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REMARKS TO THE UNIQUENESS PROBLEM OF
MEROMORPHIC MAPS INTO PY(C), III

HIROTAKA FUJIMOTO

§1. Introduction

In the previous papers [3], [4], [6] the author gave some results on the
uniqueness of meromorphic maps of C” into the N-dimensional complex
projective space P¥(C) which have the pre-assigned inverse images for
some hyperplanes in P¥(C). Relating to these results, we attempt in this
paper to generalize the following Cartan-Nevanlinna’s theorem to the case
of meromorphic maps into P¥(C).

TrHEOREM ([2], [6]). If three non-constant meromorphic functions ¢, x
on C have the same inverse images with multiplicities counted for three
distinct values, then ¢ = , ¥ = 3 or y = ¢.

Let us consider N + 2 hyperplanes H,, - - -, Hy,, in P¥(C) located in
general position and N + 2 divisors v, ---,vy,, Whose supports have no
common irreducible components. Our purpose is to study the set &# of
all meromorphic maps f of C" into P¥(C) such that the pull-backs u(f, H;)
of the divisors (H;) on P"(C) by f are equal to v;(1 <j< N+ 2). The
main result is stated as follows:

The set & cannot contain more than N -+ 1 algebraically independent
maps (c.f., Definition 2.1).

It is possible for &# to contain N + 1 distinct maps. For example,
taking N? + N algebraically independent nowhere zero entire functions
771< i< N,1<j< N+ 1) and putting

k=1,---,N )

= (=1 'det |9} — 1; . .
kj ( ) e(vl g=1y9]'—191+1’,N+1

for each j=1,2,---,N+ 1, we define N+ 1 meromorphic maps f*:C"
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— P¥C)OLi<N) as
fP=Fkik:- i hkyy,
and
fi=nk:gike: - igyaky, @A ZiZN).

Tt is easily seen that they satisfy the condition

uWf' H) =uf H) = --- =u(f""H) (QA=<j=<N+2
for hyperplanes H; = {w;, =0} A <j=<N+1) and Hy,={w,+ -+ + Wy,
= 0} in P¥(C), where w,: w,: - - - : wy,, is a system of homogeneous coordi-

nates on P¥(C).

On the other hand, if the number of given hyperplanes is N + 1, &#
is very large. In fact, for the above hyperplanes H,(1 <j < N + 1) and
divisors vy, 1 £j< N + 1) on C" with no common irreducible components,
if we take entire functions k2, whose zeros define divisors v,, the set of
meromorphic maps f with v(f, H)) = v,(1 £j < N + 1) consists of maps

f=e5k:efky: -1y,

where g, - -+, gx.: are arbitrary entire functions.

We shall give in §2 the precise formulation of the above-mentioned
main result and its proof. In the process of the proof, we need a basic
lemma (Lemma 2.9). It will be proved in § 3.

§2. Main Theorem

We recall first some notations and terminology in the previous papers.
For a non-zero holomorphic function f on a domain D in C", an integer-
valued function v, on D is defined as

v,(@) = min {m; P,(u) % 0}
for each point a = (a,, - - -, @,) in D if f is expanded as convergent series

f(ul + Qpy * vy Uy + an) = Zg:oPm(uly Tty un)

around a, where P,(u) is identically zero or a homogeneous polynomial
of degree m. An integer-valued function v on a domain D in C™ is called
to be a divisor on D if it can be written

V=vg'—yh
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with non-zero holomorphic functions g and 2 on a neighborhood of each
point in D. For a divisor v on D the set

vl:={zeD;uz) =0} N D
is an analytic set in D, which we call the support of v.

Let f be a meromorphic map of C" into P¥(C). Taking homogeneous
coordinates w,: w,: - - -: wy,, on P¥(C) arbitrarily, we can write

f=fifiifyn
with holomorphic functions f;, - - -, fy.; on C"such that
codim{ze C*;fi(z) = --- =fy (8 =0} = 2.

