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Abstract. The space ofelliptic virtual representations of a p-adic group is endowed with a natural
inner product EP(, ), defined analytically by Kazhdan and homologically by
Schneider—Stuhler. Arthur has computed EP in terms of analytic R-groups. For Iwahori
spherical representations, we show that EP can also be expressed in terms of a corresponding
inner product on space of elliptic virtual representations of Weyl groups. This leads to an explicit
description of both elliptic representation theories, in terms of the Kazhdan-Lusztig and
Springer correspondences.
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1. Introduction

Let G be a connected split adjoint group over a non-Archimedean local field F of
arbitrary characteristic. Schneider and Stuhler have defined a pairing EP(V, V")
between admissible representations of G(F) by the formula

EP(V, V)= > (=1)"dim Ext"(V, V),

n=0

where Ext is taken in the category of smooth representations of G(F), and they prove
that EP(V, V) is the trace on V' of a certain function fj on G(F). They also show,
assuming the characteristic of F is zero, that EP(V, V') equals the elliptic inner
product of the characters of V', V. (See [K] for background on elliptic representation
theory.)

On the other hand, Arthur [A] has calculated the elliptic inner product in terms of
elliptic characters of the analytic R-group R,, (‘analytic’ because it is defined by
zeros of Plancherel measures). Arthur then suggests that his formula . .. might also
play a role in the general character theory of Weyl groups”. One purpose of this
paper is to confirm this prediction: We show that the Iwahori-spherical elliptic
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representation theory of G(F) is equivalent to the elliptic representation theory of the
Weyl groups of endoscopic groups of G.
In addition, this paper contains the following.

(I) We describe explicitly the elliptic virtual representations of a Weyl group W, in
terms of Springer representations, using a Weyl group analogue of the pairing
EP.

(2) We describe explicitly the elliptic Iwahori-spherical virtual representations of
G(F), in terms of Kazhdan—Lusztig parameters. This is in the same spirit as
the classification of tempered and discrete series representations in [KL].

(3) For Iwahori spherical representations, Arthur’s formula now holds in any
characteristic, provided we use the homological definition of EP, instead of
the elliptic inner product of characters.

(4) In order to apply Arthur’s formula to the Kazhdan—Lusztig correspondence, we
describe the analytic R-group R,,, and the cocycle #,, (arising in
Harish-Chandra’s theory of intertwining operators) in terms of a geometric
R-group and cocycle attached to the Kazhdan—Lusztig parameter.

To give a more precise exposition, we begin with Weyl groups. Let G be a
simply-connected Lie group with Weyl group W. Then W has an elliptic represen-
tation theory, in which proper Levi subgroups are stabilizers of nonzero vectors
in the reflection representation E of W. Let R(W) be the span of the irreducible
representations of W, and let R(W) be the quotient of R(W) by the span of all
induced representations from proper Levi subgroups. We define an analogue of
the pairing EP on R(W) as follows:

ew(r,7) =Y _(=1)"dim Homy(A"E ® 7, 7).

n=0

This pairing is initially defined on R(W), but its radical is exactly the kernel of the
map R(W) — R(W), hence ey is a nondegenerate pairing on R(W).

For x € G, let A be the component group of the centralizer of x in the adjoint
group of G. The groups A, also have ‘Levi’ subgroups, hence their own elliptic
representation theories, hence pairings e, analogous to ey .

Let U be the set of unipotent elements in G, modulo conjugacy. Combining
results of Borho—MacPherson, Lusztig and Springer, we have a decomposition
R(W) = Dy, Ru(W), together with an isomorphism H, : Ro(4y) — Ru(W),
where H,(p) is the Springer representation of W on Hom,,(p, H(B")), B* denotes
the fixed points of u in the flag manifold B of G, H(B") is the cohomology of
B, with grading ignored, and R.(4,) is the span of the irreducible representations
of A4, which appear in the natural action of A4, on H(B"). The representations
H,(p) have been calculated explicitly in [BS], [Shol] for W of exceptional type,
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but are only given by a recursive algorithm in classical cases. See [Sho2] and
references therein.
We have

RW)= > Ru(W), (1a)

LIEZ/{(;

where R, (W) is the image of R,(W) in R(W).

Say that a unipotent element « in a reductive group H is quasi-distinguished in H if
there is a semisimple element ¢t € H commuting with u such that fu centralizes no
nontrivial torus in H. This forces H to be semisimple. Note that u is distinguished,
in the usual sense, if it is quasi-distinguished with ¢ = 1.

PROPOSITION

(1) The sum in (la) is orthogonal with respect to the pairing ey, and is in particular a
direct sum.

(2) The Springer map H, induces a bijective isometry Ro(A,) — Ru(W).

(3) The space R, (W) is nonzero if and only if u is quasi-distinguished in G.

4) If uis in fact distinguished in G, then H, maps the irreducible representations in
R.(A,) to an ey-orthonormal basis of R, (W).

COROLLARY. Assume that u is a non-regular unipotent element in G. Then

> (=1)"dim Homu/(A"E, H,(p)) = 0

n=0

for every p € R.(4,).

The above results are deduced from corresponding results for p-adic groups. Let /
be an Iwahori subgroup of G(F). Let Riemp(G, ) be the C-vector space spanned by
the irreducible tempered Z-spherical representations of G(F). Let 7 be the set
of conjugacy classes of elements x € G whose semisimple part lies in a compact
subgroup of G. The Kazhdan-Lusztig classification may be interpreted as a
decomposition  Riemp(G, I) = 1, Rx(G, ), together with an isomorphism
Vy:Ro(Ax) = Ry(G,T), where R.(A4,) is the span of the representations of A,
appearing in the cohomology H(B").

Let R(G,T) be the quotient of Riemp(G, Z) by the subspace spanned by induced
representations from proper Levi subgroups, and let R.(G,Z) be the image of
R(G,T) in R(G,T). It is easy to see that R(G,T) = é R+(G,T), and that
the sum is orthogonal with respect to the pairing EP.

Let x € 7 have Jordan decomposition x = su. Let @S be the centralizer of s, and
let W be the Weyl group of CAr’S.

XET(;
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MAIN THEOREM. We have a diagram of vector space isomorphisms, commuting
up to the sign (—1)™"x S

Ro(4y) — RUG,T)

b

Ro(Ay) ——  RuUWy),
Hx

which preserve the elliptic pairings EP on R\(G, T), ew, on R,(Wy), and ey, on Ro(Ay).
Moreover, these spaces are nonzero if and only if u is quasi-distinguished in G.

The map V, is induced by the Kazhdan—Lusztig correspondence, the map H, is
induced by the Springer correspondence, and r, is a kind of restriction map.

The fact that all these maps are well-defined on the elliptic spaces R( ), and
commute up to sign, follows from results of Lusztig and Kazhdan-Lusztig, together
with analysis of the connected components of certain fixed point varieties in 3, given
in Section 10. The fact that V, is an isometry follows from Arthur’s formula and the
comparison of analytic and geometric R-groups, along with their twisted group
algebras, see Section 9. In Section 5, we prove that r, is an isometry for s =1
by a direct calculation of the trace of Schneider—Stuhler’s function fj-. This involves
a reduction to Hecke algebras, then to affine Weyl groups, in the spirit of [R1]. Then
for arbitary s, where our calculation fails, we reduce to s =1 by categorical
equivalences, using [BaM], see Section 7.

The first part of the paper, Sections 2 and 3, contains our results on Weyl groups,
and can be read by those who are not familiar with p-adic groups. However, the
proofs of several results here require the extra structure contained in the p-adic
theory.

This paper can be viewed as evidence for the idea, based on Arthur’s formula, that
the conjectural Langlands parametrization of tempered L-packets should induce an
isometry between elliptic representation spaces. Here we have tested the two simplest
cases: Weyl groups and Iwahori-spherical representations of p-adic groups. The
same pattern of argument should work whenever we can describe representations
of G(F) using Hecke algebra isomorphisms. For example, much of this paper could
have been written in the more natural context of unipotent representations [L1].
At the moment, however, there are several technical obstacles that make our results
in the unipotent case less complete than the Iwahori-spherical case considered here.
Nevertheless, the comparison of analytic and geometric R-groups in Sections 8-10
is presented in a wider context, assuming when necessary a Langlands correspon-
dence with certain naturality properties. These properties are either known, or
are verified here, for Iwahori spherical representations.
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GENERAL NOTATION: When a group I acts on a set X, we let X' be the points in
X fixed by all of T', and let X7 be the points fixed by a single element y € I'. The set of
irreducible representations of I', up to equivalence, is denoted Irr(I'), and R(I") is the
complex span of Irr(I"). The identity component of a Lie group H is denoted H°, and
the centralizer of x € H, resp. S C H is denoted H, resp. Hs. The Lie algebra of H is
denoted by the corresponding gothic b.

