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We investigate the merger of two co-rotating geophysical vortices at finite Rossby
and Froude number. The initial conditions consist of two uniform potential vorticity
vortices in near-equilibrium and in a nearly ‘balanced’ state (i.e. with negligible
emission of inertia–gravity wave radiation). We determine the critical merger distance
between the two vortices. This distance is found to increase with the magnitude
of the Rossby number: intense cyclones or intense anticyclones are able to merge
from further apart compared to weaker cyclones and anticyclones. Note that the
Froude number is proportional to the Rossby number for the near-equilibrium initial
conditions considered. The critical merging distance also depends on the sign of
the potential vorticity anomaly, which is positive for ‘cyclones’ and negative for
‘anticyclones’. We show that ageostrophic motions occurring at finite Rossby number
tend to draw cyclones together but draw anticyclones apart. On the other hand, we
show that anticyclones tend to deform more, in particular when subject to vertical
shear (as when the vortices are vertically offset). These two effects compete. Overall,
nearly aligned cyclones tend to merge from further apart than their anticyclonic
counterparts, while vertically offset anticyclones merge from further apart than
cyclones.

Key words: rotating flows, stratified flows, vortex dynamics

1. Introduction

The merger of two co-rotating vortices is one of the most important elementary
interactions in vortex dynamics. It has, for example, been put forward as a possible
physical mechanism to explain the energy transfers observed in spectral space in
two-dimensional turbulence (see e.g. McWilliams 1984; Borue 1994). Indeed, the
merger of two similar-sized vortices first generates a larger vortex. This contributes
to the transfer of the ‘self-energy’ of the vortices to a larger physical length scale
(the size of the merged vortex), and corresponds qualitatively to the ‘inverse’ energy
cascade in spectral space. On the other hand, the conservation of invariants, in
particular of the angular impulse, implies that vortex merger must be accompanied by
the ejection of low-energy filamentary vorticity and small-scale vorticity debris in the
periphery. This contributes to the direct enstrophy cascade observed in spectral space.

† Email address for correspondence: jean.reinaud@st-andrews.ac.uk
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Qualitatively similar arguments can be made for three-dimensional rapidly rotating
and stably stratified turbulence (see e.g. McWilliams, Weiss & Yavneh 1999; Reinaud,
Dritschel & Koudella 2003).

The merger of a pair of two-dimensional, uniform-vorticity, finite-area patches
was first studied numerically by Overman & Zabusky (1982). Merger is in fact
associated with an instability developing on a pair of vortices in mutual equilibrium
(see Dritschel 1985). The equilibrium states were originally studied by Saffman
& Szeto (1980). Numerous other studies of two-dimensional vortex merger can be
found in the literature – see, for example, Melander, Zabusky & McWilliams (1988)
and Waugh (1992), to name but two. The upshot is that vortices are able to merge
provided they are closer than a threshold, here referred to as the ‘critical merger
distance’.

Vortex merger has also been observed in the oceans. Gulf Stream rings, or
Mediterranean Water eddies (Meddies), can strongly interact if they are close enough
(see e.g. Carton et al. 2010; L’Hegaret et al. 2014). For example, the merger of
two cyclonic eddies was observed near the Azores Current by Tychensky & Carton
(1998), and the merger of two submesoscale eddies, producing a mesoscale eddy, was
observed by Barbosa Aguiar, Peliz & Carton (2013). Vortex merger has also been
observed on gas-giant planets. Jupiter’s ‘Oval BA’ is the result of two successive
mergers between three white storms (see Sanchez-Lavega et al. 2001).

It is becoming increasingly apparent that submesoscale motions play an important
role in the transfer of energy between the large-scale, approximately ‘geostrophic’
flow (where local acceleration is negligible compared to the Coriolis acceleration)
and smaller scales (Gula, Molemaker & McWilliams 2016). In geophysical contexts,
the merger of two vortices has also been studied theoretically and numerically within
the framework of the quasi-geostrophic (QG) model, the simplest model capturing
the leading-order behaviour of rotating, stably stratified flows (see Vallis 2006).
Symmetric, vertically aligned vortices have been examined by von Hardenberg et al.
(2000) and by Dritschel (2002), while vertically offset vortices have been examined by
Reinaud & Dritschel (2002). General conditions for symmetric and asymmetric vortex
merger were discovered in Reinaud & Dritschel (2005), while nonlinear asymmetric
merger has been studied in Bambrey, Reinaud & Dritschel (2007) and in Ozugurlu,
Reinaud & Dritschel (2008).

