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ABSTRACT

This paper gives a method for premium rating by postcode area. The method is
based on spatial models in a Bayesian framework and uses the Gibbs sampler for
estimation. A summary of the theory of Bayesian spatial methods is given and the
data which was analysed by TAYLOR (1989) is reanalysed. An indication is given of
the wide range of models within this class which would be suitable for insurance
data. The aim of the paper is to introduce the models and to show how they can be
utilised in an insurance setting.
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1. INTRODUCTION

The problem of accessing risk as a function of geographical area occurs in a number
of fields, including insurance rating and epidemiology. The aim of the statistical
analysis of the data is to assess the underlying variation in risk by area, usually
postcode area. Two approaches can be taken. Either the raw data can be smoothed
in order to remove as much random variation as possible, or the data can be used to
allocate each postcode area to a rating category, allowing for the inherent random
variation. The example in this paper uses the first approach, although the methods
can also be used for the second approach. The authors believe that the second
approach may be more satisfactory if the data are in a suitable form.

The only previous paper, of which the authors are aware, which uses mathema-
tical and statistical techniques for premium rating by postcode area is TAYLOR
(1989). That paper used two-dimensional splines on a plane linked to the map of the
region by a transformation chosen to match the features of the specific region. The
present paper uses an entirely different approach, although some of the preproces-
sing aspects of the analysis wil be the same as those used by TAYLOR (1989). The
example in Section 4 of this paper uses the data from TAYLOR (1989). As will
become clear, there are disadvantages in using the data in the form available from
that paper. The example is valid in that it applies a suitable model to the particular
data set given. However, the present authors believe that a slightly different model
based on data for claim numbers and claim amounts separately could provide more
informative results.
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The methods described here are based on statistical methods for spatial data.
These methods have been developed for image restoration, often using data from
satellites. However, the techniques can also be used for risk assessment in an
insurance setting. The aims of the analysis and some of the assumptions underlying
the models differ from those in other applications, but the statistical and mathema-
tical techniques are similar. The basis of the method is the use of a spatial
probabilistic model in a Bayesian context. The Gibbs sampler is used to derive the
posterior distribution from which inferences about the spatial structure of the data
can be made. These inferences can be used to assess the risk due to the geographic
area. The basic philosophy is that there is an underlying ‘‘true’’ risk pattern over
the whole region, and the data are a version of this pattern contaminated by random
noise. The aim of the model! is to reconstruct the ‘“true’’ picture as far as possible.
The analogy with image restoration is clear.

The literature on spatial methods is large, and we mention just a few references
which are particulary relevant to the work in this paper. The book by CRESSIE
(1991) provides a useful overview and summary of the field. BESAG et al. (1991)
gives a summary of the Bayesian models and describe applications in archeology
and epidemiology. The use of the Gibbs sampler was the subject of a discussion
meeting at the Royal Statistical Society recently. The papers and discussion are
contained in part 1 of the Journal of the Royal Statistical Society, 1993. We would
mention particulary GILKS et al. (1993) and SMiTH and RoOBERTS (1993).

The paper is set out as follows. Section 2 contains a specification of the spatial
model. Section 3 describes the Gibbs sampler and simulation techniques which are
used to estimate the posterior densities. Section 4 contains an example using the
data from TAYLOR (1989) and the final section has the conclusions.

2. A BAYESIAN MODEL FOR SPATIAL DATA

The basis for any model for spatial data is that areas which are close together are
more likely to be similar (in some sense) than areas which are far apart. In the
context of image restoration, this would mean that adjacent areas would be likely to
be the same, or similar, colour. In an insurance context, it means that we expect
adjacent areas to be similar from the point of view of the underlying risk.

It is important to remember that we are interested in the true, underlying risk, and
the data is just a sample providing an estimate of this risk. In addition, we are
considering only the risk due to geographical area. We will assume that the other
factors have already been analysed, using (for example) a generalised linear
model.

We assume that the geographical areas are numbered from | to n. Usually, the
areas will correspond to postcode areas. Define x; to be the true risk in area i and x
to be the vector of risks over the whole region {x;:i=1,...,n}. The joint prior
distribution of x is not specified explicitly. Instead, it is more useful to define the
conditional densities

2.1 DX Xy X o X Xy Xy)

i=1,...,n.
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This conditional density is the density of the risk at one location, given the risk at
all the other locations. In reality, this will not depend on the risk at most of the
other locations. This means that we can replace (2.1) by the conditional density of
x;, given the risk values in the neighbourhood of area i:

(22 pi(x;10))

9, is defined as areas in the neighbourhood of the ith area. For example, if we had
an evenly spaced lattice, the prior distribution might be defined so that J; consisted
of adjacent points. One possibility is illustrated in the following diagram.

o o] o o] o
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In the insurance setting, d; can be interpreted as postcode areas which are
adjacent to, or close, to, the ith area.