2. Elliptic Representations of Finite Groups

2.1. Let I be a finite group, and let E be a real representation of I'. We allow E = 0.
Anelement y € I'is elliptic if y has no nonzero fixed vectors in E. Let ', be the set of
elliptic elements in I'. We will define an ‘elliptic representation theory’ for the pair
(I, E) which is dual to the set of conjugacy classes contained in I'.;. When
E =0, we get the usual relation between characters and conjugacy classes. All
constructions will depend on E, but we suppress it from the notation.

Let £ be the set of subgroups A C I for which E* # 0. For each A € £ we have the
induction map Indg : R(A) — R(I'), hence a subspace

Rina(T) = Zlndg[R(A)] c R(M).
Ael

We set R(I) := R(I')/Rina(T).
Let A"E be the n'* exterior power of E. The following lemma is elementary.

LEMMA (2.1.1). Let AE=7Y", . (=1)"A"E € R('). Then for y € I', we have

tr(y, AE) = det(1 —y) = 0,

with equality if and only if E? # 0. In particular, Ty is the support of the character of
AE.

2.2. We define a pairing

er(r, 1) =Y _(=1)'"dimHomr(A"E® 7, 7)., 7,7 € R(D).

n=0
It follows from (2.1.1) that Ri,q(I') is contained in the radical of er.

DEFINITION (2.2.1). The pairing er on R(I) induced by er is called the elliptic
pairing on T’

Let C.; be the set of conjugacy classes in I',y, and let S,; be the set of C-valued
functions on C,y, identified with class functions on I' which vanish off I',;. We have
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a nondegenerate pairing on S,; defined by

- A
T Bt 7 s GRS

vl z(c)

where z(c) is the order of the centralizer in I' of an element in c.
The characters of representations in Rig(I") vanish on I',;, so we have a map
rst : R(I') — S,y given by restriction of characters.

PROPOSITION (2.2.2). Themap rst : R(I') — Sy is a bijective isometry. Hence the
radical of er is exactly Rina(D), the elliptic pairing er is nondegenerate on R(I'), and
the dimension of R(T) equals the number of conjugacy classes in Tyy.

Proof. Itisclear that rstis a surjective isometry, and that its kernel is the radical of
er. It suffices to prove that dim R(I') = dim S,;;. We identify elements of R(I") with
their characters. If f € R(I'), then

1

=) = Y SO, 2)
I =

is a linear functional on R(I'). Thus we have an isomorphism tr : R(I') — R(I")*,
under which R(I')* corresponds to the functions f e R(I') such that
tr(f, Indg(a)) =0 for for each A € £, and o € R(A). By Frobenius reciprocity, this
is equivalent to f* vanishing on every A € £. In turn, this is equivalent to f being
in S,;. Thus, R(I')* =~ Se;. O

3. Elliptic Representation Theory of Weyl Groups

Let Gbea semisimple complex Lie group, and choose a maximal torus TCcG. LetW
denote the Weyl group of T, and let E be the real span of the coroots of T. Thus E
affords the reflection representation of W. In this section we describe the elliptic
representation theory of the pair (W, E). More precisely, we want to calculate
the elliptic pairing ey on the space R(W) of elliptic virtual representations of
W, as defined in Section 2. This will be done by reducing to the elliptic representation
theory of the small groups 4,, via Springer representations.

3.1. If Lisa Levi subgroup of G, then some conjugate of L contains 7', and the Weyl
group of this conjugate is a subgroup W C W, well-defined up to conjugacy in W.
The nonelliptic elements of W are those belonging to some W, for La proper Levi
subgroup of G.

The number of elliptic elements in W is the product of the exponents of W [S].
They are partitioned into conjugacy classes as follows [C].

If W is the symmetric group S, then the n-cycles form the unique elliptic class.
If W has type B, = C,, then each elliptic class is represented by a product
of Coxeter elements in Bj, x---x B;, € B,, one class for each partition
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A= =722= --- =2 A > 0) of n. This class lies in D, exactly when ¢ is even, and
then forms a single elliptic class in D,,. In the exceptional cases, the number of elliptic
classes is as follows:

Gy: 3, Fy: 9, Es: 5, E;: 12, Eg : 30.

3.2. Foranyx e G, we have a finite group Ay := GY/Z G where Z;, is the center of
G. The essential case is when x=u is unipotent. Let ¢ : SLQ(C) — G be a
homomorphism such that

Let M denote the centralizer of the image of ¢ in G, let S C By, be a maximal torus
contained in a Borel subgroup of M°, and let N(S BM) be the subgroup of M
normalizing both S and By. The inclusions N (S By)Cc M C G induce
isomorphisms

N(S, Bu)/ZS — MZ;M° — A, (3.22)

Let sy denote the real span of the coroots of S. Via (3.2a), we have an action of 4, on
59, and we consider the elliptic representation theory of the pair (A4, $o).

Let £, be the set of proper Levi subgroups of G containing u. The centralizer of S
in G is a minimal Levi subgroup L, € £,. All minimal Levi subgroups in £, are
conjugate under GZ.

For any L € £, let AL =1, /Z L Since L is the centralizer of a torus in G° and
connectedness is preserved by takrng centralizers of tori, it follows that
L —LN Go so the inclusion 7. <> G induces an injection AL > A4,, by which we
view AL as a subgroup of A4,. In particular, 4, has the canonical normal subgroup
AL Note that A% is the kernel of the action of 4, on s, so the group 4,/A%L acts
faithfully on s.

LEMMA (3.2.1). The elliptic elements of A, are those lymg outside \ ;. AL,
Proof. Suppose a € AL for some Le L, Conjugating by GO if necessary, we may
assume ¢(SL,(C)) C L. Let ¢ be the Lie algebra of the center of L. Conjugating
by M°, we may assume s C s. Then a fixes s, pointwise, so a is not ellrptrc
Conversely, if 0# h e s, the centralizer of / is a proper Levi subgroup Le G
and a € AL. O

LEMMA (3.2.2). The following are equivalent:

(1) A, is not the union of the AL for L € L,
(2)  Thereisasemisimple element t € G, such that tuis not contained in any proper Levi
subgroup of G.

If these conditions hold, then m = s.
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Proof. Suppose (2) fails. Let a € 4,, and choose a semisimple representative
te M, of a. Then tue L for some L€ L. Thus te€ L,, so ac Aﬁ, so (1) fails.

The converse follows from (3.2.1). That m = s is proved in [R1, (7.1)]. O

We say that u is quasi-distinguished in G if either of the conditions in (3.2.2) holds.
Combining (3.2.1, 2) and (2.2.2), we get

COROLLARY (3.2.3). R(A4,) # 0 if and only if u is quasi-distinguished in G.

3.3. Take a unipotentu € G, and L € L,, and let Band B; denote the flag varieties of
Gand L respectively. Let R.(4,) be the span of the irreducible representations p of
A, which appear in the natural action of A4, on the cohomology H(B") (grading
ignored) of the fixed point variety B“, and likewise define R.(4L) with respect to
Bj. Springer has constructed a natural action of W on H(B"), commuting with
Ay,. We refer to the version of this construction given in [BM]. Thus, for each
irreducible representation in p € R.(4,) we have a W-module

H,(p) := Hom,y,(p, H(B")).

These representations are generally reducible, since W preserves the grading on
H(B"). However, we have the following paraphrased result of Borho and
MacPherson [BM].

LEMMA (3.3.1) Therepresentations H,(p), foru € Ug, p € Irr(4,) N R,(A4,), forma
basis of R(W).

Proof. Choose representatives uy, uy, .. ., u, for the conjugacy classes of unipotent
elements in G, such that if u; is contained in the closure of the class of ujtheni < j. Let
d; = dim B, and for an irreducible representation p € R.(4y,), set y,, , = Hi,d" (p). By
Springer’s theory, the y,, ,’s are a complete list of the irreducible representations of
W. By [BM, Cor.2], we have

dim Homw (y,, ,, Hy,(p") # 0 = i <,
and it follows immediately from [BM, Cor. 1] that
dim Homyy (%, ,, H,(p) =1
if p = p’ and is zero otherwise. This proves the lemma. O
An analogous fact holds for the W, -representations
H(0) := Hom 4 (c, H(B})).
Set

Ru(W) :=(Hp): peRA(A)},  Ru(Wr):={H0): e R(4b)},
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so that

ROW)= P RW),  R(Ww) = P Ru(W0),

uelg uely,

and we have vector space isomorphisms
H, : Ro(4,) = R.(W), HE R (ALY — R, (W).

LEMMA (3.3.2). The induction map Indj{ sends Ro(AL) to Ro(Ay).
Proof. See Section 10. '

The next result is due to Lusztig. It was stated in [AL], and follows from (5.11.1)
and (6.2a) below.

