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Abstract

Objective: Evidence-based diagnostic methods have clinical and research applications in neuropsychology. A flexible
Bayesian model was developed to yield diagnostic posttest probabilities from a single person’s neuropsychological score
profile by utilizing sample descriptive statistics of the test battery across diagnostic populations of interest. Methods:
Three studies examined the model’s performance. One simulation examined estimation accuracy of true z-scores. A
diagnostic accuracy simulation utilized descriptive statistics from two popular neuropsychological tests, the Wechsler
Adult Intelligence Scale–IV (WAIS-IV) and Repeatable Battery for the Assessment of Neuropsychological Status
(RBANS). The final simulation examined posterior predictive accuracy of scores to those reported in the WAIS manual.
Results: The model produced minimally biased z-score estimates (root mean square errors: .02–.18) with appropriate
credible intervals (95% credible interval empirical coverage rates: .94–1.00). The model correctly classified 80.87% of
simulated normal, mild cognitive impairment, and Alzheimer’s disease cases using a four subtest WAIS-IV and the
RBANS compared to accuracies of 60.67–65.60% from alternative methods. The posterior predictions of raw scores
closely aligned to percentile estimates published in the WAIS-IV manual. Conclusion: This model permits estimation of
posttest probabilities for various combinations of neuropsychological tests across any number of clinical populations
with the principal limitation being the accessibility of applicable reference samples. The model produced minimally
biased estimates of true z-scores, high diagnostic classification rates, and accurate predictions of multiple reported
percentiles while using only simple descriptive statistics from reference samples. Future nonsimulation research on
clinical data is needed to fully explore the utility of such diagnostic prediction models.
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INTRODUCTION

Given the significance and variety of cognitive impairment eti-
ologies, considerable interest exists in characterizing the diag-
nostic accuracy of cognitive tests (e.g., Belleville et al., 2017;
Frazier, Demaree, & Youngstrom, 2004; Weissberger et al.,
2017). While improvement in diagnostic accuracy of individ-
ual tests has been a focus of much clinical research, recent
trends have taken advantage of advances in algorithmic
approaches to integrate information across tests (e.g., Jak
et al., 2009; Mechelli &Vieira, 2020). Neuropsychological

assessments represent a broad-spectrum diagnostic tool
because the tests can be administered flexibly to individuals
across a variety of cognitive disorders.While the tests that neu-
ropsychologists use may vary in their individual diagnostic
accuracy, overall accuracy of the assessment is dependent
on the approach used to interpret the testing results (Ivnik
et al., 2000).

The broad purpose of this study is to characterize a
Bayesian model as a flexible, semi-automated diagnostic algo-
rithm consistent with the standards for evidence-based neuro-
psychological practice (EBNP) proposed by Chelune (2010).
A flexible algorithm that can be applied across test batteries,
clinical settings, and diagnostic questions presents an opportu-
nity to develop a standard assessment protocol that is rooted in
ENP. The first standard for EBNP is to convert referral ques-
tions into answerable questions (Chelune, 2010), which can be
conceptualized like statistical hypotheses wherein there is

*Correspondence and reprint requests to: William F. Goette, University
of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC9044,
Dallas, TX 75390, USA. Email: William.Goette@UTSouthwestern.edu

This study includes supplemental material on Github: https://github.com/
w-goette/Single-Case-Classification. Preliminary data using a different sim-
ulation study were presented as a poster at the annual conference of the
American Psychological Association in 2020.

Journal of the International Neuropsychological Society (2023), 29, 182–192
Copyright © INS. Published by Cambridge University Press, 2022. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided
the original work is properly cited.
doi:10.1017/S1355617722000054

182

https://doi.org/10.1017/S1355617722000054 Published online by Cambridge University Press

https://orcid.org/0000-0003-2909-1068
https://orcid.org/0000-0002-8842-980X
https://orcid.org/0000-0002-4112-7433
https://orcid.org/0000-0001-9706-5465
mailto:William.Goette@UTSouthwestern.edu
http://www. https://github.com/w-goette/Single-Case-Classification
http://www. https://github.com/w-goette/Single-Case-Classification
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1355617722000054
https://doi.org/10.1017/S1355617722000054


concern for Type I or II errors (Franklin, 2003). One may
answer the question of whether a client is cognitively impaired
by computing a formal difference between the client’s test
scores and some control sample (e.g., Crawford, Garthwaite,
& Gault, 2007). Such tests of difference typically follow some
frequentist framework. However, these methods rely on a null
hypothesis testwhere it is not possible to accept the null that the
client is nonimpaired (Lakens, 2017; Walker & Nowacki,
2011).Additionally, the risk of Type I error increaseswith each
additional analysis, which is problematic given the expected
frequency of abnormal scores in healthy individuals (Binder,
Iverson, & Brooks, 2009). Bayesian methods permit accepting
the null hypothesis (Rouder, Speckman, Sun, Morey, &
Iverson, 2009) and can be repeated without increasing fam-
ily-wise error (Gelman, Hill, & Yajima, 2012), making it a
preferable framework for analyzing batteries of tests.