It is important, however, to note that there is no dynamical asymmetry between
cyclonic and anticyclonic vortices within the QG model on the f -plane. The
asymmetry on the f -plane, however, comes from ageostrophic effects. It is worth
mentioning that an asymmetry between the merger of cyclonic or anticyclonic
vortices due to the ‘topographic’ β-effect was observed experimentally by Griffiths &
Hopfinger (1987) and explained by Carnevale et al. (1991) even in the QG regime.
These effects are, however, absent in the present work. The evolution of mesoscale
vortices in the oceans (20–200 km) is nonetheless well captured by the QG model.
But for more intense vortices at submesoscale (<20 km), the relative acceleration of
the fluid and hence ageostrophic effects become important. Ciani, Carton & Verron
(2016) investigated the merger of isolated vortices in a hydrostatic primitive equation
model. Isolated vortices have a core of potential vorticity (PV) of a given sign
and are surrounded or ‘shielded’ by opposite-signed PV, and hence differ from the
vortices considered in many past studies (primarily done in QG). In this paper we
consider the merger of a pair of three-dimensional vortices containing uniform PV at
finite Rossby and Froude number to model the elementary interactions between two
submesoscale vortices. Thereby, we account for both the relative horizontal and the
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relative vertical acceleration in the governing equations of motion. We do not make
the hydrostatic approximation.

Our study exploits the equilibrium (i.e. steadily rotating) states for symmetric,
uniform PV, QG vortices originally computed in Reinaud & Dritschel (2002) and here
recomputed at higher resolution. The shapes of the vortices are then used to initialise
numerical simulations at finite Rossby and Froude number. During the initialisation
period or ‘spin-up’, the PV anomaly is slowly ramped to a targeted finite fraction
of the Coriolis frequency f , defining the ‘PV-based Rossby number’ RoPV for the
simulation (Viúdez & Dritschel 2002; Dritschel & Viúdez 2003). This initialisation
minimises the generation of inertia–gravity waves. At the end of the initialisation
period, the flow consists of two near-equilibrium vortices in a near-balanced state (a
hypothetical state free of inertia–gravity waves). All simulations are run to the same
QG equivalent time, and the outcomes of the vortex interactions are analysed. We
fix the value of the ratio of the buoyancy frequency to the Coriolis frequency, N/f ,
and begin with QG equilibria having a unit scaled height-to-mean-width aspect ratio,
where the height is scaled by f /N (or stretched by N/f > 1). This implies that the
Froude number is proportional to RoPV , as shown explicitly in Tsang & Dritschel
(2015).

We show that the critical merger distance varies strongly with the Rossby number.
Vortices merge from further apart for a relatively high magnitude of RoPV . There
is also an asymmetry between the behaviour of cyclonic and anticyclonic vortices.
Cyclonic vortices tend to move closer together whereas anticyclones tend to move
away from one another due to weak inertia–gravity wave radiation. On the other hand,
anticyclones tend to deform more than cyclones do, in particular when they are subject
to vertical shear (as when they are vertically offset). This effect favours the merger
of the anticyclones, and competes with the weak tendency to move apart.

The paper is organised as follows. Next, § 2 describes the governing equations and
the numerical set-up, while § 3 explains the flow initialisation. The main results on
the interactions are provided in § 4, and our conclusions are presented in § 5.

2. Numerical model
2.1. Governing equations

We consider an inviscid, adiabatic, incompressible, rotating and stratified flow under
the Boussinesq approximation. For the sake of simplicity, we consider constant
Coriolis frequency f and constant buoyancy frequency N. Following Dritschel &
Viúdez (2003), the governing ‘prognostic’ equations are written in terms of the
materially conserved potential vorticity anomaly q and the horizontal part Ah of the
vector quantity

A≡
ω

f
+
∇b
f 2
, (2.1)

where D/Dt ≡ ∂/∂t + u · ∇ denotes the material derivative, ω = (ξ , η, ζ ) = ∇ × u is
the vorticity, u= (u, v, w) is the velocity, and b is the buoyancy anomaly (the mean
part being N2z). The evolution equations for the prognostic variables q and Ah are

Dq
Dt
= 0, (2.2)

DAh

Dt
+ f k×Ah =

1
f
(ω · ∇)uh +

(
1−

N2

f 2

)
∇hw−

1
f 2
∇hu · ∇b, (2.3)
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where the subscript h denotes the horizontal part of the quantity, i.e. uh = (u, v, 0),
while k is the vertical unit vector. We define a vector potential ϕ = (ϕ, ψ, φ)
associated with the vector A from

A=1ϕ, (2.4)

where 1 is the three-dimensional Laplace operator. The velocity u and the buoyancy
anomaly b are readily obtained from ϕ as

u=−f∇× ϕ, (2.5)
b= f 2

∇ · ϕ. (2.6)

The inversion relations to obtain the potential ϕ from the prognostic variables q and
Ah consist of the horizontal part of (2.4), i.e. 1ϕh =Ah, together with

q=LQG(φ)−

(
1−

f 2

N2

)
∇ ·

∂ϕh

∂z
+

f 2

N2
∇(∇ · ϕ) · (∇2ϕ −∇(∇ · ϕ)), (2.7)

where

LQG =∇
2
h +

f 2

N2

∂2

∂z2
(2.8)

is the QG linear inversion operator. Equation (2.7) comes from the (nonlinear)
definition of PV. This double Monge–Ampère equation is solved numerically using
an iterative method – see Dritschel & Viúdez (2003) for full details.