PROPOSITION (3.3.3). Ifi, e L, and o € Ro(Aﬁ) then
H,(Ind}i0) = Ind};, H(0).
In particular, we have

Indjy, (Ru(W1)) € Ru(W).

3.4. We can now explain how the elliptic theories of W and A, are compatible with
the Springer maps H,. Some of the proofs are deferred to later sections.

Let R.(4,) be the image of R.(4,) in R(4,), and let R,,(W) be the image of R, (W)
in R(W).

PROPOSITION (3.4.1). The Springer isomorphism H, : R.(A,) = R.,(W) induces
a vector space isomorphism

H, : Ro(4y) = Ru(W).

These spaces are nonzero if and only if u is quasi-distinguished in G.
Proof. By (3.3.2) and (3.3.3), we have a commutative diagram

Ro (Au) % R”( W)

Iy T IWT
®HE
Dicrc, Ro(4]) Dicr, Ru(WL)

where 14, Iy are the respective induction maps. It suffices to show that

im Iy = Ro(Au) N Rina(Aw), im Iy = Ru(W) N Ring(W).
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In both equations, the left side is contained in the right side. The diagram shows that
H, maps im I, isomorphically onto im Iy, so we need only verify the second
equation. We have

Rina(W) = Z Ind%R( W)
LgG

=Y Y Indj} Ru(WL)

ig_é VEZ/{L

= > > Indjf, Ru(Wy).

uels fer,

The term for a given u € Ug belongs to the direct summand R, (W), so

Rina(W) N Ry(W) = Y Indyy, Ry(Wy) = im Iy,
ieﬁu

as we wished to show. The last assertion of (3.4.1) now follows from (3.2.3). [J
The next two results will be proved in Sections 5, 9, using p-adic groups.
PROPOSITION (3.4.2). If u and v are nonconjugate unipotent elements in G, then

Ru(W) and R,(W) are orthogonal with respect to the elliptic pairing ey on R(W).
Proof. See 5.11.

PROPOSITION (3.4.3). The isomorphism H, of (3.4.1) is an isometry with respect
to the elliptic pairings on R.(A,) and R, (W).

Proof. See (5.10.1) and (9.2.3).

Now suppose u is distinguished in G, that is, u centralizes no nontrivial torus in G.
Then R, (W) = R.(W). Moreover sy =0, so the elliptic theory of (4,, so) is the
ordinary representation theory of A4,, and R.(4,) = R.(4,). Again using p-adic

groups we will prove

PROPOSITION (3.4.4). If u is distinguished in G, then the set
{Hu(p) : p € Ro(Au)}

is an orthonormal basis of R, (W), with respect to the elliptic pairing ey .
Proof. See 5.11.

If u, is regular in G, then R., (W) is spanned by the trivial representation of W. In
this case (3.4.2) implies
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COROLLARY (3.4.5). If uis a nonregular unipotent element in G and p € Ro(Ay),
then

Z(—l)” dimHomy (A"E, H,(p)) = 0.

n=0

This was already known in certain cases. For example if Gis simply-laced and u is
subregular, then 5 is the ‘Dynkin curve’ (c.f. [St]) and H,(1) = C & E. I understand
that for G classical and u regular in a Levi subgroup, Lehrer (unpublished) has
calculated the multiplicity of A"E in H!(p) for each n,i, using the theory of
hyperplane arrangements.

4. p-Adic Groups

In this section we review some of the structure of p-adic groups. See [IM], [T] for
additional details.

Let F be a non-Archimedean local field with integers O, units O and residue field
of cardinality ¢. Let G be a connected, split, semisimple, algebraic group over F.In G
we choose a maximal torus 7 and Borel subgroup B containing 7. Let X C A C Y
denote the corresponding simple roots, roots, and rational characters of 7. We
assume the group G considered in Section 3 is the Langlands dual of G.

Let

TO)={te T(F): y(t) e O* forall y € Y}.

Let N be the normalizer of 7 in G. Then we have the Weyl group and affine Weyl
group

W =N(F)/T(F), W =N(F)/TO),

and a natural split surjection W — W whose kernel is the free abelian group
X = T(F)/T(O), and W = WX (semidirect product) acts by affine motions on
the vector space E = R ® X. Let W° be the subgroup of W generated by affine
reflections. Then E has a simplicial structure given by the hyperplanes corresponding
to the reflections in W°, and the open facets are permuted simply transitively by W°.
For any facet b C E, the stabilizer W, of b in W is a finite group.

The groups X, Y are in duality via the pairing

XxY—>Z, (4, ) +— — valp(x(1)).

Thus we view roots in A as linear functionals on E. There is a unique open facet
¢o C E which contains 0 in its closure, on which roots in X take positive values.
Let S be the set of reflections in W about the hyperplanes bounding ¢, and let
We be the subgroup of w generated by S. Then We is a Coxeter group, and
We is normal in W. Let Q be the stabilizer of ¢y in W. It permutes the elements
of S, and we have W = Qx W°.
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Let B denote the building of G(F). It is a simplicial complex containing E as a
subcomplex, on which G(F) acts via simplicial maps, and every facet in B may
be translated by G(F) into E. Let G, be the stabilizer in G(F) of a facet b C B.
It is a compact open subgroup of G(F) described by the exact sequence

1 — Uy — Gy > My(lF)) — 1,

where U, is pro-unipotent, and M, is a reductive group (possibly disconnected) over
the residue field I,. Let M} be the identity component of M}, and let G;, be the full
pre-image of M;(I,) in Gp.

Assume that b is contained in the closure of the facet ¢ described above. Let Q;, be
the stabilizer of b in Q. Then G,/Gj >~ Q. If b’ is another facet in the closure of ¢y,
then b is G(F)-conjugate to b’ if and only if b is Q-conjugate to »'. Thus, the G-orbits
of facets in B are in bijection with Q-orbits on S.

If b = ¢, th~en we write Z := G,,. For any facet b contained in the closure of ¢y we
have G, = ZW,I. This makes sense because T(0O) C Z.

5. Calculation of EP for Real Central Character

5.1. Let A(G,T) be the category of smooth G(F) representations which are
generated by their Z-invariants, and let R(G,Z) be the Grothendieck group of
representations of finite length in A(G, 7). For each Levi subgroup L in G we have
a natural induction map

1¢:R(L, I;) — R(G, I).

Here Z; is an Iwahori subgroup of L. Let R;,q(G, Z) be the span of the images of Ig as
L ranges over Levi subgroups # G, and let

R(G.,T) = R(G, T)/Rina(G. T).
Our aim is to calculate the pairing EP defined on R(G, Z) by

EP(V, V') =Y (=1)'dimExt"(V, V"),

n=0

where Extn is taken in A(G, 7). Note this category is a direct summand of the cat-
egory of all smooth G(F) representations, so the definition above coincides with that
of [SS]. The space Rinq(G, T) belongs to the radical of EP [SS, Lemma 18], and we
again write EP for the induced pairing on R(G, T).

5.2. Let dg be the Haar measure on G(F) assigning volume one to Z. Let H be the
convolution algebra of compactly-supported functions on G(F) which are left
and right invariant under Z. It is known [B] that A(G, 7) is equivalent to the category
of unital H-modules, via the functor V 1— V7? of Z-invariants.
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The algebra H has a linear basis {7}, : w e I7V}, where T, is the characteristic
function of ZwZ. For p € Q, w € W°, we have

Ty =T,Ty = Tpyp 1 T (5.2a)

Let Hy be the span of {7}, : w e W}, and let C[j" ] be the affine coordinate ring of the
complex torus T= Hom(X, C*). There is an embedding of algebras j : C[f‘] —H
(see 5.7) by means of which we view C[T] as a subalgebra of H. As vector spaces
we have H =Hy ® C[f‘].

The center of H is £ = C[T]". Thus Spec(Z) = T/W, and points in T/W are
characters of Z, i.e., central characters of H-modules.

Except in the proof of (5.3.1) below, we will confound points in T with their images
in T/ W. Let R(H, 1) 13e the span of the finite-dimensional simple H-modules with

central character t € T.

5.3. The real central characters are those belonging to T (R) := Hom(X, RZ;). We
want to show that R(H, 1) is invariant under isogeny when 7 is real.

Suppose we have an isogeny G — G’. This induces an isogeny 7' — T and an
embedding of algebras H < H’ such that Hy = H; and C[f’] — C[f“ "] corresponds
to 7' — T.

The induced map

/W —T|W (5.3a)

corresponds to restriction of central characters from H’ to H. On real points, (5.3a) is
bijective.

LEMMA (5.3.1). Let v be areal central character of H', and let t be its restriction to
Z. Then the restriction map R(H',7v") — R(H, 1) is bijective, and irreducible
‘H'-modules restrict to irreducible H-modules.

