IRREDUCIBILITY OF BERNOULLI POLYNOMIALS
OF HIGHER ORDER

P. J. McCARTHY

The Bernoulli polynomials of order k, where k is a positive integer, are

defined by
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B, ® (x) is a polynomial of degree m with rational coefficients, and the constant
term of B,® (x) is the mth Bernoulli number of order k, B,®. In a previous
paper (3) we obtained some conditions, in terms of k¢ and m, which imply
that B,,® (x) is irreducible (all references to irreducibility will be with respect
to the field of rational numbers). In particular, we obtained the following two
results.

THEOREM A. Let p be an odd primeand letk < pandt > 0. Then Byp—1pt™ (x)
s irreducible for 1 < m < p.

THEOREM B. For any integer k > 1 there is an integer T (k) such that for all
t > T(k), B2*®(x) is irreducible.

In viewing Theorem A, one is led to wonder what the situation is when
k > p. In this paper we shall give at least a partial answer to this question.
We shall show that a result like Theorem B holds for all primes. Furthermore,
we shall obtain an explicit bound for the 7'(k) of Theorem B.

First, however, we must introduce some terminology and notation. Let p
be any prime. A polynomial with rational coefficients will be called a p-Eisen-
stein polynomial if it satisfies the conditions of the Eisenstein irreducibility
criterion with p as the prime involved in the conditions. Such a polynomial is
irreducible.

If % is a positive integer and p is a prime, write

E=ap” +ap”+...+ap”, 0<ii<ji<...<jn
0<a; <p—1, 1=1,2,...,7,

and set j,(k) = j; and 7,(k) = r. We shall make use of the following result
of Carlitz (2, Theorem A).

THeEOREM C. If k is a positive integer and p is a prime, then the denominator
of p*® B, ® is prime to p for all m.

We shall now turn to the principal result of this paper.
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THEOREM 1. Let p be a prime, let 1 < m < p, and let n = m(p — 1)p°.
Further, let T*,(1) = 0 and for k > 2,
T;(k) = max(T5(k — 1), 7, (k — 1)] + jp(k — 1).
Then, for all t > T*,(k), pB,® (x) is a p-Eisenstein polynomial.
Proof. For B = 1 the result follows from the work of Carlitz (1, §2). We

now assume that £ > 1 and that B,* Y (x) is irreducible for all ¢ > T*,(k — 1).
Let ¢t > T*,(k). We have (4, p. 145)

B (x) = <1 — 7= )B"“”(x) + 6 — k4 1) =7 B5 ().
Since ¢t > r,(k — 1) 4+ j,(B — 1), it follows from Theorem C that both

n (k—1) n (k—1)
E—1 Bn (x) and BE—1 Bn—l (x)

have coefficients whose denominators are prime to p. Hence
pB.(x) = pB, " P(x) (mod p).

Since t > T*,(k—1), pB,*V(x) is a p-Eisenstein polynomial. Since the leading
coefﬁc1ent of pB,® (x) is p, this polynomial is also a p-Eisenstein polynomial.

If we now define 7**,(k) to be the smallest non-negative integer such that
for all ¢t > T**,(k), pB,®(x) is a p-Eisenstein polynomial, then it is clear
that if we redefine T%*,(k) by T*,(1) = 0 and for & > 2,

Ty(k) = max[T;*(k — 1), r,(k — 1] + j, (& — 1),
the result of Theorem 1 continues to hold.
COROLLARY. With p, m, and n as in Theorem 1, there is, for each positive

integer k, a smallest non-negative integer T,(k) such that for all t > T,(k),
B,® (x) is trreducible.

Suppose that £ < p. Then 7,(k — 1) = 1 and j,(k — 1) = 0. Hence T,(k)
= 1. Thus, Theorems A and B are corollaries of Theorem 1. We now consider
in more detail the case p = 2.

THEOREM 2. Let k be a positive integer. For all t > k, Bot® (x) 1s irreducible.

Proof. Let T'(1) = 1 and for & > 1,
T (k) =T'((k—1) 4+ j2(k — 1).

We shall show that 77(k) > T*.(k). This is true when k& = 1. Suppose that
E>1 and that T/(k — 1) > T*:(k — 1).

We first show that 77 (k) > rs(k) for £ > 1. This is true for £ = 1, and we
assume that £ > 1and that 7'(k — 1) > r:(k — 1). If kis odd, then j,(k — 1)
> 0,and so 77(k) > r2(k — 1) 4+ 1 = ry(k). If k is even, then jo(k — 1) = 0,
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and so T'(k) = T'(k — 1) > ra(k — 1). But r3(k) < r:(k—1), so T'(k)
> r2(k) in this case also. Thus, forall 2 > 1, T7(k) = T'(k — 1) + j2(k — 1)
> max [T*(k — 1), 72(k — 1)] + j2(B — 1) = T (k).

We see, therefore, that Byt® (x) is irreducible for all ¢ > T’ (k). But, T (k)
=T7T'(1) +j.(1) + ...+ jo(k — 1) = 1 + (the number of times 2 divides
(B — 1)!) < k. This completes the proof of Theorem 2. This result is the best
possible that this particular proof can yield, since for all ¢t > 1, T'(2%) = 2%

The estimate T5(k) < k given by Theorem 2 is a very rough one indeed.
We have determined that T,(1) = T2(2) = T2(4) =0 and T:2(3) = 2. In
determining T'»(k), the following facts are helpful. First, B;,_;*® (x) is reducible
(4, p. 147). Second, By® (x) is irreducible if and only if 3k is not a perfect
square (3, p. 317). Third, consulting the table on (4, p. 459), we find that
240B4® (x) = 240x* — 480kx® + 120k (3k — 1)x2 — 120k2(k — 1)x + k(15k3
— 30k% 4+ 5k + 2): this is a 5-Eisenstein polynomial if k is not divisible by 5,
and a 3-Eisenstein polynomial if £ = 1(mod 3). It would not be surprising if
Byt™ (x) is irreducible except when £ = 2* + 1 and ¢ > 0. This is in accord
with the more general conjecture that B.,®(x) is irreducible except when
k=2m+ 1.
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