2.2. Numerical set-up
The equations are discretised and solved using the contour–advective semi-Lagrangian
(CASL) method introduced in Dritschel & Viúdez (2003). The computa-
tional domain D is triply periodic and of dimensions [2π, 2π, 2f π/N]. It is discretised
into n` ‘isopycnals’ (constant density or total buoyancy surfaces). The PV field q is
represented in a fully Lagrangian way by contours on isopycnals explicitly advected
without diffusion. Contour surgery (Dritschel 1988) is periodically applied to the
contours to control complexity. The inversion relations (2.4)–(2.7) are solved on
a regular Eulerian grid of size n3

g on which the vector fields ϕ and Ah are both
represented. We set Prandtl’s ratio f /N = 0.1. Dritschel & McKiver (2015) have
shown that geostrophic turbulence depends very weakly on the value of f /N at least
for f /N . 0.5. To invert (2.7), the Lagrangian PV is first converted to gridded values
on an n3

` mesh and then locally averaged to the coarser n3
g inversion grid. Here the

standard setting n`= 4ng is used. The inversion is done spectrally, making use of fast
Fourier transforms (FFTs) and dealiasing nonlinear products in (2.7) by the ‘2/3 rule’
(see Orszag 1971).

Time is normalised by setting N= 2π so that the buoyancy period Tbuoy≡ 2π/N= 1.
The time integration is done by a leapfrog algorithm and the time step is set to
1t = 0.1. Small biharmonic hyperdiffusion is applied to Ah. The hyperviscosity
coefficient is set by RoPV using the formula discussed in Dritschel & Viúdez
(2003) and McKiver & Dritschel (2008). Explicitly, the damping rate of the highest
wavenumber is set to 1+ 160Ro4

PV per inertial period Tip ≡ 2π/f .
To initialise a simulation, we start with Ah = 0. The PV anomaly q inside the

vortices is slowly ramped from q= 0 to its targeted value, q=RoPV f , using a smooth
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ramping function q(t)= (1/2)RoPV f (1− cos(πt/τ)) for t ∈ [0, τ ] with τ = 20|RoPV |Tip

following Tsang & Dritschel (2015). Equations (2.4) and (2.7) allow one to determine
the full fields Ah and ϕ. The origin of time is reset to 0 at the end of the initialisation
period.

To be able to compare simulations at different values of RoPV , we define a
normalised ‘equivalent QG time’ tQG from

tQGTQG = tTbuoy, (2.9)

where TQG ≡ 2π/|q|; hence tQG = t( f /N)|RoPV | = 0.1|RoPV |t, for f /N = 0.1.

3. Quasi-geostrophic equilibrium states

Equilibrium states for two uniform PV, equal-volume QG vortices with a
height-to-width ratio of f /N were first computed and analysed by Reinaud & Dritschel
(2002) using the spatial resolution available at the time. The vertical resolution used
(25 layers per vortex) is too low to initialise the high-resolution non-hydrostatic
simulations in this study. We have therefore recomputed the QG steady states at
higher resolution using the same method.

We discuss two complete sets of non-hydrostatic simulations. The first uses an
inversion grid resolution of n3

g = 1283 (hence n` = 4ng = 512), while the second one
uses n3

g= 2563 (hence n`= 1024). The number of layers nv used to resolve a vortex is
determined so that the two vortices fit within a subdomain of dimension 2× 2× 2f /N
in the 2π× 2π× 2πf /N periodic domain. This helps to reduce the unwanted impact
of the periodic images. Estimating that the maximum span of the two vortices is
four times the vortex height, the number of layers available to discretise the vortices
is nv ∼ n`/(4π). In practice, we use nv = 83 for the 2563 simulations and nv = 43
for the 1283 ones. The number of nodes np used to discretise each contour forming
the boundaries of the vortices is set to np = 4nv for high accuracy (no significant
gain in accuracy is obtained by further increasing np while the numerical cost of the
algorithm grows as n2

vn
2
p).

The method to calculate the equilibrium states, detailed in Reinaud & Dritschel
(2002), is an iterative method that forces the vortex boundary contours to converge to
streamlines. The procedure is purely Lagrangian and does not rely on any underlying
Eulerian grid. When a QG equilibrium state is found for a given separation distance
between the vortices, the vortices are pushed closer together and the calculation is
resumed for this new separation distance. The decrement in the relative gap dδ/rm

between two neighbouring states on a branch is set to 0.0126, where rm=
3
√

3V/(4π)

is the vortex mean radius and V is the vortex volume. The vortex volume V is
linearly conserved between iterations, and converges to within the tolerance set to the
prescribed volume (see equation (A9) in Reinaud & Dritschel (2002)). Volume V is set
to 2π/3 when determining the equilibria. For the nonlinear simulations, the vortices
are rescaled to fit the dimensions prescribed by the size of the computational box and
the number of layers used to discretise them. The gap δ is the minimum horizontal
distance between the inner edges of the vortices. Owing to a minor improvement in
the choice of our control parameter along the branch of solutions, we have managed
to reach the ends of the solution branches for vertically offset vortices. There, the
two vortices touch at a single point. Figure 1 illustrates the vortex shapes at the
ends of the solution branches for five values of the vertical offset 1z. We may take
1z > 0 without loss of generality. For convenience 1z is set to nδz, where δz is
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(a) (b)