Proof. Let C be the kernel of our isogeny T’ — T. We have corresponding
maximal ideals m; c C[7"], m; C C[T]. Our isogeny is an isomorphism on tangent
spaces, SO

My = m, + . (5.3a)

Now C acts by multiplication on T commuting with the W-action, so C acts on the
branched covering T "W — T /W . A real central character of H' is an example
of a C-unramified point in T /W.Wemust be a little more precise about our notation
for W-orbits. Let 0’ € %//W be any C-unramified point, and let o € %/W be its
image. Then any 7 € o has a unique lift 7" € 0.

Let W be a simple H'-module with central character o’. Restricting to C[f"/] we
have ¥ =@, ., ¥, where ¥, is the subspace of ¥ killed by some power of
my. Restricting further to C[TA"], we have ¥, = ¥,, for each 7’ € v/, since v’ is
C-unramified. Let ‘I’i, (resp. ‘I’i) be the subspace of P killed by m. (resp. m;). From
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(5.3a) it follows that
vl =v! (5.3b)

forall 7’ € 0. Let ® C ¥ be a nonzero simple H-submodule, and choose 0 # u € <Di.
Then u € ¥! =¥!, so

T

O=Hu=Hu=Hu="Y,

so W restricts irreducibly to H.

Now let ¥ be a simple H-module with central character o. Then there is 7; € o such
that ¥ is a submodule of the principal series M = H ® 3, 71. Then M extends to H
by lifting 7;. As in (5.3b), we have M} = M, for all ' € o/, which implies

mo¥! CmyM! =0.
Hence C[T"]¥! = ¥!, so
HWP! = HoP! = HY! =,

showing that W is stable under H'. This completes the proof of the lemma.  []

Remark. The restriction from H’ to H for arbitrary central character is described
in the recent preprints [RR], [R4].

5.4. The functor Vi— V7Z induces an isomorphism
Exte(V, V') = Exts,(VE, V'),

Since there are no extensions between H-modules with different central characters, it
follows that we have an EP-orthogonal direct sum

R(G.T) = @ R(G.T,v),

eT/w

where R(G, Z, ) is the span of the irreducible representations V' € R(G, Z) such that
z_? acts via the character 7 on V<. Letting R(G, Z, t) denote the image of R(G,Z, 7) in
R(G,T), we have

R(G.T)= @ R(G.T.v).
ref’/W

again EP-orthogonal.

5.5. We recall here the formula for EP(V, V') given by Schneider and Stuhler
[SS, §4]. For V € A(G, T) of finite length, define a function f) on G(F) by

_ _1)dimb &b b ’
fr= N S
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where F is a set of representatives of G(F) orbits of facets in the building B, vol(Gp) is
the volume of G, with respect to dg, ¢,: G, — %1 is the orientation character of G,
acting on b (thus, ¢,(g) = 1 iff g preserves orientation on b), and y,, is the character
of G, on the invariants V%, extended by zero to all of G(F).

THEOREM (5.5.1) [SS, §4, Prop. 1]. We have
EP(V, V') =tr(fy, V),

where the trace is taken with respect to the Haar measure used to define fy.

Over the next few sections, we will calculate tr(fy, V) in terms of Weyl group
representations. To begin with, it is clear that

tr(fy, V') = Y (=)™ dim Homg, (e ® Vi, V), (5.5a)
beF

where we have abbreviated V), = V'%.

We choose F to consist of Q-orbits of facets » which lie in the closure of ¢y. Then
Uy, CZ C Gy for each b € F. Let ‘H; be subalgebra of functions in H supported
on Gy, and let H; be the functions in H, supported on Gj. Then

Hy = CQ,QM;,

with cross multiplication as in (5.2a). The character ¢, : G, — =£1 is trivial on G,
hence may be viewed as a character of Q;, by which we can twist H;-modules
via tensor product. We have then

[ ® 1 ~ &, ® F (5.5b)

for any Gj-representation ¢.
We may also view H, as an intertwining algebra:

Hj;, = Endg, (Ind$* C),
and

Ind?"C =Py oy’
1

where  runs over the irreducible Gj, representations that contain nonzero
Z-invariants. If ¢,, ¢, are G, representations, then

Homg, (¢, ¢,) > Homy, (¢, ¢3). (5.5¢)
Combining (5.5a,b,c), and recalling that U, C Z, we find that

t(fy, V') =Y (=)™ dim Homy,, (e, ® V2, V7). (5.5d)
beF
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5.6. Let v be an indeterminate, and let H(v) be the generic affine Hecke algebra. It is
the algebra over C[v, v~!] with the same generators as H, but now ¢ is replaced by v?
in the relations. We have analogous subalgebras H,(v) C H(v).

Let V' € R(G, I) be irreducible and tempered. When G has connected center, the
construction of V7 in [KL] shows that there is an H(v)-module ¥(v) such that

VI = llj(q) = Cq ®\C[v,v*1] lIJ(V)»

where C, = C and C[y, v~'] acts by evaluating vi— /4. 1f Gis arbitrary (split) and V'
has real central character, then by (5.3.1) we have an analogous H'(v)-module ¥(v)
obtained by restriction from an isogenous group G’ with connected center.

If we instead specialize to v = 1, then ¥(1) is a module over the group algebra
H(1) = CW. Since Hy(1) = CW,, and W, is a finite group, we have

dim Homy,, (&5 ® V7, V%) = dim Homy, (5 ® W(1), ¥'(1),
so that

tr(fy, V') = Y (=1)"™" dim Hom , (e ® (1), ¥'(1)). (5.6a)
beF

5.7. We may identify C[7] with the group algebra CX of X, and the embedding
C[T]<> H is a specialization of a generic embedding of algebras j, : CX < H(v)
of the form

W) =vAT, T, LeX,

where n(2) is an integer, and 4; are dominant with respect to X, such that 2 = 4; — 4.
Note that, under the identification H(1) = CW, we have j;(1) = 2. We have, as
vector spaces, H(v) = Ho(v) ® j,(CX).

Assume that ¥ is a simple tempered H-module with real central character, so it is
obtained by specialization from the H(v)-module W(v) as described in (5.6). The
eigenvalues of j,(1) on W(v) are of the form v"¥ with m(2) € Z, so A =ji(1) acts
on ¥(1) by unipotent transformations.

5.8. We therefore consider representations of W on which X acts by unipotent
transformations. Let 7 : W — W be the natural projection. If 4 is a facet in E, then
W, is finite, hence projects isomorphically onto a subgroup W, = nW, C W. On
representations, we then have an isometry 7% : R( W) — R(Wp).

LEMMA (5.8.1). Let \ be a finite dimensional representation of W on which all
elements of X act by unipotent transformations. Let \,, W, be the restrictions of
W to Wy, and W, respectively. Then as Wy-modules, we have oy, = Wolw,, this last
being the restriction of Wy to Wy € W.

Proof. Since X acts on y via a finitely generated abelian unipotent group,
normalized by the action of W, there is a W-stable filtration on the space of i such
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that X acts trivially on each quotient. Let gri/ be the associated graded space. It is a
W-module on which X acts trivially, and upon restriction to any finite subgroup
W, of W, we have gry ~ y as W;-modules.

Let w € W,, and let wi € W, with A € X, be the unique lift of w in W, Taking
traces, we have

tr(w, n’;pr) = tr(wi, ) = tr(wi, gry) = tr(w, gry) = tr(w, ).
The lemma is proved. ]
Now suppose we have two W-modules ./, on which X acts by unipotent

transformations. Let (, ) denote multiplicities between virtual representations
of a group I'. By Frobenius reciprocity and (5.8.1), we have

(lpb ® &p, w;)Wh = (ﬂ:i(l//b ® 8b)’ ni‘ﬂ;)Wh
= ((Yolw,) ® moen, Wolw,)w,
= (Yo ® Indy, wen, Yoy (5.8a)

5.9. The representations Indg//hnisb also appear in the following expression for
AE=7)", . (=1)'A"E.

LEMMA (5.9.1). As virtual W-modules, we have

AE = Z(—l)dimblnd%niab.
beF

Proof. The character of AE is the Lefschetz character of I on the cohomology of

the compact torus E/X. Now E/X has a W-simplicial structure induced by the
W -simplicial decomposition of E. As W-modules, the oriented co-chain groups are

C'(E/X) = @ [Ind]) e

dim b=n

sum over facets in F of dimension n. Restriction of functions induces an
isomorphism

[Indgjbsb]x ~ Ind%}niab
as W-modules. The lemma follows. O

Let ey be the elliptic pairing on R(W), described in Section 3. Combining (5.8a)
and (5.9.1) we have
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PROPOSITION (5.9.2). Let s, Y/ be representations of W on which all elements of X
act by unipotent transformations. Then

D DI e @ Yy ), = ew o, o)

beF

5.10. Let Riemp(G, Z, R) be the span of the irreducible tempered representations in
R(G,T) with real central character. We have a map

' Riemp(G. T, R) = R(W), (V) =¥ (D,

where W(v) is the H(v)-module such that ¥(,/q) = 14
Combining (5.6a) and (5.9.2) we have proved

THEOREM (5.10.1). The map r : Riemp(G,Z, R) — R(W) is an isometry between
the pairing EP on Riemp(G, I, R) and the pairing ey on R(W).