In the followings, such a representation will be called a reduced represen-
tation of f. Take a hyperplane

H:adw, + d*w, + -+ + ¢ 'wy,, =0
in PY(C) with f(C") ¢ H. With the use of a holomorphic function

Fi=dfi+adfe+ -+ + "y,

we define a divisor,

uf, H):= vp

on C”, which is determined independently of any choice of homogeneous
coordinates and reduced representations.
To state Main Theorem, we give another definition.

DerFinNITION 2.1. Meromorphic maps f*, ---,f* of C* into PY(C) are
called to be algebraically independent if the image of a meromorphic map

fLXfPX - X[frCr— PYMC):= P¥C) X --- X PY(C) (k times)

is not included in any proper algebraic subset of P¥(C)*, where f! X ---
X f* is a meromorphic map defined by (f' X --- X (=) = (f'(2), - - -, f(2))
for generic points z in C™".

Now, we give

Main Taeorem. Let H,, ---, Hy,, be hyperplanes in general position
in P¥(C) and v, - -+, vy,, be divisors whose supports have no common ir-
reducible components. Consider the set & of all meromorphic maps f of
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C™ into P¥(C) such that f(C™) &« H, and v; = (f, H)) for j = 1,2,-- ., N+2,
If &# contains N + 1 algebraically independent maps f*, - - -, f¥*!, then &%
contains no element other than f', ---,f¥*',

Remark. In the case N=1,4%# < 2 by the H. Cartan’s theorem
stated in §1, where #%# denotes the number of elements of #. The au-
thor does not know even in the case N = 2 whether #.# < o or not.

For the proof of Main Theorem, we suppose that &% contains alge-
braically independent maps f*, ---,f**. Our aim is to show that any

element in &, say f"*? is necessarily equal to one of f', f?% ---,f¥*.
Choose homogeneous coordinates w, :w,: - - - : wy,, on P¥(C) such that
H:w,=0 1<j<N+1
@.2) 10 Wy 1IZjEN+))

Hy . w+w+ - +wy,, =0

for given hyperplanes H; (1 <j < N+ 2) in general position and take
reduced representations

(2.3) fif=rfific-ifin

fori=1,2,.---,N4 2. For each v; 1 <j< N+ 2) we can find a non-
zero holomorphic function &, on C” such that v,, = v;,. By the assumption
u(f, H;) = v,, there are non-zero holomorphic functions A (1 <i,j < N + 2)
on C” such that

fi = hik, 1IZisN4+21<jsN+))
f§+"‘+f§v+1=h§v+2kN+1 (1=<—.Z§N+2)

We may choose here, instead of (2.3), other reduced representations

2.4

fi= R R hife, (Q<i< N+ 2

for arbitrary nowhere zero holomorphic functions A* on C”. This means
that A% may be replaced by Ai/h*. On the other hand, we may use,
instead of the above k;, h;k; for arbitrary nowhere zero holomorphic func-
tions A, on C*. Therefore, A% may be changed with h}/h,.

The identities (2.4) can be rewritten as

(2-5) hikl + hgkz R h§v+1k1v+1 = h§V+2kN+2 (1 = i é N + 2) .
By eliminating k&, - - -, ky,, from these identities, we obtain

(2.6) det (hi;1<i,j<N+2=0.
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As in the previous papers, we consider the multiplicative group H*
of all nowhere zero holomorphic functions on C* and the factor group
G:= H*|/C*, where C*:= C — {0} is the subgroup of H* consisting of all
non-zero constant functions. We denote by [A] the class in G containing
an element Ae H* and h ~ A’ if [h] = [I'] for h, b € H*.

For our purpose, we need the following E. Borel’s theorem and its
consequence.

Taeorem 2.7 ([11). If h,, ---, h,€ H* satisfy an identity
hi+h+---4+h,=0,

then, for amy h,, there exists some h; (i #+j) with h, ~ h,, namely, h;/h,
= const.

Tueorem 2.8 ([3], Proposition 4.5). Let h,, ---,h, be in H*. If [h],

-+, [h,] are linearly independent over Z, then h,, ---,hh, are algebraically
independent, i.e., there is no non-zero polynomial P(u,, ---, u,) with P(h,,
ceey, ht) = 0.