Suppose that the data observed are denoted by y with components
{y;:i=1,...,n}. We use a simplified notation here, giving only the random
variable y;, and not the other (possibly non-random) information which may be in
the data. The full likelihood may be found from

2.3) faio=[] foilx

i=1

This assumes, as is reasonable, that the data are conditionally independent, given
x. The posterior density of x, given y, can be found using Bayes theorem:

(2.4) pxly)=f(ylx)px)

The usual Bayesian estimate of x is the value of x which maximises the posterior
density, the maximum a posteriori estimate. Of course, the most diffficult part of
this maximisation is to actually determine the posterior density p(x |y ). Although
we have the conditional prior distributions given by (2.2), it is not straightforward
to find the unconditional prior distribution and the posterior distribution. Instead,
we exploit the conditional densities to obtain realisations from the posterior density.
After obtaining a sufficient number of realisations, we may use the empirical
density generated to find maximum a posteriori estimates. In other words, the
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estimation is based on a Monte Carlo method. The mechanics of this, which are
based on a variant of the Metropolis algorithm called the Gibbs sampler (GEMAN
and GEMAN (1984)) are given in Section 3.

x; has been defined as the true risk in area i, and we now make the compounds of
x; more explicit. The risk level is assumed to be the sum of three components:

(25) X; = ti + u; + v;

t; is based on known factors. It is measured through covariates using, for example, a
generalised linear model. We shall assume that this component of the risk has
already been removed from the data. In effect, we assume that the data have already
been ‘‘standardised”’ to remove all variation which can be explained by the usual
covariates, other than geographic location. In the rest of this paper, ¢, is therefore
dropped from the specification of the model.

u; represents a component with significant spatial structure.
v; represents unexplained variation.

It is the component u; that is of interest in an analysis of the spatial structure of
the data.

We must now formulate the conditional prior distribution of x;(6,, (2.2), in terms
of u; and v;. Henceforth ¢; is ignored since it has already been removed from the
data. It is reasonable to assume that u; and »; are independent. Also, since there are
no reasons to use any other distribution, we shall use a normal prior distribution for
{v;:i=1,...,n}:

(2.6) pv)x A " exp| - A v,?j
21

We have assumed that the risk at the ith region depends only on regions which
are in the neighbourhood of the ith region. It is also assumed that the prior
conditional density of the spatial component, u;, can be factorized into components
representing the dependencies on each of the neighbouring regions and hence can be
written as

2.7 Piuiluy, toy oo g Uy Uy ey Uy) X exp[— z O (u; — uj)j
je o
for some function ¢. Note that the summation in (2.7) is only over j in 9;.

The function ¢ must reflect the fact that the spatial dependence will reduce as the
distance between the regions increases. It must therefore favour similar values for
regions which are adjacent, and can be any even function. It could be preceded by a
factor to allow for the precise proximity of the regions i and j. In this case, (2.7) is
replaced by

(2.8) Pi(“i'ul,uz,~--,Mf—17ui+1»---’“n)“eXP(_ Z wg/‘i)(ui—“j)]

jeo,
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Possible choices for ¢ include

2
¢(z)=—z~ and ¢>(Z)—E.

2x x

In this paper, we use the first of these possibilities. Thus,

1 2
(2.9) piutu,usy ooty Uyyqs s Uy) XEXP — — 2 (u,-—uj)
2x je g,

The two scale parameters x and A, which determine the variances of u and » must
also be given a prior distribution. A suitable choice for this prior distribution, which
is close to the usual uninformative distribution but which avoids technical
difficulties is

(2.10) prior (%, 1) « exp(— £ _f
2% 21

where ¢ is a small positive constant, say 0.01. For a more detailed discussion of this
choice, see BESAG et al. (1991).

The conditional prior distribution for x;19;, (2.2), can now be replaced by the
prior distributions of u, v, »# and A. The posterior density of the parameters can be
found as in (2.4), using Bayes theorem:

(211) p(ﬁ’ﬁ,%,/“X)“ H f(y,-ix,—)%_""/zx

i=1

1 , 1
X exp[— — 2 (Mi—Mj)zjl_”“ exp(— E‘A v,-z)prior (%, A)

2% je o

where n, is the cardinality of 9,.

Note that the joint prior distribution of 4 has been obtained from the conditional
prior densities, (2.9), using the derivation given in Section 2 of BESAG (1974).
Various forms for f(y;lx;) are appropriate for insurance data. In the example in
Section 4, we use a normal distribution. For data on claim numbers a Poisson
distribution would be appropriate. In the case of Poisson data, it is usual to assume
that the mean of this distribution is c; e", where c; is the expected number of claims
in region i ignoring the spatial effect. Then

(212) f(yilxi):exp(—ciei) (Cie‘)*'

yi!

