another block.

with the corresponding coarse-grid graph. This graph is not biconnected: node 3 belongs
to two connected components (1–2–3 and 3–4–5–6), and if this node is removed, the graph
becomes disconnected. The function

pn = removeConfinedBlocks(G, p)

merges single confined blocks with their surrounding blocks. In addition, it uses function-
ality from the MATLAB Boost Graph Library2 to determine whether a graph is bicon-
nected or not and to find the corresponding components of the graph. If the graph is not
biconnected, any grid block that completely surrounds a set of other blocks is split in two
(along a plane orthogonal to the x-axis through the block center). The resulting partition
is not necessarily singly connected and may have to be processed by a further call to
processPartition.

14.5.3 Indicator Functions

The agglomeration framework relies on two indicator functions, which we for simplicity
refer to as a volume indicator and a flow indicator. We assume that each indicator function

2 This software is freely available under a BSD License. The matlab_bgl module has a function downloadMBGL that
downloads and installs this library. This is one of the few examples of external dependencies in MRST.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.5 A General Framework for Agglomerating Cells 545

takes value I (ci) in cell ci and that these values can be interpreted as densities, i.e., that they
are positive, additive, and normalized by the cell volume |ci |. As for the cells, we associate
indicator values I (Bj) to each block, defined as the volumetric average of the cell indicator
values within the block (or as the arithmetic average if I is not a density).

The volume indicator is only used to determine block volumes and is either set to be
unity for bulk volumes and φ for pore volumes. The flow indicator can in principle be any
user-defined quantity, but typical examples include quantities derived from permeability,
time-of-flight or residence time, velocity or flux, vorticity, and so on (see discussion in
[124]). Error indicators or sensitivities can also be used as flow indicators. Specific exam-
ples are given later.

To understand the role of these two indicators, let us look at four general principles you
can use to control how cells are grouped together:

1. The variation of the flow indicator should be minimized inside each block. That is,
each block should be as homogeneous as possible so that cells with high and low
permeabilities, large and small fluxes, high and low travel times, and so on, are separated
in different blocks. Likewise, cells from different facies, deposition environments, flow
units, initialization regions, relperm/capillary regions, and so on, should preferably not
be agglomerated into the same block. Algorithmically, this means that the flow indicator
is used to pick the most feasible among the permissible neighbors of a block when
adding a new cell to a growing block.

2. The integral of the flow indicator should be equilibrated over blocks. You can use this
principle refine resolution in regions with high flow, low residence time, high error
or sensitivity indicator, and so on. Full equilibration will in general require rigorous
optimization. Algorithms in the agglom framework instead try to ensure that the integral
of the flow indicator is within prescribed upper bounds. These bounds determine when
to stop agglomerating more cells into a block, or alternatively, determine when blocks
are too big and must be split.

3. The size of each block should be with certain upper and lower bounds. Algorithmically,
upper limits on block sizes are imposed by the upper bound on the flow indicator,
whereas lower bounds are imposed through the volume indicator when determining the
blocks that should potentially be merged with their neighbors.

4. Blocks should not have too-large aspect ratios and be as regular as possible. Regularity
is determined in part by the source functions generating initial partitions, and in part
by filter functions that split or merge individual blocks. Controlling regularity may be
difficult in ad hoc algorithms, and if regularity is important, you may be better off using
METIS.

14.5.4 Merge Blocks

We have already seen how manually constructed partitions can give grids with very large
variations in block sizes. Variations in block sizes can be even more pronounced if the
initial partition is created by segmenting an indicator function. One method to remedy the

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

546 Grid Coarsening

problem would be to loop through all blocks in the partition and try to merge each small
blocks with one of its neighbors. Our simple implementation in the SAIGUP example from
Section 14.3.2 was not very efficient as it required generation of a new coarse grid structure
in each iteration. Our choice of merging with the neighbor having largest volume was also
somewhat ad hoc.