Now, let us consider arbitrary two square matrices 5 = (h%) and &
= (k%) of degree N + 2 with components in H*. We shall call »# and %~
to be equivalent if & can be obtained by the following transformations;

(i) multiplying a row or a column of # by a common element in
H*,

(ii) interchanging two rows or two columns,

(iii) repeating these transformations (i), (ii) finitely many times.
For a given # = (h%) (h\ e H*), we shall call & = (k%) (K} € H*) an admis-
sible representation of # if # is equivalent to % and k., =k’ =
(1<1i,j< N+ 2. Evidently, any matrix (k%) (h} € H*) has an admissible
representation. Though admissible representations of # = (h%) are not
unique,

{IE1<1,j S N+ 2l ={[k 1 <i,j < N+ 2));.

if & = (k) and X = (l;;f) are both admissible representations of 5, where
{l¥:1}}z denotes the subgroup of G generated by [k] over Z. For a ma-
trix # = (h%) (h} e H*), taking an admissible representation " = (kj) of
#, we define

#(o#):= t(h}):= rank {[kj]}}z .
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We give here a lemma which is basic in the proof of Main Theorem.

LEmma 2.9. Let # = (hi;1<1i,j < N+ 2) be a matrix with compo-
nents in H* and assume that det 5# = 0. Then,

(i) €)= N*+ N,

(1) ##) = N*+ N only when two rows or two columns of H# are
equal.

For a while, we accept Lemma 2.9 without proof, which will be proved
in the next section.

We continue the proof of Main Theorem. Let us study the matrix
H = (hi;1<14,j £ N+ 2) consisting of the functions A% satisfying the
condition (2.4). Here, it may be assumed that A% ., =hY**=1 for i,j = 1,
2,+-+, N+ 2 by suitable choices of indices i, j, reduced representations
of f* and functions k; with »,, = v, And, it holds that

(2.10) det (hi, - - -, Bl Boyyy - R 1SIS N+ 1) EO
for each j=1,2, .-, N+ 2. In fact, if not,

det(f;: ,f_1;~1:f§+1, ’f;\l+lyf;+ +f}v‘+1;1§l§ N+ ].)
=(=D¥'det(f}, -, fhi;1=Si=N+1)
=0,

which contradicts the assumption that f*, .- -, f¥*! are algebraically inde-
pendent.

Take functions 7, - - -, %, in H* such that [3], - - -, [] give a basis of
{[ri]; 1 £4,j £ N + 2}}, where t = #(#). Each A} has a representation

B = eyt - - gl
where ¢;;€ C* and 4;;€ Z. Consider rational functions
(211) o) = eyl - ulhs
of variables u = (u,, - - -, 4,) and homogeneous linear equations
(212) ¢iWw + -+ + Pr(@Wy: = PraWWyse (AT N+2)

with coefficients in the field of rational functions of u,, ---, u, and N + 2
unknowns w, - -, Wy,,. We have here by (2.10)

Dyu):= (—1)"det (¢}, -+, @1, vt - Ph3 LS IS N+ 2)#£0
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because 7, - -+, 7, are algebraically independent by virtue of Theorem 2.8.
A solution of the equation (2.12) is given by

wjzdjj(ub'"yul) (1.§j§N+1)

Wy o = _®N+2(ula ) ut)

and any other solution is obtained from them by common multiplications
of a non-zero rational function. Put

(2.13) wj’(un Ce W)= ??(ux cry ut)(pj(uu cey Uy

fori=1,2---,N+2and j=1,2,---,N+ 1. For each i, multiplying
vi ..., ¥%,, by a common function and introducing a new variable u,,,,
we can construct homogeneous polynomials ¥i(u,, - - -, u,,.), - - -, ¥ioi(ty,
-+, U,,;) of the same degree such that

Uiy, -y uds - U, - -, wy)
= wf(uh sy Uy 1): et Zﬁ‘f(uu cecy Uy 1)'

Let us consider a rational map ¥: P{C) — P¥(C)"** such that

(2.14) V(@) = (@@ -2 Tyai@, - - -, TV2@): - - - TRE@)
for each @ = u,: ---:u,:u,,, in PYC) except a nowhere dense algebraic
set

U2 {a e PAC); Ti(a) = -+ - = Ui (@) = 0} .