The next standard for EBNP is the use of base rates when
reporting test results. Chelune (2010) recommends using
likelihood ratios in reporting practices, and the ability to
multiply pretest odds by a likelihood ratio to obtain posttest
odds is given byBayes’ theorem. The examinedmodel allows
users to input pretest probabilities for diagnoses of interest
from which the posttest probabilities are computed given
the observed test data. The final EBNP standard is the incor-
poration of outcomes research to guide assessments. The cur-
rent model requires summary statistics corresponding to
reference samples for each diagnosis of interest, thus imple-
mentation of the model necessitates appeal to the extant liter-
ature to find these summary statistics.

A Bayesian framework is well suited to clinical neuro-
psychological applications and has implications beyond
familiar frequentist methods. As already highlighted, one
such application is converting pretest probabilities to posttest
probabilities via Bayes’ theorem. When applied in diagnostic
models, population-level pretest probabilities (e.g., base
rates, prevalence) are converted to individualized posttest
probabilities by incorporating information from that individ-
ual’s test performance. Another important quality of
Bayesian methods is the posterior distribution, and its use
in making predictions for future observations. Briefly, a
Bayesian posterior distribution combines prior information
and observed data to derive an empirically-based probabilis-
tic distribution of the parameters, and this can be extended to
posterior predictive distributionswhere probabilistic distribu-
tions of future or otherwise unobserved data can be estimated.
In this model, summary statistics from reference samples
(e.g., normative data, study samples, case series) are used
to make posterior predictions for test scores in the population.
Posterior distributions are used for statistical inference in
Bayesian methods, and with these, it is possible to extend
sample-level statistics to model population distributions of
scores, which would facilitate approximation of percentile
scores, computing distributions of discrepancy scores, and
other similar distributional summaries. The model thus aims
to facilitate clinical decision making in three ways: compute
the posttest probability that a test score profile belongs to a set
of diagnostic possibilities, estimate how a test score profile

compares scores across various diagnoses (i.e., compute
z-scores for tests relative to each population), and obtain
the probability of achieving individual scores, test discrepan-
cies, or other performance-based summaries within the pop-
ulation of interest. Notably, these methods are all available
from sample statistics, meaning that these metrics commonly
reported only in normative or diagnostic studies can be
derived frommore prevalent resources like published studies,
case series, and research databases.

In typical Bayesian workflow, appropriateness of the com-
putational model is examined through simulation study with
both the simulation study design and the computational
model being informed by an understanding of the real-world
process that gives rise to observed data (Gabry, Simpson,
Vehtari, Betancourt, & Gelman, 2019; Gelman et al., 2013;
McElreath, 2016; Talts, Betancourt, Simpson, Vehtari, &
Gelman, 2018). The aim of the current study was to test
the clinical utility of a model that can convert a battery of
neuropsychological tests into posttest probabilities of any
number of clinical diagnoses. There were three specific
hypotheses regarding this model that were tested using three
simulation studies:

Simulation one: parameter recovery

• H1: the Bayesian model will produce accurate estimates of
population parameters.

Simulation two: diagnostic accuracy

• H2: the model will produce diagnostic accuracy at least
equivalent to alternative methods.

Simulation three: posterior inference

• H3: the model’s posterior predictive distribution will be
equivalent to distributions in the true population.

METHODS

To address the primary aims of this study, a Monte Carlo simu-
lation methodology was used. The statistical environment R
version 4.1.1 (R Core Team, 2021) was used for all statistical
analyses. Simulation of clinical data utilized the R package
“MASS” (Venables and Ripley, 2002). The model is fit with
the “rstan” package (Stan Development Team, 2020). The simu-
lation’s R script and supporting materials are all available on
github (https://github.com/w-goette/Single-Case-Classification).

Conceptual Model

A conceptual model of neuropsychological assessment was
developed a priori to simulate the data generation process
of typical neuropsychological practice. In this conceptual
model, the problem of diagnosis is conceptualized as a finite
mixture model. Here, a client is treated as a random observa-
tion from a set of various clinical populations, each having
unique distributions of scores. Clinical reference samples
approximate the subpopulations composing this mixture,
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and a diagnosis is made when the likelihood of membership
in a particular subpopulation is greater than others. In sum,
the key components of this conceptual model are the follow-
ing: (1) individuals presenting for assessment are random
draws from an underlying mixture of populations, (2) the cli-
nician’s diagnosis aims to identify a true subpopulation to
which an individual belongs, (3) reference samples from vari-
ous diagnostic populations are used to compare the individual
to their respective diagnostic populations, and (4) clinicians
use pretest risk and base rates to inform what diagnoses are
considered most likely.