In the agglomeration framework, we use the volume indicator Iv to measure the size of
cells and blocks with Iv ≡ 1 for bulk volume and Iv = φ for pore volume. (The latter
definition can also be modified to include net-to-gross or other factors that affect the pore
volume.) Let G = {ci}ni=1 denote the whole grid consisting of n cells that each has a bulk
volume |ci |. Then, block Bj = {ci |p(ci) = j} should be merged with a neighbor if it
violates the following lower bound

Iv(Bj) |Bj | ≥ nl Īv, Īv = 1

n

n∑
i=1

Iv(ci) |ci |, (14.1)

where nl ≥ 1 is a prescribed constant and Iv(Bj)|Bj | =
∑

ci∈Bj
Iv(ci) |ci |. In other words,

block Bj should be merged if its integrated indicator value is less than nl times the average
volume indicator value for all cells. To determine which block to merge with, we use
the flow indicator If and merge block Bj with the block among block Bj ’s permissible
neighbors N (Bj) that has the closest indicator value, i.e.,

B̃ = argminB⊂N (Bj) |If (B)− If (Bj)|. (14.2)

This is implemented in the function

q = mergeBlocks(p, G, Iv, Ifl, NL, 'static_partition', ps)

which takes a partition p, a volume indicator Iv, and a positive flow indicator Ifl and
merges all blocks that violate (14.1). In doing so, each merged block is agglomerated into
the neighboring block that has the closest If value. Optionally, the merging operation can
be set to respect a static partition p2 so that no block ends up having different ps values.

The problem with this method is that it does not impose any control on the upper size
of the merged blocks. In particular, merging with the nearest flow indicator tends to work
against the principle that flow indicators should be equilibrated across all the grid blocks.
The idea3 of the flow indicator is that it should enable us to aggressively coarsen the grid
in regions of low flow or regions that has limited impact on the overall simulation result,
while keeping higher resolution in regions of high flow.

To provide upper control on the size of the blocks, we introduce a second requirement,
this time on the flow indicator:

If (B) |B| ≤ nuĪf , (14.3)

3 In principle, the flow indicator need not have anything to do with flow; I still think it is important that you know the underlying
philosophy so that you can design indicators so that the merging/refinement process works as you desire.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.5 A General Framework for Agglomerating Cells 547

Cell-wise flow indicator

1 1 5 2 2

1 5 1 1 1

4 5 1 2 2

6 1 3 3 3

mergeBlocks

3
9

10

4

420

mergeBlocks2

7

4

9

9

7

4

10

Figure 14.12 Comparison of the two merging algorithms for a simple 5× 4 grid. The left plot shows
the initial partition and the flow indicator If per cell. The middle and right plot shows partitions after
merging, with numbers giving the integrated flow indicator, which according to (14.3) should not
exceed 7.5.

where nu is a prescribed parameter and Īf is the flow indicator averaged over all cells,
defined exactly the same way as Īv . The second merging function

q = mergeBlocks2(p, G, Iv, Ifl, NL, NU)
q = mergeBlocks2(p, G, Iv, Ifl, NL, NU, 'nblock', NB, 'cfac', cfac)

not only provides a more efficient implementation of the merging process, but also imposes
(14.3) as a soft constraint, meaning that the routine tries its best to avoid violating this
condition, but if no other options are available, it merges blocks even if the flow indicator
of the new block becomes too high. It is also possible to specify an optional relative factor
cfac at which (14.3) is turned into a hard constraint. Likewise, the parameter NB gives an
upper bound on the number of cells that can be agglomerated into a single block. (Notice
also that this routine does not support static partitions.)

Figure 14.12 compares the two methods for a small 5×4 grid, called with the parameters

p1 = mergeBlocks(p, G, ones(n,1), I, 2);
p2 = mergeBlocks2(p, G, ones(G.cells.num,1), I, 2, 3);

Here, mergeBlocks identifies four single-cell blocks that are merged with their neighbor
with closest value: 4→6, 5→(2,2), (4,6)→(5,5), and 1→(3,3,3). The result is three new
blocks that all violate (14.3). The alternative routine merges 4→(1,1,1) and 6→1, which
both are acceptable. For cell with value 5, the only option is to merge with (1,1,1,1), even
if this violates (14.3).