A normal distribution for f(y;lx;) is also useful in practice. The mean and
variance of this distribution will depend on the application, and an example of this
case is given in Section 4.
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3. THE GIBBS SAMPLER

Having defined the Bayesian model, the remaing problem is to obtain maximum a
posteriori estimates for the parameters. The complexity, high dimensionality and
multimodality of the problem rules out any normal optimization routines. However,
it is possible to set up a Markov chain whose stationary distribution is consistent
with the posterior distribution. One approach which produces such a Markov chain
is called the Gibbs sampler. The principle of the Gibbs sampler is as follows.

At each step in the chain the current value of each parameter is replaced by a new
one which is chosen randomly from its distribution given all the other parameter
values and the observed data. Thus, in the terminology of Section 2, a value for x; is
sampled at random from the density

(3.1) pi(x;10;,y)

The values of the risk parameters in all regions other than i, including in ¢;, are
assumed fixed at their current values in this step. This step involves sampling from
each of the distributions subsumed into x;: i.e. for u;, »;, » and A. Initial values of
the parameters must be supplied.

Typically, the chain must be allowed to run for 1,000 steps before it will have
converged to its stationary distribution, which can be used to find the maximum a
posteriori estimates for the parameters. Once convergence has been obtained, a
sample of every 10th step over the next 10,000 steps usually provides a reasonable
estimate of the stationary distribution. This can be treated as a an empirical
distribution from which the required estimates can be obtained in the usual way.

Note that the conditional posterior distributions which are required by the Gibbs
sampler can be obtained in a straightforward manner. For example,

(3.2) pulu_;,v,%4, ) f(ylx)ypQulu_;,»)

where u _; denotes all values in u except u;.
For example, when the data have Poisson distributions and the posterior density
is given by (2.11) and (2.12), then the marginal posterior of u; is given by

n.
(3.3) pulu_;, v, x, A,y) < exp (_Cieu'+y'+uiyi - (u; ~ Ei)2j
2x

where u; is the mean value of u; over d;. Details of the marginal distributions of the
other parameters in the case of Poisson data can be found in BESAG et al.
(1991).

Once the marginal densities have been found and initial values of all the
parameters supplied, the Gibbs sampler can be used to generate values of the
parameters from the required posterior distribution. In effect, the procedure exploits
the simpler conditional distributions to simulate the posterior distribution.

In some cases the random sampling does not present any problems. For example,
when the data are normally distributed, the posterior distributions are also normal
and the sampling procedure described above is fairly straightforward. In other cases,
the posterior distributions are more complicated and samples cannot be obtained by
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a direct method. Instead, a method such as adaptive rejection sampling must be
used. It is very important that the sampling procedure and the computational
approach are highly efficient in order to produce results reasonably fast. A
particularly efficient from of rejection sampling is described by GiLks and WILD
(1992). This form of sampling has to be used, for example, in the case of Poisson
data. We now summarise the sampling process as described in greater detail in
GiLks and WiLD (1992).

Suppose a sample is required from the distribution whose density function is
f(x). For example, this density might take the form given in (3.3). The density,
f(x), need only be known up to a constant of integration. i.e. instead of knowing
f(x), we may only know g(x) where
(3.4) gx) =cfx)
and ¢ is an unknown constant.

It is necessary to define an envelope function g, (x) such that g, (x) = g(x) for
all x, and a squeezing function g, (x) such that g,(x) = g(x) for all x. The procedure
to obtain a sample from f(x) is then as follows.

Take a sample x* from g,(x) and a sample w from U(0, 1). Now use the
squeezing function to test the value:

= g1(x*) .

if w== then accept x*; if not then test
G, (x®)

: gx*) . .

if w= then accept x*; otherwise reject x*.
9 (x*)

—————————————

FIGURE 1.

After each rejection of a sample value, the envelope and squeezing functions are
redefined so as to reduce the probability of further rejection. If the log density,
h(x)=log (g(x)) is considered, it can be seen that for the density (3.3), and for
many others, A"(x) <0,V x. It is therefore possible to define an envelope
h,(x)=log (g,(x)) where h,(x) is a piecewise linear function such that each
line segment is a tangent to h(x). Similarly, a piecewise linear function
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h(x) =log (g,(x)) can be defined by chords meeting % (x) at the same points as
h, (x).

After each rejection of a value of x*, this value is added to the set of points at
which #;(x) and A, (x) meet 4 (x). GILKS and WILD (1992) show that this provides
an efficient method of generating samples for the Gibbs sampler.