Computational Model

The computational model is used to compute the probability
of membership to any given underlying subpopulation (i.e.,
diagnostic group) based on data from an individual case
against an arbitrary number of selected reference samples.
Since population parameters are unknown, the reference sam-
ples are treated as the best estimates for their respective pop-
ulations. The model computes the likelihood of obtaining
observed scores under each subpopulation with the
assumption that the case is an observation from whichever
population results in the greatest likelihood. For every pop-
ulation of interest, the model requires the following inputs:
the means and standard deviations for each test of interest,
the correlation matrix (or matrices) for these tests, the size
of the reference sample, and the pretest probability of the
diagnosis.

The priors used in the computational model follow the
standard Bayesian methods for estimating multivariate nor-
mal distributions when the population mean and variance
are unknown and estimated by sample statistics (see
Gelman et al., 2013, pp. 64–74 for derivation). The priors
deviate from the Gelman et al. (2013) methods in the evalu-
ation of the covariance matrix. Following the recommenda-
tions in the Stan documentation (Stan Development Team,
2019), the covariance matrix is decomposed into a vector
of standard deviations and a correlation matrix.

Recovery Simulation

Simulation Conditions

Six different conditions were examined in the parameter
recovery simulation. Each condition altered either the refer-
ence sample size or the number of tests simulated for a single
observation (see Table 1 for these conditions). All conditions
were iterated 1000 times.

Simulated test scores were based on the T score metric
(M = 50, SD = 10). Correlation matrices for the multivariate
conditions were produced by specifying a factor model with
error to make the simulated correlation matrix more realistic
to clinical settings (Hong, 1999; Tucker, Koopman, & Linn,
1969). Raw scores and reference samples were generated by
sampling from a multivariate normal distribution. In each
iteration, the true z-score was computed based on the

condition’s parameters, and the model’s prediction of the
z-score and its 95% credible interval were saved.

Outcome Variables

The root mean square error (RMSE) and mean absolute
error (MAE) of the model’s computed z-scores from the
true z-scores were computed. These both quantify the aver-
age error in the computed and true z-scores. Pearson’s cor-
relation coefficient and Kendall’s tau were used to measure
the association between estimated and true z-scores.
Kendall’s tau quantifies the concordance of the data when
ranked, so high Kendall’s tau should reflect high concord-
ance of percentile ranking even if z-score estimates are
inaccurate. The final outcome computed was the empirical
coverage rate (ECR) of the z-scores’ 95% credible inter-
vals. The ECR is the proportion of true values that fall
within the specified credible interval. Ideally, the ECR
should be around .95 as this is what would be expected
by the 95% interval.

Diagnostic Accuracy Simulation

Data Generation

To ensure that the data were clinically relevant and addressed
several cognitive domains using popular neuropsychological
tests, the sample descriptive data used for the model were
taken from two different test manuals: the RBANS manual
(Randolph, 2012) and the WAIS-IV Technical and
Interpretive Manual (Wechsler, 2008b). These tests were
selected due to their popularity among neuropsychologists
(Rabin, Paolillo, &Bar, 2016) and their composition of multi-
ple indices that can be interpreted together to help inform dif-
ferential diagnosis. A cognitive screening with an RBANS
and abbreviated WAIS-IV may be reasonable for some set-
tings wherein a statistically-informed diagnostic model might
be useful.

For WAIS-IV subtests, the summary data are found in
Table A.11 (p. 148) for the normative sample between ages
75:00–79:11 (n = 100), Table 5.31 (p. 119) for the mild
cognitive impairment (MCI) group (n = 50) and Table
5.32 for the probable dementia of the Alzheimer’s type,

Table 1. Sampling distributions under each condition

Sample size Number of simulated tests

Condition 1 1000 1
Condition 2 100 1
Condition 3 50 1
Condition 4 1000 6
Condition 5 100 6
Condition 6 50 6

Note. Sample size corresponds to the number of individuals simulated to
define the reference sample.
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mild severity (AD) group (n = 40). For the WAIS-IV sim-
ulation, the scaled scores for a 4-subtest abbreviated
version were selected from these tables (Block Design,
Similarities, Digit Span, and Coding). For the RBANS,
the summary data were from Tables 4.9 (p. 67) and B.8
(p. 127), which correspond to the normative sample for
individuals aged 70–79 (n = 90) and the AD clinical sam-
ple (n = 138), respectively. To be consistent with the
WAIS-IV diagnostic groups, sample descriptive RBANS
data from Karantzoulis et al. (2013) were used for the
MCI reference. For the RBANS simulation, the standard
scores for the indices and total scale scores in the tables
were used.