14.5.5 Refine Blocks

The next natural step would now be to refine blocks that violate the upper bound (14.3).
You can do this by invoking any of the two calls

p = refineBlocks(p, G, Ifl, NU, @refineUniform, 'cartDims',[Nx Ny Nz])
p = refineBlocks(p, G, Ifl, NU, @refineGreedy)

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

548 Grid Coarsening

The first call refines blocks by encapsulating the corresponding cell indices in a rectangular
bounding box and then performing a load-balanced partition inside this box. The second
line uses a greedy algorithm that starts by picking an arbitrary cell c0 on the block boundary
and then agglomerates a new block from the cell on the block boundary that is furthest away
from the first cell. Once this new block is large enough, the routine once again picks the
cell among the remaining ones that is furthest away from c0 and starts to agglomerating a
second block, and so on. The greedy algorithm comes in four different versions:

• refineGreedy – grows a new block inward from the block boundary by adding one entire
ring of permissible neighbors in each iteration [3]. The permissible level-one neighbors
are all cells sharing a face with existing cells in the growing block (optional parameter
'nlevel'=1). The default behavior ('nlevel'=2) is to also include cells that share (at
least) two faces with existing cells in the block or level-one cells in the ring.

• refineGreedy2 – improved algorithm that only adds parts of the ring of level-one or
level-two neighbors to honor the upper bound (14.3) on the flow indicator.

• refineGreedy3 – sorts cells in the neighbor ring according to number of faces shared with
the growing block. Permissible neighbors are defined by the function neighboursByNodes
and includes all cells that share a face or a node with cells in the growing block.
Computing this neighborship is expensive for large grids.

• refineGreedy4 – sorts cells in the ring of neighbors according to difference in Ifl value,
using the same permissible neighbors as refineGreedy3.

To illustrate how these functions operate for permissible level-one neighbors only, we
consider a 4 × 4 grid with uniform flow indicator If ≡ 1. The functions are run with
the following parameters:

p = refineGreedy(I,G,I,4,'nlevel',n);
:

p = refineUniform(I,G,I,4,'CartDims',[2,2]);

where I is a vector of all ones. Figure 14.13 shows that the uniform partition gives
four blocks, as expected. All greedy algorithms pick c0 = 1 and start agglomerating
blocks from cell 16. The simplest greedy algorithm, refineGreedy, only adds face
neighbors and hence tends to create diamond-shaped blocks like the second block,

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

refineUniform refineGreedy refineGreedy2 refineGreedy3 refineGreedy4

1 2 3 4 5

Figure 14.13 Refinement algorithms using level-one permissible neighbors on a 4 × 4 grid with
uniform flow indicator.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.5 A General Framework for Agglomerating Cells 549

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

refineUniform refineGreedy refineGreedy2 refineGreedy3 refineGreedy4

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 14.14 Refinement algorithms using level-two permissible neighbors (which is the default
setting) on a 5× 5 grid with uniform flow indicator.

which has six cells (8,11,12,14,15,16) and thus violates (14.3). After agglomerating
three blocks, the algorithm is only left with cell c0 and terminates. For refineGreedy2
and refineGreedy4, the first step agglomerates cells (12,15,16). In the next step, cells
(8,11,14) are possible merge candidates, out of which 8 is chosen since it has the smallest
index. After the algorithm has agglomerated five blocks, there are no remaining cells in
the original block and the algorithm terminates. The empty block is removed by a call to
compressPartition, and blocks two to six are renumbered as blocks one to five. The
third algorithm, refineGreedy3, selects cell 11 in the second step since this cell shares
one more face with cells (12,15,16) than the other two candidates. Once the first block is
formed, the greedy algorithms selects the remaining cell with maximum distance to c0 as
the next seed (cell 4 for the first algorithm, cell 11 for the second and fourth, and cell 8 for
the third.)

Figure 14.14 shows a similar test case with level-two neighbors and a 5× 5 grid. Here,
the uniform refinement splits the block into four blocks of size 3×3, 2×3, 3×2, and 2×2.
The first three violate (14.3) and are thus further split twice in each direction. To understand
the irregular block shapes for the greedy algorithm, we can consider agglomeration of the
fourth block, which starts by cells (4,5). Cell 3 is the only permissible neighbor in step two,
whereas the third step has three candidates (2,7,8). All three are added by the first algorithm,
whereas refineGreedy2 chooses the cell with lowest index, which coincidentally gives
a regular block, albeit with a larger aspect ratio. Why the other two algorithms choose
cell 8 is a random effect caused by how MATLAB picks extremal values for a vector with
identical entries.