(c) (d)

(e)

FIGURE 1. QG equilibrium states (with nv = 83) at the ends of the solution branches
where the vortices nearly touch for (a) ∆v= 0, (b) ∆v= 11/83' 1.1325, (c) ∆v= 21/83'
0.253, (d) ∆v = 41/83' 0.494 and (e) ∆v = 62/83' 0.747. The vortices are shown in a
reference frame whose vertical coordinate has been stretched by N/f . Note that these QG
solutions do not depend on the value of f /N when written as a function of x, y and Nz/f .

a layer thickness and n is an integer (>0). We define ∆v = 1z/H = n/nv, where
H = nvδz is the height occupied by a vortex. Vortices then share common horizontal
layers (hence can potentially merge) if and only if 0 6∆v < 1. The five branches of
solutions considered roughly correspond to ∆v = 0, ∆v ∼ 0.125, ∆v ∼ 0.25, ∆v ∼ 0.5
and ∆v ∼ 0.75.
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26.5
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FIGURE 2. (Colour online) Total energy E versus the gap δ for a vertical offset of
∆v = 0 (solid black), ∆v = 11/83 ' 1.1325 (solid red) ∆v = 21/83 ' 0.253 (solid blue),
∆v = 41/83 ' 0.494 (dashed black) and ∆v = 62/83 ' 0.747 (dashed red). The symbol
× indicates the location of the energy maximum and coincides with the margin of linear
stability.

As originally suggested by Saffman & Szeto (1980) for two-dimensional vortices
and verified in QG for three-dimensional vortices in Reinaud & Dritschel (2002) and
Reinaud & Dritschel (2005), the margin of linear stability of the vortex equilibrium
(which corresponds to the critical merger distance) coincides with the maximum of
the total energy E as a function of the gap δ between the vortices. It also coincides
with the minimum of the angular impulse J =

∫∫∫
q(x2
+ y2) dV . Figure 2 shows the

total energy E(δ) for the five branches of solutions, distinguished by their value of
∆v. As explained in Reinaud & Dritschel (2002), the total energy E first increases
as the gap δ decreases as a consequence of the increase in the interaction energy. As
the gap decreases further, however, the vortices become more deformed in response to
the shear induced by their partner. The deformation decreases the self-energy of the
vortices. For δ < δc, the energy decreases as δ is further reduced as the latter effect
becomes dominant.

The results described here provide initial conditions for the two vortices on both
sides of the QG margin of stability, hence on both sides of the QG critical merger
distance, for five different values of the vertical offset between the vortices.

4. Results

We next analyse two sets of non-hydrostatic simulations conducted to locate the
critical merger distance for five different vertical offsets ∆v, as well as for various PV-
based Rossby numbers RoPV . As mentioned above, the two sets of simulations have
different resolutions. Set I uses n3

g = 1283 while set II uses n3
g = 2563. We have run

in total over 100 simulations at 1283 and 50 at 2563 for times up to tQG = 50. This
time limit comes from extensive experience studying QG vortex interactions, and it is
long enough to cover the onset and development of vortex merger.
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Set I considers RoPV ∈ {−0.8,−0.6,−0.5,−0.25,−0.1, 0.1, 0.25, 0.5, 0.75, 1}, while
set II considers RoPV ∈ {−0.6,−0.5,−0.25,−0.1, 0.1, 0.25, 0.5, 0.75}. The asymmetry
between the values chosen for positive and negative RoPV comes from the fact that
anticyclones are more prone to static instability (see Tsang & Dritschel 2015). The
numerical method assumes a bijective relation between isopycnal levels and physical
heights, and simulations are stopped when static instability is detected. Moreover, such
intense (local) events are more likely to be captured by high-resolution simulations.

The fact that anticyclones are more intense for a given value of PV q can be
traced back to the first ageostrophic correction in the equations of motion. Following
McKiver & Dritschel (2016), consider a single vortex of uniform PV anomaly q
which is spherical in a reference frame whose vertical direction has been stretched
by a factor N/f , i.e. z∗ =Nz/f . Then, the interior vertical potential to O(q2) is given
by

φ =
qr2

6
−

q2r2

27
+

q2r2

180

(
cos 2θ −

1
3

)
, (4.1)

where r =
√

x2 + y2 + z∗2 is the radial distance from the vortex centre and θ is the
latitude. The exterior vertical potential is given by

φ =−
q
3r
+

q2

54r4
+

(
q2

30r3
−

q2

36r4

)(
cos 2θ −

1
3

)
. (4.2)

The horizontal potentials vanish, ϕh = 0. The first term in both equations is the
well-known QG solution. The dominant correction term −q2r2/27 in (4.1) shows
that φ increases in magnitude for anticyclones but decreases for cyclones. Overall,
therefore, anticyclones are expected to be associated with higher values of vorticity
ω and buoyancy anomaly b.

Figure 3 summarises the results. The gap δ+ is the minimum gap for which no
merger occurs by tQG = 50, while δ− is the maximum gap for which merger occurs
by this time. The difference between the two corresponds to the distance between two
neighbouring solutions in our QG equilibrium database, and indicates the error range
in our empirical determination of the critical merger distance.