Simulation Condition

Pretest probabilities for MCI and AD come from prevalence
estimates of both disorders for individuals around the age of
77 (Petersen et al., 2018; Alzheimer’s Association, 2021,
respectively). Coadministration data of the 4-subtest
WAIS-IV and RBANS scores in all three diagnostic popula-
tions could not be found, so the posttest probabilities for each
diagnosis were extracted from the WAIS-IV results and then
passed as the pretest probabilities for the RBANS analysis.
Thus, pretest probabilities were updated twice: once after
observing theWAIS-IV scores and then again after observing
the RBANS.

For each iteration of this simulation, a set of test scores for
the 4-subtest WAIS-IV and full RBANS was simulated from
the “normal” population. The model was then fit and the
simulated test scores, true population from which the scores
were simulated, and posttest probabilities for each diagnosis
was saved. This was then repeated for the MCI and AD pop-
ulations, and these iterations were repeated 500 times such
that results are based on 1500 simulations.

Outcome Variables

The outcome of interest was the rate of correct diagnostic
classification. Diagnosis was determined as whichever pop-
ulation resulted in the highest posttest probability for that
simulated “client” after observing both the WAIS-IV and
RBANS results. To contextualize this classification accuracy,
linear discriminant function analysis (LDA), quadratic dis-
criminant function analysis (QDA), multinomial logistic
regression, and random forest classification were also used
to determine diagnosis in the same simulated clients. These
equations were trained on simulated reference samples corre-
sponding to the WAIS-IV and RBANS data and then cross-
validated on the saved simulated values generated during the
simulation condition. The LDA, QDA, and random forest
models used the same pretest probabilities as the
Bayesian model.

Posterior Inference Simulation

Simulation Condition

Using the completeWAIS-IV data (10 core subtests), a single
observation from the normative sample was generated. From
this fitted model, the posterior samples predicting the popu-
lation’s ten scaled scores were extracted so that they could be
examined against the WAIS-IV manual’s percentiles.

Outcome Variables

Two specific outcomes were desired from the posterior analy-
sis. The first outcomewas a comparison of the posterior’s pre-
diction of the population-level scaled scores to what the
WAIS-IV norms report. This involved analysis of the poste-
rior’s predicted percentiles for the sum of scaled scores (see
Table A.7 of Wechsler, 2008a, pp. 224–225) and the distri-
bution of Digit Span and Arithmetic discrepancy scores
(see Table B.4 of Wechsler, 2008a, p. 238). Note that the
WAIS-IV manual also includes percentiles for discrepancies
between Symbol Search and Coding as well, but only one set
of these scores were selected so that the final table was easier
to read. All data are available to readers on the supplemental
materials, so this discrepancy is easily obtainable to those
interested. The second desired outcome was a demonstration
of how scores may be visualized in clinical settings to display
relative strengths or weaknesses across tests.

RESULTS

Results were derived from a Monte Carlo simulation design
wherein each condition evaluated was iterated 1000 times.
With respect to the adaptive Hamiltonian estimator used by
Stan, every run of the model used four independent chains
to evaluate potential issues with mixing or convergence.
Each chain ran 2000 samples with 1000 warmups (4000 final
samples). Nowarnings were generated during any of the 7501
runs of the model.

Recovery of Population Information

See Table 2 for primary results of the model’s recovery of the
true z-scores. Across these conditions, the model shows rel-
atively minimal estimation error in the true z-scores; how-
ever, as the sample size becomes smaller, there is a
tendency for greater error in estimating the z-score. Despite
the estimation error, in all conditions, the z-score estimates
were strongly correlated (r ≥ .996, τ ≥ .96) with the true
z-score estimates.

The z-score estimates and posterior predictive distribu-
tions for the raw scores produced ECRs that matched closely
with the expected 95% predictive interval (see Table 2).
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Classification Accuracy

The rates of correct classification for both the linear discrimi-
nant function analysis and the Bayesian model are reported in
Table 3. Cochrane–Mantel–Haenszel (CMH) tests compared
the 3x3 confusion matrices of predicted versus true diagnosis
across the 5 classification methods. Pairwise CMH tests dem-
onstrated that the Bayesian model produced significantly dif-
ferent cell frequencies than all other methods even after
adjusting for multiple comparisons, and the Bayesian model
produced overall greater diagnostic accuracy on the simu-
lated brief cognitive battery than the alternative approaches.