The greedy refinement algorithms apply equally well to general polygonal/polyhedral
grids with unstructured topologies. Uniform Cartesian refinement, on the other hand, relies
on an ijk numbering and thus primarily works for grids with rectangular topology. How-
ever, the same idea can be generalized to unstructured grids if we instead of relying on
topology use the cell centroids to sample from a rectangular subdivision of each block’s
geometric bounding box (see function sampleFromBox). This type of refinement is imple-
mented in

p = refineRecursiveCart(p, G, I, NU, cartDims)

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

550 Grid Coarsening

The function does not always produce the exact same results as refineBlocks with uni-
form refinement, but usually runs faster.

Refinement and merging are complementary operations that in principle can be applied
in any order. A large number of tests nonetheless show that it is typically better to first
merge small blocks, and then refine large ones, and improved grids can often be obtained
if the merging-refinement process is iterated a few times. Notice also that the greedy
algorithms tend to accentuate irregularity of blocks and should not be used uncritically.

14.5.6 Examples

We end by a few examples that show how the algorithmic components discussed in this
section can be used to generate various types of coarse grids.

Example 14.5.1 (CaseB4) As you may recall from Section 14.3.3, we first partitioned the
CaseB4 grid in the ij coordinates and then split the resulting coarse blocks across the
three faults. Figure 14.15 reports block sizes before and after splitting. To get rid of the
smallest blocks, we can merge all blocks with a pore volume less than 20% of the mean
block volume, which is approximately 50 times the mean cell volume. Applying one of the
merging algorithms directly to the partition risks merging blocks across faults. We avoid
this if we create a new vector that partitions the model into three fault blocks and use this
to constrain the merging algorithm:

areal partition after merging

min [m3] mean [m3] max [m3]

Before split 3.6 · 106 4.3 · 106 5.9 · 106

After split 7.6 · 104 3.4 · 104 5.9 · 106

After merge 0.7 · 106 3.9 · 104 5.9 · 106

Figure 14.15 Areal partition for CaseB4 before and after merging of blocks whose pore volume is
less than 50 times the average cell volume (1.3 · 104 m3). The tabular shows pore volumes in various
stages of the algorithm.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.5 A General Framework for Agglomerating Cells 551

Iv = poreVolume(G, rock)./G.cells.volumes;
pm = mergeBlocks(pf, G, Iv, Iv, 50, 'static_partition', ...

processPartition(G,ones(G.cells.num,1),find(G.faces.tag==1)));

Notice, that we here use the same indicator for both volume and flow, which generally
would cause the algorithm to merge with blocks having similar average porosity values.
After merging, the ratio between the smallest and the largest block is decreased by a factor
ten, and we see that the algorithm has merged small blocks with neighbors on the correct
side of the faults. It is important to merge small blocks before we refine around wells to
avoid merging any of the refined blocks in the near-well region.

There are many different ways one can define flow indicators, for instance:

• From Darcy’s law, we know that if a region is subject to a constant pressure gradient,
the local magnitude of flow is proportional to permeability. Pressure gradients are rarely
constant throughout a reservoir, but permeability can still be used as a simple a priori
indicator to separate potential local regions of high and low flow before any flow solution
is computed.

• Given a flow solution, it is natural to use velocity magnitude in each cell as a flow indi-
cator. For a finite-volume method, this quantity must be reconstructed from the intercell
fluxes (see discussion of non-Newtonian flow in Section 7.4), and alternatively one can
use the sum of the absolute values of the fluxes as a measure that is simpler to compute.
In a certain sense, flux/velocity can be considered as local indicators, since they only
measure relative variations between individual cells and do not account for the actual
flow paths.

• To get a global flow indicator that also takes representative flow paths into account, we
can use time-of-flight or residence time.

As all three quantities tend to vary several orders of magnitude, we use their logarithm
instead as suitable indicators:

iK = log10(rock.perm(: ,1)) ; iK = iK− min(iK) + 1;
v = sqrt(sum(faceFlux2cellVelocity(G, state.flux).^2, 2)) ;
iV = log10(v) ; iV = iV− min(iV) + 1;
iT =−log10(Tf+Tb) ; iT = iT− min(iT) + 1;

assuming that state holds a representative flow solution and that Tf,Tb are the corre-
sponding forward and backward time-of-flight values. Instead of residence time, we could
have used the product of the two time-of-flight values. Let us illustrate these indicators by
an example.