The image W = ¥(P¥C)) is an algebraic subvariety of P¥(C)"** with
dim W < ¢t. Substitute u, = 7, - - -, ¥, = 7, in (2.12). The equations (2.12)
become

w, + Riw, + -+ Ry Wy, = RirsWy s 1=i=N+2

and w, = k,, - -, Wy, = Ry,, satisfy these equations because of (2.5). We
have therefore

Rytky: oo thy,, = ¢l(771’ Tty 77t): MR _¢N+2(771) Tty 775) .
And, by (2.13),
ﬁi(’]l; AP /P 1) e ¢'§V+1(7]1, s Moy 1)

= wi(’?u A 7]t): el w’}:vn(%, Ce, )
= hiky: -t hlaky

=f§ "':fliv+1
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for each i =1,2,.--, N+ 2. We can conclude from (2.14)
Uy ot 1) = (fir oo vt flpn ooy V450 o fR2Y)
This means that
op=f X - X fr

for a map n:=p:7:---:9:1 of C* into P¥(C). Therefore, the image of
the map f* X .- X f¥*1: C* — P¥(C)"** is included in W.

Let z: PY(C)"**— P¥(C)"*' be the projection onto the first N4 1
components. The image z(W) of W is an algebraic subset of P¥(C)**!
and

dim2(W) < dim W< ¢.

On the other hand, the image of f* X --- X f¥*': C* — P¥(C)"*' is obviously
included in #(W) and it cannot be included in any proper subvariety of
PY¥(C)**', Therefore, dimz(W) = N*+ N< ¢ We know t < N*+ N by
Lemma 2.9, (i). In conclusion, ¢t = N* + N. In this case, by Lemma 2.9,
(ii), two rows or two columns of # = (h’) are equal. If two rows are
equal, e.g., h* = A (1 < j < N + 2) for some distinct i, i,, then & = fi,
Since any two of f!, .--,f"*' are not equal by the assumption, we can
conclude that f¥** is equal to some f* 1 < i< N+ 1). And, if two col-
umns are equal, then fi =fi (1 <i< N + 2) for some j,j, with 1 <},
<jE=N+1lorfi=fi+ - +fra@l =i <N+ 2) for some j with 1 <j
< N+ 1. In any case, f* themselves are algebraically degenerate. This
contradicts the assumption. We have thus Main Theorem.

§3. Proof of a basic lemma
We proceed to the proof of Lemma 2.9 stated in the previous section.
Let o# = (hi:1<1i,j < N+ 2)(hi € H*) and satisfy the condition
3.1) det(h;1<i,jSN+2)=0.
The proof is given by the induction on N. For the case N = 1, we have

the more precise result.

LEmmA 3.2. Let o = (hi;1 <4, j < 3) (kY e H¥) satisfy the condition
det # = 0. Then,

(i) two rows or two columns of # are mutually proportional or

(ii) h%/R; = const. for any i,j, k, £.
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This was given by H. Cartan ([2]). He proved the theorem stated in
§1 by the aid of this fact. To make our statements self-contained, we
describe here its proof and, in addition, the proof of the Cartan-
Nevanlinna’s theorem.

Proof of Lemma 3.2. We study first the case that hAih] ~ hlh], namely,
hihj hihi = const. for some i,j, k, £ with i # j, k #+ 4. It suffices to prove
Lemma 3.2 for an admissible representation of 2. So, we may put

hl h2 1
(3.3) H =|hy h, 1) (h, € H¥)
1 1 1

and assume c:= h,e C*, By the assumption,

(c—1Dh,+ h,+ hy — Ashy —c = 0.