Posterior Inference

The ECR of the 95% credible intervals from the posterior pre-
dictive population raw scores were within their expected (i.e.,
.95) nominal rate (see Table 2). From the posterior predictive
distribution of the population-level subtest scores, the sum of
these subtests was computed, and the percentiles of this sum
were compared to that reported in WAIS-IV manual
(Table 4). Some deviation is expected as the WAIS-IV
manual reports these percentiles for the whole sample while
the model’s true predicted population was restricted to indi-
viduals aged 75 to 79 year.

Another transformation of the posterior predictive distri-
butions was the discrepancy analysis for the Digit Span
and Arithmetic subtests. As shown in Table 5, the model
again closely approximates the percentiles of the discrepancy
scores with the same caveat that the posterior predictive dis-
tribution is actually predicting these discrepancy scores in the
population of 75- to 79-year-olds. To clarify, the model
received no direct information about this discrepancy, so this
information is derived only from the summary information
used to fit the model.

To highlight how a clinician may view these results,
Figures 1 and 2 are provided to demonstrate how the simu-
lated individual’s test scores correspond to the posterior pre-
dictive distribution’s expectations of the population’s scores.
In this simulation, only a single population (the normative
sample) was estimated; however, in actual practice, posterior
predictive distributions for each diagnostic population of
interest will be generated. As a result, clinicians can make

inferences regarding not only how an individual’s scores
compare to a normative sample but also to any subpopulation.

DISCUSSION

This study provides initial validation of the proposed flexible
Bayesian diagnostic model described here. In the simulation
conditions, the model demonstrated the ability to estimate z-
scores, return accurate diagnoses, and approximate the pop-
ulation distribution of scores using only commonly reported
reference sample statistics. Readers interested in using the
model are encouraged to review the supplementary materials
which include further overview of the simulation conditions
and methods, additional exploration of the results, a detailed
demonstration of how to use the model clinically, and contex-
tualization of the model’s design.

The first hypothesis that the Bayesian model would pro-
duce accurate estimates of population parameters was
strongly supported by the parameter recovery simulation
study. The model produced minimal bias in estimating true
z-scores, and correlations between the estimated and true
z-scores demonstrated nearly perfect linear associations, sup-
porting the notion that similar information in the true z-scores
is contained in the estimated z-scores. Many neuropsycholo-
gists are familiar with the interpretation of z-scores and their
clinical implications; however, true z-scores are rarely able to
be computed given the need to know the actual population
mean and standard deviation. Additionally, these z-scores
are normalized scores given the model specification.
Where some measures compute z-scores through simple lin-
ear transformation, unless the distribution of scores is normal,
the z-scores themselves will not be normal, which limits the
ease of their application since percentiles cannot be deter-
mined from a standard normal curve table (Crawford,
2003). Unsurprisingly, the first simulation demonstrated that
when reference sample sizes are larger, the estimation of the
true z-scores was more accurate, though relatively good over-
all accuracy was still maintained with sample sizes as small as
50 participants.

Results from the second simulation provided strong sup-
port for hypothesis two that diagnostic accuracy of the model
would be at least equivalent to alternative methods. This

Table 2. Parameter recovery results

Z-scores Raw scores

RMSE MAE ECR Pearson’s r Kendall’s τ ECR

Condition 1 .02 .02 1.00 1.0000 1.0000 .96
Condition 2 .09 .09 1.00 .9999 1.0000 .96
Condition 3 .18 .17 1.00 .9998 1.0000 .96
Condition 4 .02 .02 1.00 1.0000 .9858 .95
Condition 5 .08 .06 .99 .9992 .9841 .96
Condition 6 .18 .14 .94 .9961 .9603 .99

Note. The ECR is for the 95% credible interval. For Conditions 4 through 6, the smallest correlation coefficients for any of the six simulated tests are shown.
RMSE = root mean square error; MAE = mean absolute error; ECR = empirical coverage rate.
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study’s Bayesian model outperformed all other classification
methods utilized. Several competing models were compared
to the model’s classification rate. These models included
parametric and machine learning approaches that were
selected because of the interest in defining diagnostic algo-
rithms, particularly in cognitive screening settings. In all
cases, the Bayesian model’s resulting contingency matrix
of predicted versus true diagnoses were significantly different
than the other classification methods. The Bayesian model

also produced a correct diagnosis rate superior to the other
methods despite using the same data to conduct these classi-
fications. Notably, the Bayesian model is likely more practi-
cal than any of these other methods. The LDA, QDA,
multinomial regression, and random forest methods require
that a previous study has already published the formula or
model derived from the same battery of tests applied to the