COROLLARY (5.10.2). Let G — G’ be an isogeny. Then the restriction map

7?ftemp(G/, I/, R) e 7ztemp(Ga Z, R):

in (5.3.1) is an isometry for the respective EP pairings.
Proof. Since Ho = Hj, the restriction commutes with the respective maps r
defined above, and the pairing ey on R(W) is independent of isogeny class. []

5.11. According to [KL, 8.2], the irreducible representations in Riemp(G, Z, R) are
parametrized by G conjugacy classes of pairs (u, p) where u € G is unipotent and
p is anirreducible representation R,(A4,). This is proved in [KL] for G with connected
center. By (5.10.2) it holds as well for any semisimple G, since we have real central
character. The central character of the corresponding representation V,(p) is given
as follows. We may choose u in its conjugacy class so that there is a homomorphism
¢ SL(C) —» G mapping the diagonal matrices into T, such that

v 11
%o 1)
Then the central character of V,(p) is the W-orbit of

q1/2 0
Tu = ‘P< 0 q—l/Z)‘

It is known that 7, is W-conjugate to t,, if and only if u is G-conjugate tou'. Therefore
if we define

RM(G’ Z) = {Vu(p) L pE RO(AU)}’
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then

Ru(G,T) = Remp(G, Z, R)yNR(G, Z, 1)
and we have an EP-orthogonal direct sum

Riemp(G, T, R) = @ Ru(G, T). (5.11a)

ueUg

On the Weyl group side, recall from Section 3 that
R(W) = @RU(W),
u

and that R, (W) has the basis {H,(p): p € R.(4,)}.
Now Lusztig has calculated the map r : Riemp(G, Z, R) — R(W) as follows.

THEOREM (5.11.1) [L2], [L3]. We have
}"( Vu(p)) =&e® Hu(p)’

where ¢ is the sign character of W.

This, combined with (5.9.1) proves the orthogonality of the sum @, R.(W), as
claimed in (3.4.2).

The representation V,(p) is square-integrable if and only if u is distinguished in G
[KL, 8.3]. Then the elliptic pairing on R.(4,) coincides with the ordinary pairing.
By [SS, Theorem 6] we know that {V,(p) : p € R.(4,)} is then an EP-orthonormal
basis of R,(G,Z). This proves (3.4.4).

6. Elliptic Theory for Real Central Characters

We now apply the results of Section 5 to the elliptic theory of G(F). Let R(G,T,R)be
the image of R(G,Z, R) in R(G).

6.1. Let u be a unipotent element in G, let L bea Levi subgroup containing u, and let
L be the corresponding Levi subgroup of G. Let Z; be an Iwahori subgroup of L(F).
Let

VE: R (AL - R(L, T1)

be the Kazhdan—Lusztig isomorphism for L. It follows from [KL, 6.2] (a result whose
hypotheses are verified for our situation in the last paragraph of [KL, p. 213]) that

190 VE=V,0Indj. (6.1a)
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As in (3.4.1), V, induces an isomorphism
Vi Ro(4,) = Ru(G, D),

where the right side is the image of R,(G,Z) in R(G).

6.2. From Section 5, we have bijective isometries

r:RUG,T)— R,(W), rp:RU(L,I1)— Ry(Wp).
From [J, 2.1.2] it follows that

ro Ig = Indg/,L o rr. (6.2a)
Hence r induces a bijective isometry

P Ru(G,T) = Ru(W).

From (3.4.1) we conclude that the space R,(G,Z) is nonzero if and only if u is
quasi-distinguished in G.
Finally, Lusztig’s theorem (5.11.1) implies that

FoV,=e¢®H, =(~1)"'H,

where H, is the elliptic Springer isomorphism from (3.4.1).
We summarize all of this in the following theorem.

THEOREM (6.2.1). The following diagram of vector space isomorphisms commutes
up to the sign (—1)".

D, Ro(Ay) N R(G.I.R) = @, Ru(G.T)

| |

@u 7_20(‘414) —— 7_?'( W) = @u ku(W)
Moreover, the sums on the right side are orthogonal for the pairings EP and ey, the
map ¥ is an isometry, and the nonzero summands are precisely those for which u
is quasi-distinguished in G.

7. Arbitrary Central Character

We now assume that G has adjoint type. We want to generalize (6.2.1) to arbitrary
central characters. The calculations of sections (5.7-11) don’t work because X
no longer acts by unipotent transformations. Instead, we will reduce to real central
character on a smaller group, using results of [BaM].
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Let Riemp(G,Z) be the span of the irreducible tempered Z-spherical
representations of G(F), without restriction on central character. By [KL, 8.2]
we have a direct sum

Rtemp(Gs I) = @ RX(G7 I),

together with an isomorphism V. : R.(A4yx) = R(G, T), where x runs over conjugacy
classes of elements in G with compact semisimple part, and R,(G, 7) is the span of
irreducible representations Vi(p), p € R.(4y). Here R.(A,) is the span of the
irreducible representations of 4, appearing in H(B").

Let x = su be the Jordan decomposition of such an x, and let GS be the centralizer
of sin G. We may choose ¢ : SL,(C) — G,, as in (3.2). Let t = s7,,. By [KL, 8.2]
we have

Ri(G,ZT) = Riemp(G, ) N R(G, Z, 7).
Let R (G, T) be the image of R(G,Z) in R(G).
LEMMA (7.1.1). If G is not semisimple, then R(G,T) =
Proof. We are assuming G has adjoint type, in particular G is semlslmple If G is

not semisimple, it must be contained in a proper Levi subgroup L of G. Then
AL = 4,, and R.(4L) = R.(4,). By [KL, bottom of p. 213] we have

(VER) = Valp),  p € Ru(4b).
This proves the lemma. O
Assume now that G is semisimple. Let G, be the split group over F whose root

datum is dual to that of GS. Let Z, be an Iwahori subgroup of G,. According to
[BaM] there is an isomorphism

11 R(G, T, 1) —> R(Gy, Ty, ). (7.1a)

This isomorphism is induced by an equivalence of categories, hence it preserves the
EP-pairing. This isomorphism also preserves tempered representations [BaM, 6.5],
so (7.1a) restricts to an isomorphism

RAG,T) — Ru(Gy, Ty). (7.1b)

Let G, be the adjoint group of G, and let 7/, be the unique Iwahori subgroup of G/,
containing the image of Z, under the isogeny G, — G). Combining (7.1b) with
(5.10.2), we have a bijective EP-isometry

R(G.T) > R(G..T)). (7.1¢)

where 7/, corresponds to 7, asin (5.3.1). Lusztig’s theorem (5.11.1) applies to R(G, T)
as well, and asserts that r o V', = ¢ ® H,. The Weyl group of G, is the centralizer W
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of sin W. Let
st Ru(G Ih) — Ru(Wy) (7.1d)

be the analogue of the map r defined in 5.10. It is an isometry, by (5.10.1). By
[BaM, Cor. 3.4], the isomorphism (7.1a) satisfies

r=1Ind} oryor (7.1e)
Finally, by [Ka] we have
H, =1Ind}; o Hj, (7.1f)

where H; : R.(Ay) = R,(Wj)is the Springer isomorphism for W. A diagram chase
involving (7.1c—f) proves the following generalization of (6.2.1).

THEOREM (7.1.2). The spaces R«(G,T), Ryw(G,T) are orthogonal with respect to
EP unless x, X' are conjugate in G. If Ro(G,T) #0 then és is semisimple, u is
quasi-distinguished in G,, and we have a diagram of isomorphisms commuting up
to the sign (—1)

Viu

Ro(Ag) Ru(G, T)

|

7_?fo(Asu) _[;) 7_?'u(I/VS)
The map 7, is an isometry with respect to the pairings EP and eyy,.

In the next few sections, we will see that the horizontal maps in (7.1.2) are also
isometries, and this will complete the proof of the Main Theorem as stated in
the introduction. We need Arthur’s formula, and a comparison of analytic and
geometric R-groups. We must also prove (3.3.2). These issues make sense for
arbitarary Langlands parameters. When necessary, we make assumptions (see 9.2)
about the conjectural Langlands correspondence. These assumptions are known
to hold in the Iwahori-spherical case (see 9.3). The results on the geometric side
are, of course, independent of these assumptions.