Suppose that A, % 1 and h; % 1. Then, by Theorem 2.7, we have necessarily
h, ~ h;, since h, ~ h; and h, ~ h, even if we assume h, < h, because h,
# hyhy, hy < h.hs. Moreover, hh; ~1 and so Al ~ hh, ~ 1. This is a con-
tradiction. We have therefore A, ~1 or h, ~1. We examine the case
h, ~ 1 only because the proof of the other case is similar. Put d: = h,.
Applying Theorem 2.7 to the identity

c—Dhy—@—Dh;+d—c=0,

we see easily hy ~h; ~1 or c=d =1. In any case, we have Lemma 3.2.
Let us study next the case hihj < hihi for any i,j, k, £ with i + j, k # £.
By the help of Theorem 2.7, for the first term AjhZh in the identity

hhihi + hhihi + hshihi — hihi — hshihi — hhih; =0,

there is some other term A} A% A% with hihihl ~ hjh5,h5, which cannot be

j3?
equal to the last three terms by the assumption. The same argument
remains valid for the terms Ajhlh: and AlhiAS. In conclusion,

hihshi ~ hihihi ~ hhihi
and

hihihi ~ hihihi ~ hshihg
We may assume 7 is written as (3.3). Then

hh, ~ hy ~ hy , hhy ~ hy ~ h, .
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This implies
h, ~ (h1h4)z ~ hi
and so h, ~ h, ~ h; ~ h, ~1. We get Lemma 3.2 in this case too.

Proof of the Cartan-Nevanlinna’s theorem. Let ¢, , x be non-constant
meromorphic functions on C and suppose that ¢(2) — a;, ¥(2) — a;, 2(2) — a,
have the same zeros with the same multiplicities for three distinct values
a,(i=1,2,3). Our aim is to show ¢ =y, =y or y = ¢. We may re-
gard o, ¥, ¥ as holomorphic maps of C into P'(C) and write @, =0:1, a,
=1:0 and a, = 1: —1 with homogeneous coordinates on PY(C). Take
reduced representations

=00, Y=YV, X=AiXe
and define

hi=h=hk=1,

M=V gV g itV
12} ©2 $01+902

BN gt g BTX
(21 ©s $01+§02

By the assumption, they are nowhere zero holomorphic functions on C
and det(hi;1<1,j<3)=0. So, we have the conclusion (i) or (ii) of
Lemma 3.2. In any case, we obtain easily the desired conclusion.

We go back to the proof of Lemma 2.9. Suppose that Lemma 2.9 is
true for matrices of degree < N + 1 and consider a matrix # = (h%) of
degree N -+ 2 satisfying the condition (3.1), where N = 2. The group G
= H*|/C* is a torsionfree abelian group. For any ye H* and {e€ Z — {0}
we can find some y’ € H* such that (7))’ =7. So, G is considered as a
vector space over Q. Suitable ¢ elements A%, A%, ---, A% in {h};1<Z 14,

J =< N + 2} give a basis of {{[A}]}}q, Where ¢t = #(h%) = dimg {{[A}]}}e. Then,

there are ¢ functions 7, ---, 7, in H* such that [p], ---, [5] are linearly
independent over Z and functions A} can be written as
(3.4) hy, =

for s=1,2,---,1 and

(3,5) h; = c“vi}l . e y)ﬁi!
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for the other h%’s, where /, are positive integers and c,, € C* ¢i, ¢ Z.
Here, the choice of {i,,j,, - - -, i;, j.} is not unique. We choose some and fix
them for a while. For the sake of convenience, we put I:= {(Z,j): 1 < j,
JEN+1}, L= {Gn ), 5 (6id(CI) and L= T — I,
Consider rational functions of ¢ independent variables u = (u,, - - -, u,)
o (w) = ug 1=s=<
goi-(u) = ciju{%j cet ufi, @G, Del)
and ¢h.(u) =Y (w) =11 =4,j < N+ 2). Substitute (3.4) and (3.5) into
the identity (3.1). Then, we have an identity
(3.6) det (pi(w); 1< i,j S N+ 2 =0,

because 7, - - -, 7, are algebraically independent.
Now, to prove Lemma 2.9, (i), assume that ¢ > N* + N 4+ 1. Then,

t=N+1D)—-t=(N+1)—-(N'+N+1)=N.
Accordingly, it is easily seen that there exists some j, with 1<j, < N+ 1
such that (,j)el, for any i =1,2,---, N+ 1. Changing indices, we

may assume jo = N+ 1 and (ibjl) = (1, N+ 1)3 ) (iNH;jNH) = (N+ 1’
N +1). Additionally, if I, #+ ¢, we choose indices such that (N + 1, N) € L.