Table 3. Diagnostic accuracy results

LDA QDA Multinomial Random Forest Bayesian Model

Overall Accuracy 61.07% 60.67% 65.40% 65.60% 80.87%
CMH Test M2(4)= 2662.71,

p < .001
M2(4)= 2664.83,

p< 001
M2(4)= 2700.65,

p< 001
M2(4)= 2669.78,

p< 001
—

Note. The CHM test is a generalization of the McNemar test for n x n tables nested into k strata, resulting in an n × n × k array. The test follows a chi-square
distribution. In this application, the 3 × 3 contingency matrices of predicted by actual diagnosis are nested into 5 different strata corresponding to the 5 different
classification methods applied. Shown p-values are for specific pairwise contrast of the method in the column and the Bayesianmethod, and they are adjusted for
multiple comparisons.
CMH = Cochrane–Mantel–Haenszel test, LDA = linear discriminant analysis, QDA = quadratic discriminant analysis, multinomial = multinomial logistic
regression.

Table 4. Comparison of posterior predicted and WAIS-IV-manual
reported percentiles of the sum of scaled scores

Sum of scaled scores FSIQ Posterior percentile

10 40 <.1
20 47 <.1
30 53 <.1
40 60 .2
50 67 2
60 73 4
70 79 9
80 86 19
90 93 35
100 100 54
110 106 71
120 113 86
130 121 94
140 129 97
150 136 99
160 143 99.9
170 151 >99.9
180 158 >99.9
190 160 >99.9
Estimate Bias RMSE 2.49

MAE 1.75

Note. To save space, sums of the scaled scores on subtests are reported in
10-point intervals. RMSE and MAE summarize average deviance from
the true percentiles. Rounding conventions of the manual-reported percen-
tiles were used in reported the posterior’s predicted percentiles. Due to
copyright, readers are referred to Table A.7 of the WAIS-IV Scoring
and Administration Manual for the actual percentiles (Wechsler, 2008a,
pp. 224–225).
FSIQ = full-scale intelligence quotient, RMSE = root mean square error,
MAE = mean absolute error.

Table 5. Comparison of posterior predicted and WAIS-IV-manual
reported discrepancy scores

Posterior Baserate

Amount of Discrepancy DS < AR DS > AR

18 .0 .0
17 .0 .0
16 .0 .0
15 .0 .0
14 .0 .0
13 .0 .0
12 .0 .0
11 .0 .0
10 .0 .0
9 .1 .0
8 .4 .2
7 1.2 .7
6 3.2 1.6
5 6.4 4.2
4 12.4 8.7
3 21.8 15.8
2 33.3 25.6
1 47.2 38.6
Mean 2.3 2.1
SD 1.7 1.6
Median 1.9 1.8
RMSE 2.28 1.36
MAE 1.22 .63

Note. Column corresponding toDS<AR indicates that the discrepancy score
is negative while DS>AR indicates that it is positive. RMSE andMAE sum-
marize average deviance from the true percentiles. Rounding conventions of
the manual-reported percentiles were used in reported the posterior’s pre-
dicted percentiles. Due to copyright, readers are referred to Table B.4 of
the WAIS-IV Scoring and Administration Manual for the actual percentiles
(Wechsler, 2008a, p. 238).
DS = digit span, AR = arithmetic, SD = standard deviation, RMSE = root
mean square error, MAE = mean absolute error.
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same diagnostic contrasts that the clinician is interested in.
The likelihood of this for the range of clinical needs is highly
unlikely. Additionally, the model achieved high accuracy
despite using an abbreviated global cognitive function and
a brief neuropsychological screening test. The relative accu-
racy of the model is notable considering the limitation of this
battery for detecting MCI.

The third hypothesis that the model’s posterior predictive
distribution would be equivalent to distributions in the true
population was supported by the final simulation condition.

The posterior predictive distribution of “raw” scores (scaled
scores in this case) closely mirrored those reported in the
WAIS-IV manual. The model does not produce perfect par-
allelismwith theWAIS-IVmanual, but it is unclear the extent
to which this is because the posterior was estimated only from
75- to 79-year-olds rather than the entire sample versus bias in
the estimation, though both likely contribute. This finding is
particularly important since all results are based on simulated
data, while this condition utilized comparison to reported,
empirical data in the WAIS-IV manual. The posterior

Fig. 1. Plotted are the posterior predictions of the WAIS subtests with the full vertical lines reflecting the 95% credible interval, the darker
interior interval the 50% interval, and the large circle the mean score. The dark circles plotted over these are the observed sores for the client.
These intervals appear large, encompassing nearly the full range of scaled scores in some cases; however, it is important to note that some
subtests range much smaller ranges and that the internal 50% credible intervals vary in their boundaries across tests, suggesting that standard
qualitative cutoffs for these tests may not be particularly informative (e.g., “average” being between scaled score of 8 and 11). The individual,
relative to the estimated population distribution of scores, can be said to have scored above the average on Block Design (BD), Symbol Search
(SS), and Coding (CD) but then below average on Information (IN). The remaining scores for Similarities (SI), Digit Span (DS), Matrix
Reasoning (MR), Vocabulary (VC), Arithmetic (AR), and Visual Puzzles (VP) may be considered to be within the average range. This inter-
pretation is subject to clinical judgement, of course, with the current interpretations based on whether the scores fall within the 50% credible
interval (and thus average) or outside of this range (and thus either above or below average).