There is a large influence of the spatial resolution on the results. As a consequence,
we cannot confirm that set II has reached convergence. Robust trends can nonetheless
be identified from the results. First, we note that the gaps δ± tend to increase for large
values of |RoPV |. This can be explained by the increased importance of ageostrophic
effects (discussed below). Second, we observe an asymmetry for δ± between the cases
with positive RoPV and those with negative RoPV . For small values of ∆v, when the
vortices are nearly aligned horizontally, cyclones with RoPV = ε > 0 tend to be able to
merge from larger gaps δ than their anticyclonic counterparts with RoPV =−ε < 0. In
particular, anticyclones do not merge even when the vortices initially nearly touch at
t= 0 for −0.5 6 RoPV 6−0.1 at resolution 2563. Notably, the vertical shear that one
vortex induces on the other is small for small values of ∆v.

The trend is, however, reversed for larger values of ∆v. Then, the vertical shear
induced by one vortex on the other is enhanced and anticyclones appear to be able
to merge for larger δ than cyclones at the same RoPV . This suggests a competition
between two opposing effects. The effects appear to balance around ∆v ∼ 0.25 where
the curve δ± against RoPV is almost symmetric across the axis RoPV = 0.

To help understand these results, consider the time evolution of the distance
d between the vortices and of their shape, along with the time evolution of the
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0.5

0

–0.5

1.0(a)

0 0.2 0.4 0.6 0.8

0.5

0

–0.5

1.0(b)

0 0.2 0.4 0.6 0.8

Ro
PV

FIGURE 3. (Colour online) Critical merger gaps δ+ (solid) and δ− (dotted) against the
Rossby number RoPV . (a) Set I with n3

g = 1283 and ∆v = 0 (black), ∆v = 6/43 ' 0.14
(yellow), ∆v= 11/43' 0.26 (red),∆v= 21/43' 0.49 (blue) and ∆v= 32/43' 0.74 (green).
(b) Set II with n3

g = 2563 and ∆v = 0 (black), ∆v = 11/83' 0.13 (yellow), ∆v = 21/83'
0.25 (red), ∆v = 41/83' 0.5 (blue) and ∆v = 62/83' 0.75 (green). The outcome is based
on simulations run up to tQG = 50.

ageostrophic energy. The distance between the vortices is obtained by determining
the location of the centroid of each vortex (identified as contiguous volumes of
uniform PV). The centroid position of vortex k occupying the volume Vk is simply
xk
v =
∫∫∫

Vk(x, y, z∗) dV/
∫∫∫

Vk dV . (The integration is done by contour integration.) For
the sake of simplicity, the generally weak variation in height between neighbouring
isopycnals (and the contours lying on them) is not taken into account but is assumed
constant in this diagnostic.

To characterise the shape of the vortices, we first determine the ellipsoids that best
fit them. In particular, we determine the semi-axis lengths of the best-fit ellipsoids and
analyse their time evolution as the vortices deform. The ‘best-fit ellipsoid’ is the one
having the same volume, centroid and second-order spatial moments. The latter are
defined for vortex k in terms of a symmetric 3× 3 matrix:

Bk
= [Bk

i,j], Bk
i,j =

5
Vk

∫∫∫
Vk

x̃k
i x̃

k
j dV, (4.3a,b)

where x̃k
= (x̃k

1, x̃k
2, x̃k

3)= (x− xk
v, y− yk

v, z∗− zk
v). The equation for the best-fit ellipsoid

surface is then
x̃kBk−1x̃kT

= 1. (4.4)

The eigenvalues of the matrix Bk are the squared semi-axes lengths (a2, b2, c2)
of the ellipsoid. We sort the semi-axes lengths such that a 6 b 6 c without loss of
generality. We denote (a0, b0, c0) as their values at t = 0. Note that, owing to the
symmetry of the initial conditions, both vortices behave in a similar way. We thus only
present results for one of the two vortices, or for the largest vortex if the interaction
results in a change in the number of identifiable vortices.

To diagnose the ageostrophic energy and other ageostrophic features of the flow,
we determine the balanced part of the vector potential ϕ using two different balance
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conditions. In the first one, we decompose the full potential ϕ at time t as the sum
of a QG potential ϕQG and an ageostrophic part, simply defined as the departure of
the full potential from the QG potential, ϕageo ≡ ϕ − ϕQG. The QG potential ϕQG =

(0, 0, φQG) is obtained, at any given time t, by taking the PV distribution from the
non-hydrostatic simulation and inverting LQG(φQG)= q. The second balance condition
used is the nonlinear QG (NQG) balance introduced in McKiver & Dritschel (2008).
The balance relations include the ageostrophic corrections up to O(Ro2

PV). Details of
the balance condition may be found in McKiver & Dritschel (2008) and Tsang &
Dritschel (2015), and are not reproduced here. The diagnosis of the NQG-balanced
part ϕNQG allows us to estimate the imbalanced part of the fields, namely ϕimb = ϕ −
ϕNQG. It should be noted that the ‘imbalanced’ part of the potential ϕimb is included
in the ageostrophic part ϕageo. These potentials allow one to define the associated
velocities and buoyancy anomalies from (2.5) and (2.6).