3.7 Ny:= G, Nel;1<i,j SN} ZN' - N+1.

Indeed, Ny=(N+ 1> N~ N+ 1inthe case ,=¢ and Ny =t — 2N >
N?* — N + 1 in the case I, # ¢. Substitute u,= --- = uy =1 and u, = 7,
for s=N+1,---,t into (3.6). We have then

(3.8) det (hi;i,j=1,2 --- , NN+2 =0,

where ﬁ§:= oi(1, -+, 1, 9y -+, 7)€ H*. By the induction hypothesis,

thisij=1,2 -, NN+2 <N —N.

However, we see easily N, < t(fzj-; i,j=1,.--,N, N+ 2). This contradicts
(8.7. We have thus Lemma 2.9, (i).

For the proof of Lemma 2.9, (ii), assume next { = N* + N. We study
first

The case A. We can choose the above I, = {(i,, ), - - -, (i, j;)} such
that there is at least one row or one column whose indices are all in I,.

By exchanging rows and columns and changing indices if necessary,
it may be assumed that
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{(1:N+1)’(2’N+ 1): "',(N+ 1,N+1)};I1-

Then, there is another column such that at most one of its indices is in
I. For, if not, N+ 1 = I, = 2N > N + 1 because N = 2. Without loss
of generality, it may be assumed that
{(1’ N)’ (2, N)’ o ',(N, N)} g Ix

and (N + 1,j,)el, for some j, with 1 < j, < N. Moreover, we choose
indices of u, such that ¢%,(w) =uf for i=1,2,.---, N+ 1 as before.
Putting v, = --- =uy=1 and u, =7 N+ 1=<s<1? in (3.6), we get
again (3.8). Since #{(,/)el;;j=N+1}=N+1 and ${G,j)el;i=N
+L1<jE<N}IEN-LHP)=t—(N+ 1)+ (N—1) = N* — N, where
# =(h};i,j=1,2---,N,N+2). On the other hand, ##) < N*— N
by the induction hypothesis. So, #(s#) = N* — N and, hence, two rows
or two columns in J are equal. Since hi =+ hi for any i, i, with
1<i,<i, <N, two rows in s cannot be equal. Consequently, there
are indices j,,j, with 1</, <j,<Nor j,=N+ 2, 1 £j, < N such that
fz?, = fzﬁ-, for i=1,2,---,N. In the former case, as is easily seen,

#HG,Nel;1<i,jSN}=N'—-N
and ﬁj- = h% for any distinct (i,j), (&, £) in I, Hence,
{GN:1=i,j=N,j#ijui} &1,

and, for each i(1 < i< N), exactly one of (i,j,) and (i,j,) is in I,. Since
hi, = A, we can write

. . ,
Rp =2k,  Ryp=oui - g

or
i '3 i L
hy =it - e, hY =7

according as (i, j,) € I, or (i,j,) € I, Changing 5, by 7, with 7% = ypuy5- -
Pyt if necessary, we may assume (i, j,) € I, and (i, j,) € I,. In any case, the
indices may be chosen so that j, = 1 and so

{(i,j)GIz; 1 é i:] é N} = {(1, 1)’ (2’ 1)’ o "(N’ 1)} .

For the sake of convenience, we change some notations in the follow-
ings. We denote by u%, 7% and ¢} the variable u,, function 7, and positive
integer ¢, if ¢i(u) = ul* for each (i,j)e I,. Substitute u}= --- = u},; =1
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and u} = 7} for the other (i, ) in I, into (3.6). Subtracting the (N + 2)-th
row from the first row of s# = (h%), we obtain

(B} — Ddet(R};2<i,j<N+2 =0,

where Z; are the functions obtained from A} by substituting u; = - - - = uj,,
=1 and u} = 7} for the other (i,j)e I,, As is easily seen, for a matrix
#=R;2<i,j <N+ 2),

HA) =N+ N—-(N+1) >N —N.