Fig. 2. Plotted in this figure is the average subtest scores from the posterior predictions (the histogram) and the observed average subtest score
for the client. While this plot is currently limited to just the overall average, similar plots could be create by index to visualize how the client's
averages compare to a population-based estimate of averages. Similarly, plots of differences could be created in similar fashion to show the
posterior predicted population frequencies of certain discrepancies between average scores (e.g., Vocabulary minus average of subtests in the
Verbal Comprehension Index). Any composite measure of the posterior predictions could be generated. For example, a similar plot showing
the variability of subtests in the posterior predicted population against the variability of subtests in a particular client.
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distribution of predicted scores closely aligned with percen-
tiles reported in theWAIS-IV manual, particularly in the tails
of the distributions. Additionally, this parallel to the WAIS-
IV manual was obtained through transformations of the
posterior predictions, meaning that no information about
the distribution of the sum of scaled scores or the discrepancy
between Digit Span and Arithmetic were given to the model.
The ability of the posterior to retain information about the
correlation of scores and support valid inference on transfor-
mations of its parameters allows the model to extend simple
descriptive statistics. For example, a study may just report
means and standard deviations, but clinicians may be more
interested in base rates of discrepancies or averages of certain
tests, so an accurate posterior distribution that closely approx-
imates these base rates or percentiles and supports such trans-
formations is a unique advantage.

A strength of the described model is that it is highly flex-
ible and modular in its implementation. The goal in writing
the model was to ensure it used only information readily
available to clinicians. Nearly any published study could
be used as a reference sample in the current model because
it is routine practice to publish a summary table with sample
size and means and standard deviations of test performance.
Neuropsychological measures are routinely factor analyzed,
and correlation matrices can be readily imputed from accept-
able factor models. Such a model has the potential to enable
direct, quantitative comparison between an individual and
any number of clinical samples that are published. The model
is theoretically informed by EBNP and rooted in an extension
of existing quantitative methods to operationalize diagnosis
in a standard manner across test batteries, diagnostic con-
trasts, and settings. Such a standard can help to transition
diagnostic accuracy research beyond single tests between cer-
tain diagnoses toward the accuracy of testing batteries and
normative/reference samples. Additionally, the model’s
modular design means that clinicians are not limited to the
number of diagnostic contrasts that they want to make, unlike
other kinds of diagnostic models like logistic regression
which contrast only two groups.

An advantage of this model over other statistical models is
that the posttest probability for various diagnoses can be
chained together. Even if no published study has reported
on the exact same battery as used to assess a particular client,
the battery likely has common tests (e.g., Trail Making Test,
verbal fluency, etc.). With the battery broken down, pub-
lished literature examining these tests in a wide variety of
clinical settings are readily available. The diagnostic accu-
racy simulation condition leveraged this strength of themodel
since there was not a readily available study that administered
the abbreviatedWAIS-IV andRBANS in all three of the same
populations. Instead, data for the WAIS-IV in the three pop-
ulations were used to compute an interim posttest probability
that was then updated using the data for the RBANS in all
three populations. The result was superior classification accu-
racy relative to the alternative classification methods.

This model extends the single-case tests of dissociation
and difference described by Crawford and colleagues

(e.g., Crawford & Garthwaite, 2007; Crawford, Garthwaite,
& Betkowska, 2009; Crawford et al., 2007). Due to the con-
siderable influence of Crawford and colleagues’work on evi-
dence-based single-case methodology, it is relevant to
compare and contrast with the current project. First, the cur-
rent model places less emphasis on identification of dissoci-
ation between tests than some of the other single Bayesian
methods described (e.g., Crawford & Garthwaite, 2007;
Crawford, Garthwaite, & Betkowska, 2007). As highlighted
earlier, however, it is possible to utilize the posterior predic-
tive distribution to perform further analyses and answer ques-
tions related to the expected abnormality of differences
between certain tests. Where methods described in
Crawford et al. (2007) or Crawford and Garthwaite (2006a,
2006b) note the need for accounting for the correlation
between two measures in such contrasts of scores, the pos-
terior samples maintain the correlations estimated by the
model (McElreath, 2016). Second, the model extends the
focus of previous single-case methods by incorporating both
multivariate analyses and multiple reference samples. The
current model is a natural extension of the prior work in that
the model yields the same kind of z-score information and
capacity to test for differences in scores while adding the abil-
ity to look at this information in the multivariate case, across
multiple different reference samples, and yield some probabi-
listic information regarding diagnosis.