We next define the (scaled) energies from either ϕ′=ϕ or ϕageo or ϕimb as follows:

E′ =
∫∫∫

D

(
|∇× ϕ′|2 +

(
∇ · ϕ′

N

)2
)

dV. (4.5)

The first term in the integral represents the kinetic energy (rescaled by f 2) and
the second term represents the scaled potential energy (proportional to the squared
buoyancy anomaly).

At t = 0, the vortices are in near-equilibrium and in a near-balanced state. Yet,
they contain a small amount of imbalance, and they spontaneously emit a small
amount of inertia–gravity waves (IGWs). The presence of IGWs can be inferred by
the spatial pattern of the imbalanced vertical velocity field, wimb = −f∇ × ϕimb · k,
where k is the vertical unit vector. Figure 4 shows cross-sections of wimb for ∆v = 0,
RoPV =−0.5 and δ/rm = 0.5 at resolution 2563 (set II). The patterns observed in this
case are qualitatively representative of the patterns observed in all other cases. The
vertical cross-sections show the characteristic Saint Andrew’s cross pattern of IGWs
as they disperse away from the vortices. Moreover, as the two vortices co-rotate, the
IGWs spread away from the vortices in a spiral pattern. Similar spiral patterns have
been observed by Viúdez (2006) and Pallàs-Sanz & Viúdez (2008). The maximum
imbalanced vertical velocities are found inside the vortex, in particular near their
inner edges. These are the parts of the vortices which interact most strongly. As
the vortices lose energy to waves, they deform and further depart from their initial
near-equilibrium configuration. The interaction is also accompanied by increased
ageostrophic motion.

The total energy (derived from ϕ′=ϕ in (4.5)) is conserved for an adiabatic inviscid
flow. With weak biharmonic diffusion, the total energy is nearly conserved, within
the accuracy of its calculation on the inversion grid. We focus on the time evolution
of the ageostrophic energy Eageo obtained from the potential ϕ′ = ϕageo = ϕ − ϕQG in
(4.5). Figure 5 shows Eageo, for two cases at resolution 2563, ∆v = 0 and δ/rm = 0.5,
specifically for RoPV = 0.5 and RoPV = −0.5. The vortices do not merge, allowing
us to explore the time evolution of the individual vortices over a large time period.
For these two particular simulations, diagnostics are obtained over an extended time
period, up to tQG = 100, that is, t = 2000. First, we see that Eageo is typically larger
for anticyclones than for cyclones. This is consistent with the fact that anticyclones
are more intense than cyclones for a given |RoPV |. We also see that, overall, Eageo
decreases with time for cyclones, with small-amplitude oscillations, while it increases
for anticyclones.
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FIGURE 4. (Colour online) Cross-section of the imbalanced vertical velocity wimb=−f∇×
ϕimb · k for a 2563 simulation with ∆v = 0, RoPV = −0.5 and δ/rm = 0.5. (a,b) Vertical
cross-section in the mid-plane x= 0 at tQG= 2 (a) and 3 (b). (c,d) Horizontal cross-section
in the mid-plane z= 0 at t= 11 (c) and t= 12 (d). The colour map is bounded to better
visualise the waves spreading away from the vortices.

We can relate these general trends to the time evolution of the distance d separating
the two vortex centroids, also presented in figure 5. Cyclones tend to move towards
one another while anticyclones move away from each other. For anticyclones the
ageostrophic motion extracts energy from the QG balanced energy. This means that
the vortices move further apart to remain in near-equilibrium, consistent with figure 2.
It should be noted that this equivalence is not straightforward, as the energy is a
quadratic quantity. The full, conserved, energy E associated with ϕ is not the sum
of the energy EQG associated with ϕQG and the energy Eageo associated with the
ageostrophic potential ϕageo = ϕ − ϕQG. We can nonetheless infer that anticyclones
separate due to a transfer of energy from the QG balanced part of the flow to the
ageostrophic part. On the other hand, we deduce that cyclones merge from further
apart compared to anticyclones because some energy is transferred from Eageo to EQG

and this results in the vortices moving closer together.
As mentioned in § 3, the shape of vortices influences their self-energy. The time

evolution of the best-fit semi-axes lengths, normalised by their initial values, is
shown in figure 5. Initially, the vortices have a unit mean height-to-width aspect ratio
in stretched coordinates (x, y, z∗ = zN/f ) where (a, b, c) are computed. Since the
vortices are typically elongated along the axis joining their centroids (see figure 1),
the lengths a and c are the horizontal semi-axis lengths while the intermediate length
b is a vertical semi-axis length at t = 0. Figure 5 shows oscillations of a and c,
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FIGURE 5. (Colour online) (a,b) Evolution of the ageostrophic energy Eageo for two 2563

simulations with ∆v= 0, δ/rm= 0.5 and RoPV = 0.5 (a) and RoPV =−0.5 (b). (c) Evolution
of the distance d between the vortex centroids for RoPV = 0.5 (black) and RoPV = −0.5
(red). (d) Evolution of the best-fit ellipsoid. Black lines corresponds to RoPV = 0.5, and
red lines to RoPV =−0.5. The quantities plotted are a/a0 (solid), b/b0 (dotted) and c/c0
(dashed).