4. EXAMPLE

In order to illustrate the methods and to give an indication of the nature of the
results, the data from TAYLOR (1989) are reanalysed in this section. We would
emphasise that this is really an illustration and does not represent a definitive rating
conclusion. In particular, we would prefer to analyse claim numbers and claim
amounts separately: see Section 5 for a more detailed discussion. However, this
example does enable the results to be compared with the method used by Taylor,
which imposed a much greater degree of smoothness onto the results.

The data relates to Household Contents Insurance in and around Sydney,
Australia. This region is divided into approximately 200 postcode areas. The data
have already been processed to remove the effects of all factors which can be
modelled using generalised linear modelling techniques. All factors corresponding
to ¢; in (2.5) have been controlled out in order to make the data suitable for
investigating the spatial effects. Taylor also included a ‘‘rough fit of the
‘ geographic area effect’’” in order to improve the fit of the other factors but this
effect was, of course, not controlled out. The final data used in this example
consists of adjusted loss ratios.

The adjusted loss ratios are assumed to be normally distributed :

a
Yilxi~Nix;, —
€;

where  ¢; is the earned exposure in postcode area i,

and « is a constant, chosen as indicated below.

As noted in TALOR (1989), this normal approximation may be poor where ¢; is
small. However, in the model considered here, areas with low values of e; will have
a limited effect on the overall results. The constant & controls the amount of
smoothing applied, as can be seen from the following maps. The maps show the
values of the adjusted loss ratios divided into six bandes as follows:

Less than 0.5
0.5 to 0.7

0.7 to 0.9
09to 1.1

1.1 to 1.3
Greater than 1.3

TmgoOw >

Map 1 shows the adjusted loss ratios of the raw data before the fitting of the
spatial model. Maps 2 to 5 show those of the fits for various values of a. A value of
100 appears to be produce a similar level of smoothing to that achieved by Taylor
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and the overall pattern is very similar with areas of low risk in the south-east and
north-east corners and a band of high risk just south of the river.

A referee has pointed out that a value of « of around 100 can be justified as
follows :

o = variance of loss ratio for a single risk

If it is assumed that losses occur according to a Poisson process with rate 8 and
that the first and second moments of the distribution of the size of individual losses
are x4, and u,, then

- Oz
(6u))?

or

(1+r)
o=
6

where r = coefficient of variance of claim size.

From the data the observed value of 6 is approximately 0.1, so that a =100
corresponds to a value of r of 3 which seems reasonable. However, the choice of
value for o should be a pragmatic one based on the level of smoothing which is
thought to be appropriate.

b <& :
' As\“ NN ; R » D &\\\\&
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< N\ \ AP
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DO 7 s Xk
SN N %" 7

Mar 1. Raw Data.

https://doi.org/10.2143/AST.24.1.2005085 Published online by Cambridge University Press


https://doi.org/10.2143/AST.24.1.2005085

140 M. BOSKOV AND R.J. VERRALL

» DN

00U L
1IEL

N

N
L ,/ 7 B
&4 B
/ W ‘ %kﬁ‘ %%

» DI

BRED ]

MaP 3. Smoothed values a = 50.
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Marp 4. Smoothed values a = 100.
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Map 5. Smoothed values a = 200.

https://doi.org/10.2143/AST.24.1.2005085 Published online by Cambridge University Press

141

%%
N\

IREC UL
7B\



https://doi.org/10.2143/AST.24.1.2005085

142 M. BOSKOV AND R.J. VERRALL

5. CONCLUSIONS

This paper has described how spatial statistical models can be used to analyse the
geographic area effect in insurance data. The methods are applicable to all data in
which there is a geographic area effect. The authors believe that the potential for
these methods in insurance applications is great, and that they represent the best
way of premium rating by postcode area.

The example has been approached from the point of view of smoothing the data
over the postcode areas, using a continuous scale for the rating results. These
smoothed results have then been divided into bands for rating purposes. An
alternative approach would be to use a discrete scale for the results, corresponding
to the required number of rating classes. The spatial model would then be required
to allocate each postcode area to one of the rating classes. The use of this type of
model is at present under investigation.

Unlike the method used in TAYLOR (1989) this method could easily be extended
to an entire country rather than just one metropolitan area.

It would be preferable to analyse the data for claim numbers and claim amounts
separately. This approach is already used to model claims experience with respect to
other factors c.f. RENSHAW (1993). Such a separation is particularly important in
cases where claim severity has a long tailed distribution (e.g. liability) where one
large claim could dominate the loss ratio of a small area. It may also prove to be the
case that a simpler model using only a few of the factors is appropriate for claim
severity while a more complicated model including spatial data can be used for the
frequency. This involves more complex computations since the data would no
longer be normally distributed. Again, this is under investigation and will be the
subject of a subsequent paper.
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