Example 14.5.2 (Adaptive coarsening) Consider a five-spot pattern posed on Layer 25
from the SPE 10 model. For improved readability of plots, we only consider a 120 × 60
excerpt, initially partitioned into a 6 × 3 coarse grid. With a uniform flow indicator, we
would get a coarse grid with 5× 5 cells per block if we apply a 2× 2 refinement twice.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

552 Grid Coarsening

Permeability Velocity Residence time

Figure 14.16 Recursive coarsening of a 120× 60 excerpt of a five-spot well setup on SPE 10, Layer
25. The region is first partitioned uniformly into 6× 3 coarse grids, and then refined recursively by a
factor 2× 2 by different flow indicators with nu = 25 in (14.3).

With a heterogeneous flow indicator, we should expect to see local variations in the grid
resolution. Figure 14.16 confirms this. All the initial blocks are refined twice, so that no
grid block has more than 5 × 5 cells. Indicator iK adds one extra refinement to all blocks
having high permeabilities, since these would experience high flow if all cells in the model
were subject to the same pressure drop. However, not all these blocks experience high flow
for the specific five-spot flow pattern, and similarly there will be significant flow through
many blocks with low(er) permeability because the injector and the two producers in the
southeast/southwest corners lie on opposite sides of the low-permeability belt in the middle
of the model.

High-flow connections between the injector and the two producers are detected much
better by the velocity indicator iV. Unlike the indicator iT based on time-of-flight, the
velocity indicator does not take into account the cumulative resistance to flow along flow
paths and may therefore fail to refine blocks that have low local flow velocities but still lie
along a flow path with low residence time. On the other hand, if a partition is built using a
lot of specific flow information, it might be less suitable when applied to simulate radically
different flow patterns.

Example 14.5.3 (NUC algorithm) The original nonuniform coarsening (NUC) algorithm
[3] starts by segmenting a velocity indicator and then uses a sequence of merge-refine-
merge operations as illustrated in Figure 14.17. Here, we have used the upper half of
the model from the previous example, and constructed the NUC partition by the following
sequence of operations:

[volI,flwI] = deal(poreVolume(G, rock)./G.cells.volumes, iV) ;
ps = segmentIndicator(G, flwI, 5) ;
pm1 = mergeBlocks(ps, G, volI, flwI, 20);
pr = refineGreedy(pm1, G, flwI, 30);
pm2 = mergeBlocks(pr, G, volI, flwI, 20);

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.6 Multilevel Hierarchical Coarsening 553

Figure 14.17 Application of the original nonuniform coarsening method of [3] for a 60×60 excerpts
of a five-spot setup on Layer 25 of SPE 10.

The rightmost plot in the figure is obtained by replacing the merge and refinement opera-
tions by mergeBlocks2 and refineGreedy2, respectively. Although this type of partition
originally was developed to coarsen transport equations, it is currently implemented as
part of an industry-standard tool for single-phase upscaling [187] with time-of-flight as
flow indicator.

The agglom module contains several tutorial examples that give a more in-depth dis-
cussion of the NUC family of coarsening methods, and also includes an example of how
the techniques in this section can be used to generate dynamic grid coarsening that adapts
to evolving displacement fronts.

Computer exercises

14.5.1 How would you merge small blocks after the near-well refinement is introduced
in CaseB4 to avoid merging these refined blocks?

14.5.2 Replace the merging in the SAIGUP example (Section 14.3.2) by mergeBlocks.
Which flow indicator would you choose? Can you change the merging algorithm
so that it can use the SATNUM field as flow indicator? (Hint: to this end you should
use a majority vote rather than a volume-weighted average to get representative
flow indicator per block.)

14.5.3 Rerun the NUC example using the other greedy algorithms with level-1 and level-
2 neighbors and permeability and time-of-flight indicators. Try to use the NUC
algorithm on other examples, e.g., CaseB4.

14.5.4 A greedy agglomeration strategy may not always be optimal: Assume that you
have a coarse block with integrated indicator 410, and that the upper bound is 400.
The algorithm then tries to agglomerate two blocks with indicators 400 and 10,
respectively. Can you make a function that instead tries to split the indicator more
evenly among the new blocks?