(a) (b) (c)

FIGURE 6. Evolution of the vortices, depicted by their bounding contours in each
isopycnal, and in a reference frame stretched in the vertical direction by N/f , for ∆v = 0,
RoPV = 0.5 and δ/rm= 0.5. The view is orthographic at an angle of 60◦ from the vertical.
Times displayed are (a) tQG = 40, t= 800, (b) tQG = 60, t= 1200 and (c) tQG = 100, t=
2000.

indicating a quasi-periodic pulsation of the vortices. Figures 6 and 7 illustrate the
time evolution of the vortices for the two cases. The amplitude of these oscillations,
a measure of the amplitude of the deformation of the vortices, is roughly of the same
order of magnitude for cyclones and anticyclones when ∆v = 0. Hence deformation
plays a similar role in both cases. We can see, however, a much more pronounced
increase of b/b0 for anticyclones than for cyclones. The increase is, in fact, associated
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(a) (b) (c)

FIGURE 7. Evolution of the vortices, depicted by their bounding contours in each
isopycnal, and in a reference frame stretched in the vertical direction by N/f , for ∆v = 0,
RoPV =−0.5 and δ/rm= 0.5. The view is orthographic at an angle of 60◦ from the vertical.
Times displayed are (a) tQG = 31, t= 620, (b) tQG = 60, t= 1200 and (c) tQG = 100, t=
2000.
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FIGURE 8. (Colour online) (a,b) Evolution of the ageostrophic energy Eageo for two 2563

simulations with ∆v = 21/83, δ/rm = 0.48 and RoPV = 0.5 (a) and RoPV = −0.5 (b).
(c) Evolution of the distance d between the vortex centroids for RoPV = 0.5 (black) and
RoPV =−0.5 (red). (d) Evolution of the best-fit ellipsoid. Black lines represent results for
RoPV =0.5, red lines for RoPV =−0.5. The quantities plotted are a/a0 (solid), b/b0 (dotted)
and c/c0 (dashed).

with a tilt of the semi-axis, which began as vertical at t= 0. This has been confirmed
by analysing the eigenvector of B associated with the direction of the axis (results
not shown). Hence, anticyclones appear to be vertically sheared. Since ∆v = 0, the
initial configuration is symmetric with respect to the plane z = 0, and the shear
is not imposed by the flow geometry. We conjecture that this tilt is the trace of
a tilt instability which affects anticyclones predominantly. This may explain why
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FIGURE 9. (Colour online) (a,b) Evolution of the ageostrophic energy Eageo for two 2563

simulations with ∆v = 41/83, δ/rm = 0.62 and RoPV = 0.5 (a) and RoPV = −0.5 (b).
(c) Evolution of the distance d between the vortex centroids for RoPV = 0.5 (black) and
RoPV =−0.5 (red). (d) Evolution of the best-fit ellipsoid. Black lines represent results for
RoPV =0.5, red lines for RoPV =−0.5. The quantities plotted are a/a0 (solid), b/b0 (dotted)
and c/c0 (dashed).

anticyclones appear to deform more when an enhanced vertical shear, associated with
∆v > 0, is present. This is discussed next.

We now turn to the influence of the vertical offset ∆v. We further analyse three
cases, with ∆v= 21/83, 43/83 and 62/83. All these cases are run at a grid resolution
n3

g = 2563. For each case we consider RoPV =±0.5. As above, figures 8–10 show the
time evolution of the ageostrophic energy, of the horizontal distance d between the
vortex centroids, and of the vortex semi-axis lengths. The evolution of the vortices
for the first four cases is presented in figure 11 for RoPV = 0.5 and ∆v = 21/83, in
figure 12 for RoPV = −0.5 and ∆v = 21/83, in figure 13 for RoPV = 0.5 and ∆v =

41/83, and in figure 14 for RoPV = −0.5 and ∆v = 41/83. The general trend where
cyclones move closer together and anticyclones move apart persists when ∆v > 0 and
is therefore a generic feature of the interaction. We notice, however, that this main
drift is subject to oscillations of large amplitude. These oscillations are also noticeable
in the time evolution of the ageostrophic energy. Again, the time evolution of Eageop is
consistent with the time evolution of the vortex separation distance d, and follows the
pattern previously observed for ∆v = 0. The main difference from the aligned cases
with ∆v = 0 is found in the amplitude of the oscillations. This is particularly evident
in the time evolution of a(t), b(t) and c(t). Contrary to the cases with ∆v = 0, there
is a large difference in the amplitude of the oscillations for cyclones and anticyclones,
with the latter exhibiting significantly higher amplitudes. We associate this difference
to the greater sensitivity of the anticyclones to vertical shear. The greater deformation
means that anticyclones may touch and merge even if overall the individual vortex
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FIGURE 10. (Colour online) (a,b) Evolution of the ageostrophic Eageo for two 2563

simulations with ∆v = 62/83, δ/rm = 0.55 and RoPV = 0.5 (a) and RoPV = −0.5 (b).
(c) Evolution of the distance d between the vortex centroids for RoPV = 0.5 (black) and
RoPV =−0.5 (red). (d) Evolution of the best-fit ellipsoid. Black lines represent results for
RoPV =0.5, red lines for RoPV =−0.5. The quantities plotted are a/a0 (solid), b/b0 (dotted)
and c/c0 (dashed).