Although this model is promising, limitations exist. First,
this study looked only at supporting evidence for the model in
a simulation setting. Although efforts were made to make the
simulations realistic, simulation is inherently overly simpli-
fied and reductionistic. Thus, this study provides no evidence
that the model will generalize to clinical applications, though
the results suggest applications to clinical data may be useful.
Complexities of diagnosis, accounting for demographic fac-
tors, consideration of performance validity indices, and
adjusting for contributing comorbidities are all missing from
these simulation studies. Additionally, only a few applica-
tions of posterior predictive inferences were able to be illus-
trated and tested in this study despite many more being
relevant to clinical practice.

Second, the model makes specific assumptions about how
to best simplify the world for the sake of statistical analysis.
Critical appraisal of these assumptions regarding appropriate-
ness for various settings and applications is important.
Additionally, the current simulations have treated neuro-
psychological test scores as unbounded and normally distrib-
uted at the population level. While the latter assumption may
be acceptable in many cases, these issues are significant if the
desire is to examine raw scores as these are clearly bounded
and can often be significantly skewed as a result.

Third, in developing the model, some degree of precision
was sacrificed for usability and flexibility. Alternative mod-
els may be considered and could be expected to produce more
accurate diagnoses in certain cases. These options were not
implemented simply because they require specific knowledge
about the tests, battery, or diagnoses that would limit gener-
alized utility. Readers should thus consider whether some
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inaccuracy with this model is worth the trade-off in compari-
son with other potential approaches. One such example of an
alternative model is the Bayesian Multilevel Single Case
(BMSC) model described by Scandola and Romano
(2021). In their simulation study, the BMSC model outper-
formed the single-case t-test approach described by
Crawford and colleagues (e.g., Crawford and Garthwaite,
2006b). The BMSC model is particularly well suited to
research, where the raw data for a control group are available
(or where a multilevel regression model in the control group
has been reported before) and in cases where there are multi-
ple observation by design (e.g., multiple trials of finger tap-
ping, reaction times over varying conditions).

Finally, the idea of a “black box” approach to diagnosing a
wide variety of clinical conditions could be considered con-
troversial, especially if applied in a vacuum. Clinicians
should, of course, render the final verdict in a diagnostic
assessment. If clinicians omit a clinical reference sample
for the true condition that a client has, then the model could
never accurately arrive at that diagnosis. Additionally, if the
neuropsychological test data are invalid or the reference sam-
ples are poorly defined, then the model’s results will suffer.

While the model described here may have eventual clini-
cal applications, a potentially more immediate application
could be to research studies. For example, the Jak/Bondi
actuarial neuropsychological definition of mild cognitive
impairment (MCI) has been validated across several studies
and data sets (e.g., Jak et al., 2009; Bondi et al., 2014;
Edmonds et al., 2015; Wong et al., 2018). When the Jak/
Bondi diagnostic algorithm was applied to the Alzheimer’s
disease cooperative study donepezil trial, donepezil was asso-
ciated with a lower rate of conversion from MCI to
Alzheimer’s dementia despite the original study using an
alternative diagnostic process finding no effect for the medi-
cation (Edmonds et al., 2018). The Bayesian model examined
in this study presents a uniform, EBNP-driven diagnostic
algorithm that could be easily used for diagnostic classifica-
tion in research studies without any restrictions on test selec-
tion, diagnostic contrasts, or existing classification equations.
For example, inclusion of participant data in a particular study
may be connected to the confidence the researcher has in each
participant belonging to a particular diagnostic group, so an
inclusion criterion might be that the posttest probability for
MCI needs to be at least some value (e.g., .70). The flexibility
of the model and its emphasis on classification at the individ-
ual rather than group level makes it a potentially valuable
research tool.

There remain many future studies and iterations of the
model to be conducted. As noted earlier, one of the most
needed studies is applying the model to clinical data rather
than simulations. Another interest is expanding prior infor-
mation about individual test performance by incorporating
details about diversity, comorbidities, and other person-level
factors. This can be done by layering over a standardized
mean difference effect size to the model or including relevant
reference samples and more detailed information. Another
extension of the model would be to incorporate test reliability

and generalizing to regression-based normative data. Though
future research is needed, the initial findings of the model are
encouraging and suggest that it can be used flexibly by clini-
cians and extend research to answer a range of questions
within EBNP.

SUPPLEMENTARY MATERIAL

The supplementary material, including R code and additional
methodological and results details, can be accessed on github:
https://github.com/w-goette/Single-Case-Classification.
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