14.6 Multilevel Hierarchical Coarsening

Geocellular models are realizations of a deeper geological understanding that include struc-
tural, stratigraphic, sedimentologic, and diagenetic aspects. On the way to generate a grid
model and populating it with petrophysical properties, the reservoir may have been divided

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

554 Grid Coarsening

into different units, flow zones, environments of deposition, layering, and lithographic
facies that each represents characteristics of the rock and how it was formed. The geo-
cellular models we have encountered so far in the book have mainly consisted of a grid
populated with a set of petrophysical properties like permeability, porosity, and net-to-
gross. Some geocellular model may also contain geological indicators such as facies or
rock type used to generate petrophysical properties. We have also seen that reservoirs can
be subdivided into various types of regions to model spatial dependence in relative perme-
ability models (PVTNUM), PTV behavior (PVTNUM), rock compressibility (ROCKTAB),
and equilibration regions (EQLNUM).

The purpose of coarsening a grid is usually to develop one or more reduced models
that only contain the most essential properties that affect fluid flow. It is well known
that structural and stratigraphic frameworks have the largest impact on flow patterns, and
preserving key concepts of these frameworks all the way to flow simulation is crucial
to reliably predict flow patterns in the reservoir [48]. Likewise, it is important to pre-
serve initial fluid contacts. Unfortunately, the volumetric partitions imposed by basic geo-
logical characterization are oftentimes lost in geostatistical algorithms and rarely made
available as cell or face properties in the geocellular models. As an example, consider
the distinction between high-permeability sand channels and low-permeability shales and
coal in the Upper Ness formation from SPE 10. Likewise, think of CaseB4, where we
in Figure 14.9 somewhat unsuccessfully tried to delineate four different geological layers
based on permeability. To simplify future creation of coarse models, I therefore recommend
that as much as possible of the basic geological characterization is preserved in terms of
cellular indicators even after the geocellular model has been populated with petrophysical
properties.

The idea of hierarchical multilevel coarsening is to define the various geological char-
acterizations and regions just discussed as partition vectors, give them individual priority,
and apply them recursively. By varying the number of features included, one can create
a hierarchy of coarse partitions of increasing resolution. This approach can be combined
with the agglomeration framework from the previous section to separate models into flow-
dependent compartments representing high-flow and low-flow zones, or zones that are close
to or far away from wells. A detailed discussion of this approach is outside the scope of
this book. Instead, I give two illustrative examples.

Example 14.6.1 The first example is a conceptual 40 × 40 model that has three different
geological features: flow unit, lithofacies assemblage (LFA), and two intersecting fractures.
The two first are represented by cell indicators pu and pl, whereas faults are represented as
an explicit list of faces, faults. When combined, the three geological properties subdivide
the reservoir into 15 different regions; see plots in the upper row of Figure 14.18. Flow
unit and LFA are used to populate the geocellular model with stochastic realizations of
the petrophysical properties. The lower-left plot in Figure 14.18 shows a flow indicator I
derived from permeability, which has mean value approximately equal two in LFA 1 and

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.6 Multilevel Hierarchical Coarsening 555

Lithofacies.tif Flow unit Combined hierarchy

Flow indicator LFA2 refined Merged small blocks

Figure 14.18 Multilevel hierarchical partition for a conceptual geological model with three geologi-
cal properties, flow unit, lithofacies assemblage, and faults, which combined subdivide the reservoir
into fifteen regions. The second row shows flow indicator, hierarchical 2×2 refinement, and the same
refinement after blocks with less than four cells in LFA 1 have been merged (shown in a red shade).

ten in LFA 2. We use this flow indicator to introduce a hierarchical Cartesian subdivision
with higher resolution in the second LFA4 :

pc = ones(G.cells.num,4);
for i=1:4

pc(:,i) = partitionCartGrid(G.cartDims,[5 5].*2^(i-1));
end
p = applySuccessivePart(processPartition(G,pu,faults),G, I, 8, [pl pc]);

That is, we first introduce a basic partition that splits the flow units and fault blocks,
and then use the flow indicator to further partition the grid according to lithofacies and
Cartesian blocks when the accumulated block indicator exceeds eight times the average cell
value. This subdivision will create small blocks also inside the first lithofacies. To merge
blocks with less than four cells, we can use mergeBlocksByConnections, which merges
blocks according to connection strength between fine-scale cells. The function does not
merge blocks that have negative connection strength, and hence we set negative connection
strength inside LFA 2 and between cells that belong to different regions in the geological
hierarchy:

4 Complete code: showHierCoarsen.m in book.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

556 Grid Coarsening

Figure 14.19 Conceptual illustration of a reservoir model with aggressive coarsening in the aquifer
zone, modest coarsening above the initial water contact, and original resolution for cells with low
residence time.

qb = [0; processPartition(G,pl+2*(pu-1), faults)];
ql = [0; pl];
T = 2*(qb(G.faces.neighbors(:,1)+1)==qb(G.faces.neighbors(:,2)+1))-1;
T(ql(G.faces.neighbors(:,1)+1)==2) = -1;
pm = mergeBlocksByConnections(G, p, T, 4);

The lower-right plot in Figure 14.18 shows the result. This example is admittedly simple,
but similar principles can be applied to industry-standard models [187].

Example 14.6.2 In the second example, we consider a conceptual model of an anticline
reservoir that overlies an aquifer. We use a hierarchical approach to aggressively coarsen
cells below the initial water contact, which are assumed to be water-filled throughout
the whole simulation. For the cells above the water contact, we apply a more modest
coarsening. To capture the initial displacement between injectors and producers, we pick
all cells with residence time less than twice the median residence time of all cells perforated
by wells. Cells with low residence time are part of the high-flow zones and are thus kept at
their original resolution. In addition, all blocks in the coarsest partition that are perforated
by a well are refined back to their original resolution to ensure that we accurately capture
flow in the near-well zone. Figure 14.19 shows the resulting model. You can find complete
source code in the script showAnticlineModel.m in the book module.

14.7 General Advice and Simple Guidelines

Over the years, I have made the general and perhaps somewhat disappointing observation
that making a good coarse grid is more an art than an exact science. In particular, I do not
believe black-box approaches are able to automatically select the optimal coarsening. As
a result, MRST does not provide well-defined workflows for coarsening, but rather offers
tools that (hopefully) are sufficiently flexible to support you in combining your creativity,
physical intuition, and experience to generate good coarse grids.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

14.7 General Advice and Simple Guidelines 557

Coarse partition are often used as input to a flow simulation. I conclude the chapter by
suggesting a few guidelines that may contribute to decrease numerical errors introduced by
coarsening:

1. Keep the grid as simple as possible: Use regular partitions for mild heterogeneities and
cases where saturation/concentration profiles are expected to be regular.

2. Try to keep the number of connections between coarse-grid blocks as low as possible
to minimize the bandwidth of the discretized systems, and avoid having too many
small blocks, which otherwise would increase the dimension of the discrete system and
adversely affect its stability without necessarily improving the accuracy significantly.

3. Use your understanding of the reservoir to judge what are the important features to
preserve when coarsening the model. In doing so, you should think of what are primary
geological features that control pressure communication and the main flow directions.

4. Make sure you have sufficient vertical resolution if you study systems with large
density differences between the fluid phases (e.g., gas injection or CO2 sequestration)
to be able to capture the vertical segregation and the lighter fluid’s tendency to override
the other fluid(s).

5. Explore alternative partitioning strategies and compare the results.
6. Use relatively robust methods like METIS with transmissibility weights or regular

partitions if you have limited understanding of which features affect the flow patterns.
7. Use basic geological features when available, e.g., facies likely yields more robust

results than segmented permeability values.
8. Adjust your partitioning strategy to the purpose of the coarsening. If you want to run

multiple simulations with more or less the same flow pattern, you can use features of
the specific flow patterns to aggressively coarsen parts of the reservoir with low flow.
Conversely, a fully flow-adapted coarsening may not work well in workflows where
well positions and flow patterns change significantly from one simulation to the next.

9. Use simple indicator functions that have an intuitive interpretation, e.g., permeability,
velocity magnitude, time-of-flight/travel time, etc.

10. Adapt coarse blocks to avoid upscaling large permeability contrasts, constrain blocks
to contiguous saturation regions to avoid upscaling relative permeability and capillary
pressure curves, etc.

11. Check the quality of a coarse grid using single-phase flow, e.g., by computing various
types of flow diagnostics to check that you preserve the volumetric communication
from the fine-scale model.

The next chapter introduces you to methods you can use to compute effective petrophysical
properties on a coarsened grid.

https://doi.org/10.1017/9781108591416.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.019