8. Analytic R-groups and Arthur’s Formula

Let S be an F-split torus in G, with centralizer L. Let P = LU be a parabolic
subgroup, and let A" be the roots of S in the Lie algebra of U. Let f§ be a reduced
root in A*, and let Ly be the centralizer of the kernel of . Then L is a maximal
Levi subgroup of Lg. Let S’ﬁ be the complex torus of unramified characters of
[S/ ker f1(F). Given a discrete series representation V. of L(F), the corresponding
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Plancherel measure pu;(7) is a rational function of 7 € S',;. We set
AV ={f € A" 1 pg(1) =0},
Let
W(S) = N(S)/Z(S) = N(L)/L,
and let
WS, V) ={we W(S): (V)" >~ Vi}.
The analytic R-group is defined as
Ran(VL) ={re W(S, V) rA(VL) = A(VL)}.
Harish—Chandra proved that

Endem(Ind) V1) ~ ClRu(VL). 1],

where 1, is a certain 2-cocycle on R,, (V) defined by the composition of standard
intertwining operators. We therefore have a decomposition

Indp) Ve =~ @y © V().
v

as C[R.(V1), n,,] X G(F)modules, where i runs over the irreducible representations
of C[Ran(VL)v ﬂun], and

G(F
V() = Homgyr,,(v,).,1 (- Indpp) V7).

Assume that F has characteristic zero. Let C,; be the set of elliptic regular
conjugacy classes in G(F). The Weyl integration formula may be viewed as a measure
dc on C.y [K, §3]. Let V', V' be admissible representations of G(F'), with respective
characters @y, ®. Schneider and Stuhler [SS, Thm 21, Cor 17] proved that

EP(V,V')= 0,0 dc.
Cent

Let V=V), V' = V({)) be two constituents of Indg((g) Vi, as above. Arthur
[A, Cor 6.3] has shown that

/C ®V(W)@V(l//)dc = ean(lpv lp/)’
ell

where ¢, is the pairing on elliptic representations of R, (V7 ), defined with respect to
the real Lie algebra of S. Note that v,/ are only projective representations of
Ran(Vr), but their common multiplier is a root of unity, so that if r € R, (V7),
the quantity tr(r, Y)tr(r, ), is well defined, hence so is the pairing e,,,.
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Thus, in characteristic zero, we have a calculation of EP as follows:
EP(V(), V) = ean(, ). (8.1a)

In some sense (8.1a) gives a calculation of EP that is far more general than the
Iwahori spherical case considered previously. However, the calculation of
R, (V) depends on the zeros of Plancherel measures, which are quite subtle.
See [S], for V' generic. A few nongeneric examples are calculated in [R2].

In contrast, the geometric R-group is very simple, but its connection to the
analytic R-group is based on expected properties of the conjectural Langlands
correspondence, as we shall describe.

9. Geometric R-Groups

9.1. Let Wr be the Weil group of our non-Archimedean local field F, and suppose
we have a homomorphism @ : Wr x SL,(C) — G mapping Wr to a bounded
subgroup I' C G, generated by semisimple elements.

Let M be the centralizer of the image of ®. Then M is reductive, though possibly
disconnected. Let S be a maximal torus in the identity component M° of M,
and let L be the centralizer of S. Then (2,r)O is a Levi subgroup of (@r)O minimally
containing ®(SL,(C)). Set M; := M N L. Then M; = S.

Choose a triangular decomposition of Lie algebras g = 1@ [ & u. That is, u and u
are the nilradicals of opposite parabolic subalgebras of g with [ as Levi subalgebra.
Then

m=uNm) ®dsdunNm) (9.1a)

and the subalgebra b,, := s @ (uNm) is a Borel subalgebra of m.

Let N(s, by,) be the normalizer in M of the pair (s, by,). The inclusion of N(s, b,,) in
M induces an isomorphism N(s, b,,)/S ~ M /M°. Generalizing the group A, we
define 4 = Ag := M/Z;M°. Replacing G by L, we have the analogous group

Ap =M /(Z;M}) = ML/ Z;,
which is naturally identified with a normal subgroup of 4. We set R := 4/A;. Thus
R>M/M°Mjy >~ N(s,b,,)/ M.

Let R, be the stabilizer in R of ¢ € Irr(Ay). We call R, the geometric R-group of the
pair (@, ).
We have
End,(Ind}, o) = @) Hom , (0. o").

reR,

A choice of nonzero 7, € Homy, (o, ¢"), for each r € R,, determines a 2-cocycle 7 on
R, such that T\ T, = n(x, y)Tx,. If C[R;, n] denotes the group algebra of R, twisted
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by n, we have algebra isomorphisms

C[R,. ] ~ End«(Ind (0)) ~ @D Endc(,). (9.1b)

pelrr(A4)

where /, = Hom(p, IndﬁL(J)).

9.2. This subsection contains some conjectural properties of the Langlands
correspondence, and consequences thereof. All of the properties are known to hold
in the Iwahori-spherical case, see (9.3). For the real case, where all the following
conjectures are proved, see [KZ].

The irreducible representations of A are supposed to parametrize an L-packet

Iy ={V(p): p € Irr(A)}

of irreducible representations V(p) of G(F). These representations should all be
tempered, since I’ is bounded. Thus, we expect an isomorphism
V:R(A) - Ro(G), where Re(G) denotes the span of the representations in Ilg.

Likewise, the set Irr(4.) of irreducible representations of Ay is supposed to
parametrize an L-packet

M = {(Vi(o): o elrr(4L)}

of irreducible representations VL(G) of L(F). Moreover, since the image of ® lies in
no proper Levi subgroup of L, the representations in IT5 are supposed to be
square-integrable modulo the center of L(F).

Let A(u) denote the roots of S in . Since the groups G and G are dual, we have a
canonical bijection fi— [3 AT = Aw).

Our first assumption about the Langlands correspondence is that

A(Vi(a)) = Aunm), (9.2a)

the latter being the roots of S in 1N m. Assumption (9.2a) would follow from
Langlands’ conjecture describing Plancherel measures in terms of Artin L-functions.
For generic Iwahori spherical representations, (9.2a) was proved by Shahidi [Sh,
Thm. 3.5]. It will be verified for all Iwahori-spherical representations in Section 9.3.
For real groups, (9.2a) was proved by Langlands [KZ Thm. 3 3].

Let N(L), N (L) be the respective normalizers of L, LinG, G.Both N (L)/L and
N(L)/L are naturally isomorphic to a subgroup W(L) C W, and we identify
N(L)/L = N(L)/L = W(L).

Our second assumption is that

(VL))" = Vi(no), ne N(L)/L (9.2b)

where no is the conjugated representation of n(A5)n~! = Aﬁqm
Assumptions (9.2a,b) imply that the analytic R-group R,,(V1(0)) for the discrete

series representation V;(¢) consists of those nl e N(i)/i such that
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1H "~
(2) nA(unNm) C A(w)
(3) no~o.

Now (1) saysthatn € M /M;,and (2) says that n € N(s, b,,). Taking (3) into account,
we get equality of analytic and geometric R-groups:

PROPOSITION (9.2.1). If assumptions (9.2a,b) hold, then R,,(Vi(c)) = R,.

The next assumption is about the relation between ® and ®;. Namely, we should
have H@:IEHL, in the sense that Ilg consists of the constituents of the
representations induced from those in ITj.

In fact, based on (6.1a), we expect a refinement of this. Namely, for each
o € R(Ar), we should have

V(Indj o) =1V, (o). (9.2¢)

Moreover, isomorphism (9.2¢) should have the following property: Let r € R,, and
let 7, be an element of EndA(IndjLa) supported on r4;. Invoking (9.2¢), we have
a G(F)-endomorphism 7, of Ig V(o). On the other hand, by (9.2.1), we may view
r as an element of R,,(V (o)), which corresponds to an intertwining operator A,
of 19V, (s), given by the standard integral. The final refinement is the assumption

T =, A, (9.2d)

for some nonzero scalar ¢, € C.
By assumption (9.2¢), the G(F)-endomorphism algebra of Ig Vi(o) is

Endgr)(V(Indj,0) = @ Endewr(h, ® V() = € Endc(y,).

pelrr(4) pelrr(A4)

In view of (9.1a), this implies an analogue of the Harish-Chandra commuting
algebra theorem, but in terms of geometric R-groups instead of analytic ones.

PROPOSITION (9.2.2). If (9.2a—c) hold, then Endgr(Indjp) Vi.(0)) is isomorphic
to the twisted group algebra C[R;,n). If in addition (9.2d) holds, then this
isomorphism sends r € R, to a scalar multiple of the standard intertwining operator
A..

Since the analytic cocycle 1, arises from the multiplication of the A,’s, (9.2.2)
implies that 5, is cohomologous to #n. If e, denotes the elliptic pairing on A4,
and e,, that on R,,(V.(0)), then for two representations p, p’ of A which appear
in Ind’jLo—, we have e4(p, p') = ean(,, ¥ /). Then by Arthur’s formula (8.1a), we have

ealp, p’) = EP(Vo(p), Vao(p)).