By the induction hypothesis, det (##) = 0. Hence, we have Al=1. This
means that ¢i(x) can be written as

o) = (W)™ (W)™ - - - (uy.)™*,

where my,, m;, - -+, My, , € Z.

Assume that m, = -+ = my,, = 0, namely, ¢i(z) =1. Put wj=---
= uy =1 and u} = % for the other (i,j)e I, in (3.6). By subtracting the
(N + 2)-th row from the first row, we have an identity

(3.9) dt@kkzZ&“3N+2 )
. e ; =
“¢=12---,NN+2
Let us consider next the case (m,, - -+, my,) # (0, ---,0). Take posi-
tive integers p,, - - -, px.; such that

m:=mp,+ -+ + My Pya#*0.

Substitute v} = v (2 < j < N + 1) into (3.6), where v is a new independent

variable. Then, (3.6) may be regarded as an identity of rational functions

of v and ut(k+1,(k, ¢)el). For the case m >0, put v =0. We have
then

dot (o k=2 N+2 —o

€ <%(u)’5=1,---,N+1>_ .

For the case m <0, put v =0 after multiplying the first row by v=™.
Then,

det (¢f(w); k, ¢ =2,-- -, N+ 2)=0.

In any case, we obtain a minor det (h}) of # = (hi;1 < j,j < N+ 2)
of degree N + 1 which vanishes identically and, as is easily seen, satisfies
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the condition #(h¥) = N* — N. By the induction hypothesis, two rows or
two columns of (k%) are equal. Subtract one of them from the other in
the matrix (h%). We can easily conclude that two rows or two columns
of s# are equal.

It remains to prove Lemma 2.9, (ii) for the following case.

The case B. We cannot choose I = {(i,,j,), - - -, (i, j;)} satisfying the
condition as in the case A.

Then, for each i, and each j, (1 < i,,j, £ N + 1) there exist exactly
one j, and exactly one i, such that (i,j)e I, and (i, j,)cl,, Changing
indices suitably, we may put

IZ={(191)9(2,2), ’(N+1,N+ 1)}‘

Substitute uy,; = --- = u¥,; =1 and u} = 7} for the other (i,j)e I, into
(3.6) and subtract the (NN 4 2)-th row from the (N + 1)-th row. We get
easily

(RY:: — 1) det (hi;i,j=1,2,---, NN+ 2 =0,

where fz} are the functions obtained from A% by substituting uy,, = ---
= u¥,; =1 and u’ = y} for the other (i,j)e I,, Obviously, )= N2 — N
for a matrix # = (Ai:i,j=1,2,---,N,N+2). And, any two rows or
two columns of # are not equal. For, if not, we have the case A by a
suitable choice of I, By the induction hypothesis, det (#) % 0 and so

A¥*1 = 1. This means that oN+l(w) can be expressed as

90%11(1‘) = (u'%\’+l)ml(u'3}\f+l)m2 e (uxn)m” ’
where m,,m,, ---,my.,€Z Put ul"'= ... =uy' =1, u, =17, for the
other (z,j) € I, and repeat the same argument as the above. It is shown
that ¢}:i(u) can be expressed by variables ul*!, ---, uy*' only. Therefore,
we get m; = .-+ = my = 0, namely, ¢¥7i(¥)=1. The same argument re-
mains valid if we exchange the index N 4 1 by the other i = 1,2, ---, N.
So, ¢li(u) = --- = ¥iw) =1 Now, uy, = -+ =uf,=1 and u} =7

for the other (i,j)e I, in (8.6) and subtract the (N 4 2)-th row from the
(N + 1)-th row in (3.6). We have then

0

Il

=&~3N+ﬂ

k
det | A%;
e(‘e=L~3N+1
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This contradicts the induction hypothesis, because t(hf;

> N* — N. Therefore, the case B is impossible. This completes the proof
of Lemma 2.9.
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