In summary then, we have shown
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PROPOSITION (9.2.3). If char(F)=0, and we have a Langlands correspondence
pi— V(p) salisfying (9.2a-d) as abO\_ie, then it induces an isometry between the ellip-
tic pairings e4 on R(A) and EP on Re(G).

In the next section we will see that (9.2a-d) hold for Iwahori-spherical
representations, if we restrict to R.(A4,). In this setting, EP can be computed in
the category of H-modules (see (5.4)), hence is independent of char(F). This proves
that the horizontal maps in (7.1.2) are also isometries, and this completes the proof
of the Main Theorem, as stated in the introduction, modulo the proof of (3.3.2),
which is given in Section 10.

9.3. Suppose ® : Wr x SL,(C) — L is unramified on Wr. We may choose dual
maximal tori T C G, T C G, such that ® maps Wyr and the diagonal matrices
of SLy(C) into T.

Let s € T be the image of a Frobenius element under @, and set

X = s(I)< (1) i ) el
Suppose that ¢ is an irreducible representation of A% = AL appearing in the
homology of B*.

To check (9.2a), we may assume that L is maximal in G, i.e., that G = Lg, as in
Section 8. Proving (9.2a) then amounts to showing that ug(1) =0 if and only if
unNm=0.

Since ®(SL,(C)) C L, the space 1* is an sly(C)-module. Let

1 0 0 1
=G h) e=(00)
and let u(i) be the 2i-eigenspace of /& in u’. For i > 0, the map

e @) > @i+ 1)

is surjective. Since u N mis the kernel of e on 1*(0), we see that u N'm = 0 if and only if
dimu(0) = dim u’(1). On the other hand, the Plancherel measure i4(7) is described in
terms of intertwining operators as follows. To ease the notation, we write 1 = V(o).

Let w be the element of W sending u to it. Let y : C* — S bea one-parameter
subgroup generating S. For each t € C*, we view y, as an unramified character
of L. The standard intertwining operator

G(F G(F
Ay(m, 1) : IndPEF;(n Ry, —> IndPEF))(wn ® wy,)

is given by analytic continuation of the integral

A, 0f (¢) = /U ) (9.3a)
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Here w is a representative of w, and du is a Haar measure on U(F). The composition
A,(wr, t71) o A, (m, t)is a scalar operator, given by a nonzero constant times ,u,;(t)_1 .

Since @ is unramified, the representation = is contained in an unramified principal
series for L(F). More precisely, let

1/2 0
t=s0(1x (4 B )),
( ( 0 q 1/2

viewed as an unramified character of 7'(F). There is a Borel subgroup B of L
containing 7, such that 7 Indg(j})r. Thus,

Indjp)(x ® 7,) = Indj 1) (7,). (9.3b)

where B= BrU is a Borel subgroup of G. Under the embedding (9.3b), the
intertwining operator 4,,(=, ) is the restriction of the operator

Ay(xy,) : Ind (x9,) — Ind i 0w(xy,),

given by the same formula (9.3a).
Now from [Ca] we know, for generic ¢, that

A1 (W(tyy)) 0 Ay(ty,) = Cyo(1y,) Co(W(1y,)),
where C,, is the rational function on T defined by

1—q! R
CW(X) = l_[ 1i1—(a()X)’ X € T.
aeA(u) o

It is straightforward to check that both C,(ty,) and C,(w(ry,)) have order
dimu’(1) — dim1’(0) < 0

at t=1. Thus, they have poles exactly when uNnm3z 0. This completes the
verification of (9.2a) in the Iwahori spherical case.

We prove (9.2b) on the level of affine Hecke algebras. Let us replace L by G, and
suppose we have a rational automorphism » of G. The action of 7 on the root datum
of G induces an automorphism of H, so for any H-module M we have the twisted H
module M". Let M., be the Kazhdan—Lusztig standard module [KL], where

wa(i(3 1))

The underlying space of M., is the K-homology group K(B"*), and the action of H is
given by certain natural K-theoretic operations. The automorphism # of G induces a
linear isomorphism (pushforward map)

N, : K(Br,u) N K(Bnﬂ:,n-u).

One checks, using the naturality properties [KL, 1.3], that n, intertwines the
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‘H-action so as to be an H-module isomorphism
Mf,u ~ Myzpu (9.3¢)

The group Ag acts naturally on the space B™", and the induced action on K(B™")
commutes with the H-action. Thus, for p € Irr(4¢), we have an H- module

Vo(p) = Homy,(p, M+ ,),

which is the simple tempered H-module attached to (®, p) by Kazhdan—Lusztig.
Again using the properties [KL, 1.3], one checks that (9.3c) induces an isomorphism
Vo(p)' =~ Vyo(n - p), and this proves (9.2b).

We have mentioned that (9.2¢) in the Iwahori-spherical case is just (6. la). Finally,
for (9.2d), consider y ® V' (ag), where y € S is an unramified character of L, chosen in
general position. The analogous component group A;(y) is unchanged, but now
A(y) = Ar(y), and both sides of (9.2d) are irreducible. By the construction in [KL],
(9.2¢) is the localization at y of a projective C[S‘] module, so that 77(y) is a polynomial
function of y, which, by irreducibility, must be a scalar ¢,(y) times A,(y). The latter is
known to be analytic near y = 1, so (9.2d) follows by taking y — 1.

10. On Certain Fixed Point Varieties

This section is purely on the geometric side, and does not rely on conjectures. Retain
the notation of 9.1, and suppose that I' is contained in a maximal torus of G. In
(3.3.2) we have the special case where I' is generated by a semisimple element
s€G. Let u, 1 =1, be as in (5.11).

Let B, B, be the respective varieties of Borel subgroups of G and L. We consider
the varieties B'"™“, B} ™ of Borel subgroups normalized by T, 7, u. These varieties
are non-empty, by Borel’s fixed point theorem. We want to show that, if
o € Irr(Ay) occurs in the representation of A; on the cohomology H (BE’T’“), and
p € Irr(A4) occurs in IndﬁLa, then p also occurs in the representation of 4 on the
cohomology H(B"**). We will prove a bit more:

PROPOSITION (10.1.1). There is an open and closed M-stable subvariety
C c B"™" such that H(C) ~ Ind"| H(BFT "), as A-modules.

Proof. LetH = Gl— oL Hp = Lr T denote the respective centralizers of both I" and 7.
Let Xj, j in some index set J, denote the H-orbits in B"*. By [R3, (2.3)] each Xjisa
disjoint union of copies of the flag variety of H°. Let P=L1LU be a parabolic
subgroup of G with Levi L, as in (9.1), and set Bp = {B' € B: B C P}. Projecting
to L gives an isomorphism Bp >~ B;. Let Y;, i € I, be the H;-orbits in Bl;,f, let

={jeJ: X;NnBp#0}, and put X; =J,;, X;. There is a surjective map
f : I — J; with the properties that

jeJL

HY;= X0, XnBp= |J Y.
ief~1(j)
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For each j € J, the variety X}' := X; N B" is projective, smooth [DLP] and M-stable.
Likewise, each Y} := Y; N B} is smooth and M -stable.
The M-action defines, for each i € I, a map

Wit M x Y= X, yl(m B)=mBm™".

Recall from 9.1 that By = SU® is a Borel subgroup of M°. Note that By, acts
trivially on Bp. Hence y/; induces a map

Wi o (M/Ba) X Yi' = Xfj.
Since M normalizes By, there is a right action of M; on M /B, commuting with the
left action of M, and the kernel of this action is exactly Z;. It follows that 4 acts
freely on M/By. Meanwhile, the left action of M; on Y} also restricts trivially
to Z;. It follows that A, acts freely on (M/By) x Y}, commuting with the left

M-action. We write (M/By) x4, Y} for the quotient variety. It follows that v/
induces a map

Wi M/By x4, Y — X, (10.1a)

LEMMA (10.1.2). For every i €1, the map ; in (10.1a) is an isomorphism of
M-varieties.

Before starting the proof, we note that (10.1.1) follows from (10.1.2). Indeed, the
left action of M on M/By induces the regular representation of A4 on
H(M/By), so

H((M/By) x4, Y{') = [H(M/By) ® H(Y)" ~ Indj H(Y}),

and

HB,™) =@ H(Y)

iel

as A;-modules. Thus

c=x;i=Uxj
iel
has the properties claimed in (10.1.1).

Fix i € I. The proof of (10.1.2) will be completed in three steps. First, y; is
injective. Second, the connected components of M /By x4, Y} are smooth, and
all have the same dimension, equal to the (likewise common) dimension of the
components of Xl Third, MY} meets every connected component of X, iy Then
(10.1.2) follows from the theorem on invariance of domain, applied to each
component.

For step one, suppose B’ C P, and that VW' (mBy, B') = /' (m1 By, 1 B'), for some
m.my € M, I € L. Then m;'me MNP =(M)MNU). Write m;'m=l,u,
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accordingly. Now, ml,;1 = ml(lmumln;l) € m By;. Moreover,
B/ = ll_lml_lmB/ - ll_llmumB/ = ll_llmB/a

since U acts trivially on Bp. Thus (m; By, | B') = (ml, "By, 1,,B), hence the fibers of
Y are A-orbits, and y; is injective.

For the second step, we use the methods of [DLP], viewing Y} and X} as generic
fibers of a collapsing of a vector bundle into a pre-homogeneous vector space.

Let g be the g-cigenspace of 7 in the centralizer subalgebra gr. It is known that H°
has finitely many Ad-orbits in g, in particular, there is a unique dense orbit g*.
Moreover, q* contains e := log(u#). Now H/H° permutes the H°-orbits, but g~ is
stable under H, by its uniqueness. Analogous statements hold for qN1, and
ee€(qNn™.

Choose B; € Y¥, and let B € B, ™" be the corresponding Borel subgroup of G.On
the Lie algebra level we have b =0y @ u. Let ny be the nilradical of by. Let
By = BN H°, B5 = B, N H°; these are Borel subgroups of H°, Hj, respectively.

Now B € X/(;. Let D be the component of X containing B. Then D is isomorphic
to the flag variety of H° and the components of X/(; are the H/H° translates of D.
Likewise D N Bp is a union of flag varieties for H;. Let D; be the component of
D N Bp containing B.

We have two diagrams

H° xp, (bNQ) —— q
pl (10.1b)

D
Hj xp (bNq) —— qnl

ml (10.1¢)

Dy

given by n(h, x) = Ad(h)x, p(h,x) = hBh~", n;(h,x) = Ad(h)x, pr(h,x) = hBrh~'.
For every x € q, resp. x € N1, we have
pn'(x) = D%, resp. pin;'(x)=D}

where D*, D} are the fixed points of exp(x) in D, Dy. For x € g%, the variety D* is
smooth, and all connected components have the same dimension [DLP, 2.2]. If
x e (qND*, an analogous statement holds for Dj. Now e € ¢ N(qN1)*, since
7 = 1,. Hence we can relate the dimension of D¢ to the dimension of D¢, as follows.
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We will use three exact sequences, in each of which, the second map is ad(e).

0->m—>bh—>qg—0, (10.1d)
0—>s—>bhNl—>agNl—0, (10.1e)
0—>unNnm—-unh—-ung—0. (10.1f)

In the following calculation, we write (V) instead of dim V/, for a vector space V.

dim D¢ = (h) — (q) — (bNB) + (b Nq) by (10.1b)
=(m) — (b Nh) —(uNbh +mzNa)+@Nag) by (10.1d)
=@Nm)+(s)+@Nm)—(bNh) —Nh +mzNq)+@Naq)
= ([@NmM) +(s) — (b, N )+ (nzNg) by (10.1f)
—@NM) +OND—(qNT)— (b, Nb)+ (b, Nq) by (10.1e)
— dim(M/By) +dim D¢, by (10.1c)

This completes the proof of the second step.

For the third and final step of the proof of (10.1.2), we let Dy, ..., D, be the
components of Xy. These are permuted transitively by H. For each & let By be
the unique Borel subgroup in Dy stabilized by By. By [DLP, 2.2iii], M permutes
transitively the components of each Dj. Let C;, G be components in D}/, Dj. Choose
h € H so that hD; = Dy. Since H preserves the dense H°-orbit ¢, it follows that
H = MH®, so we may assume & € M. Now hC; is a component of D}, so there
is m € M such that mhC; = C. Thus M permutes transitively the components of
Xi) and the proofs of (10.1.2), and (3.3.2), are finished.

Acknowledgement

I give warm thanks to Anne-Marie Aubert and the referee for their careful reading of
an earlier version of this paper. Their remarks have led to significant clarification.

References

[AL] Alvis, D. and Lusztig, G.: On Springer’s correspondence for simple groups of type E,,,
(n=26,7,8), Math. Proc. Cambridge Philos. Soc. 92 (1982), 65-78.

[A] Arthur, J.: On elliptic tempered characters, Acta Math. 171 (1993), 73-138.

[BS]  Beynon, M., Spaltentstein, N.: Tables of Green Polynomials for exceptional groups,
Warwick Computer Science Centre Report No. 23, 1986.

[B] Borel, A.: Admissible representations of a semisimple group over a local field with
vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 133-159.

[BM] Borho, W. and MacPherson, R.: Représentations des groupes de Weyl et homologie
d’intersection pour les varietés nilpotentes, C.R. Acad. Sci. Paris Ser. A. 292 (1981),
707-710.

[BaM] Barbasch, D. and Moy, A.: Reduction to real infinitesimal character in affine Hecke
algebras. J. Amer. Math. Soc. 6 (1993), 611-635.

https://doi.org/10.1023/A:1014539331377 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014539331377

REPRESENTATIONS OF WEYL GROUPS AND p-ADIC GROUPS 181

[C] Carter, R.: Conjugacy Classes in the Weyl Group, Lecture Notes in Math. 131,
Springer, New York.

[Ca] Casselman, W.: The unramified principal series of p-adic groups I, Compositio Math.
40 (1980), 387-406.

[DLP] De Concini, C., Lusztig, G. and Procesi, C.: Homology of the zero set of a nilpotent
vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), 15-34.

[IM] Iwahori, N. and Matsumoto, H.: On some Bruhat decompositions and the structure of
the Hecke ring of the p-adic groups, Publ. . H.E.S. 25 (1965), 5-48.

[ Jantzen, C.: On the Iwahori-Matsumoto involution and applications, Ann. Ecole
Norm. Sup. 28 (1995), 527-547.

[Ka] Kato, S.-I.: A realization of irreducible representations of affine Weyl groups, Indag.
Math. 45 (1983), 193-201.

[K] Kazhdan, D.: Cuspidal Geometry of p-adic groups, J. Anal. Math. 47 (1986), 1-36.

[KL] Kazhdan, D. and Lusztig, G.: Proof of the Deligne-Langlands conjecture for Hecke
algebras, Invent. Math. 87 (1987), 153-215.

[KZ] Knapp, A. and Zuckerman, G.: Normalizing factors, tempered representations, and
L-groups, In: Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, RI, 1977,
pp- 93-105.

[L1]  Lusztig, G.: Classification of unipotent representations of simple p-adic groups,
Internat. Math. Res. Notices 11 (1995), 517-589.

[L2]  Lusztig, G.: Cuspidal Local systems and graded Hecke algebras II, In:
Representations of Groups, Conf. Proc. Canad. Math. Soc., 16, 1995, pp. 217-275.

[L3]  Lusztig, G.: Cells in Affine Weyl groups 1V, J. Fac. Sci. Tokyo (1989).

[RR] Ram, A. and Ramagge, J.: Affine Hecke algebras, cyclotomic Hecke algebras and
Clifford theory, Preprint (1999).

[R1] Reeder, M.: Formal degrees and L-packets of unipotent discrete series representations
of exceptional p-adic groups, J. Reine Angew. Math. 520 (2000), 37-93.

[R2]  Reeder, M.: Hecke algebras and harmonic analysis on p-adic groups, Amer. J. Math.
119 (1997), 225-249.

[R3] Reeder, M.: Desingularizations of some unstable orbit closures, Pacific J. Math. 167
(1995), 327-343.

[R4] Reeder, M.: Isogenies of Hecke algebras and a Langlands correspondence for ramified
principal series representations, Preprint (2000).

[SS]  Schneider, P. and Stuhler, U.: Representation theory and sheaves on the Bruhat-Tits
building, Publ. . H.E.S. 85 (1997), 97-191.

[Sh]  Shahidi, F.: A proof of Langland’s conjecture on Plancherel measures; Complemen-
tary series for p-adic groups, Ann. Math. 132 (1990), 273-330.

[Shol] Shoji, T.: Green polynomials for Chevalley groups of type F4, Comm. Algebra 10
(1982), 505-543.

[Sho2] Shoji, T.: Green functions for reductive groups, Proc. Sympos. Pure Math. 47 (1987).

[St] Steinberg, R.: Conjugacy Classes in Algebraic Groups, Lecture Notes in Math. 366,
Springer, New York, 1974.

[S] Solomon, L.: Invariants of finite reflection groups, Nagoya J. Math. 22 (1963), 57-64.

[T] Tits, J.: Reductive Groups over Local Fields, Proc. Sympos. Pure Math. 33, Amer.
Math. Soc., Providence, RI, 1979.

https://doi.org/10.1023/A:1014539331377 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014539331377