(a) (b) (c)

FIGURE 11. Evolution of the vortices, depicted by their bounding contours in each
isopycnal, and in a reference frame stretched in the vertical direction by N/f , for ∆v =

21/83, RoPV = 0.5 and δ/rm = 0.48. The view is orthographic at an angle of 60◦ from
the vertical. Times displayed are (a) tQG = 21, t = 420, (b) tQG = 30, t = 600 and
(c) tQG = 45, t= 900.

centroids tend to move away from each other. As a consequence, anticyclones are able
to merge from further apart compared to cyclones for larger vertical offsets.

Finally, figure 15 illustrates the time evolution of the imbalanced energy, Eimb,
for the eight cases discussed above. (This is computed using ϕ′ = ϕimb in (4.5).)
If we disregard the very early phase of the time evolution, which is affected by
the artificial initial PV ramping, the overall trend is a very small increase in Eimb
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(a) (b) (c)

FIGURE 12. Evolution of the vortices, depicted by their bounding contours in each
isopycnal, and in a reference frame stretched in the vertical direction by N/f , for ∆v =

21/83, RoPV =−0.5 and δ/rm = 0.48. The view is orthographic at an angle of 60◦ from
the vertical. Times displayed are (a) tQG = 15, t = 300, (b) tQG = 30, t = 600 and
(c) tQG = 45, t= 900.

(a) (b) (c)

FIGURE 13. Evolution of the vortices, depicted by their bounding contours in each
isopycnal, and in a reference frame stretched in the vertical direction by N/f , for ∆v =

41/83, RoPV = 0.5 and δ/rm = 0.62. The view is orthographic at an angle of 60◦ from
the vertical. Times displayed are (a) tQG = 31, t = 620, (b) tQG = 42, t = 840 and
(c) tQG = 50, t= 1000.

(a) (b) (c)

FIGURE 14. Evolution of the vortices, depicted by their bounding contours in each
isopycnal, and in a reference frame stretched in the vertical direction by N/f , for ∆v =

41/83, RoPV =−0.5 and δ/rm = 0.62. The view is orthographic at an angle of 60◦ from
the vertical. Times displayed are (a) tQG = 31, t = 620, (b) tQG = 42, t = 840 and
(c) tQG = 50, t= 1000.
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FIGURE 15. (Colour online) Evolution of the imbalanced energy Eimb for RoPV = 0.5 (a)
and RoPV = −0.5 (b). The simulations have resolution 2563 (set II) and correspond to
∆v = 0, δ/rm = 0.5 (solid), ∆v = 11/83, δ/rm = 0.48 (dotted), ∆v = 41/83, δ/rm = 0.62
(dashed-dotted) and ∆v = 62/83, δ/rm = 0.55 (dashed).

with time, with oscillations corresponding to the vortex shape variations discussed
above. The imbalanced energies Eimb of cyclones and anticyclones having the same
|RoPV | are compared in figure 15. Anticyclones produce significantly larger levels
of imbalanced energy, consistent with the fact that anticyclones are more intense
and more readily deform. The deformation of the vortices in particular is likely to
enhance the spontaneous generation of IGWs. (Circular vortices exist which do not
radiate.)

We next present two cases of interaction leading to merger for ∆v= 0, using results
obtained at n3

g= 2563. We choose a gap δ/rm= 0.18 which is smaller than the critical
merging gap for both cyclones at RoPV = 0.6 and anticyclones at RoPV =−0.6. Recall
that, for ∆v = 0, cyclones are able to merge from further apart than anticyclones.
Figure 16 illustrates the flow evolution by displaying the PV contours defining the
vortex boundaries at four times. The two vortices merge by t= 50 (tQG= 3) and form
a dumbbell vortex where the two main volumes of PV are linked by a bridge. The
structure is metastable and persists in time. The merged vortex is strikingly similar
to those obtained in the QG model (Reinaud & Dritschel 2002), indicating that the
leading-order behaviour is consistent with the underlying near-balanced conditions.

Figure 17 shows a similar interaction for anticyclones. Again, the vortices merge but
later than the cyclones do. The vortices touch by t= 633 (tQG = 38), and by t= 750
(tQG = 45) the merged vortex has fully formed. The shape of the dumbbell vortex is,
however, different. The outer edges of the cyclonic dumbbell are concave while the
outer edges of the anticyclonic one are convex. This indicates that more PV has moved
towards the centre for the anticyclone, making it more compact. Conservation of the
angular impulse dictates that some PV must move away from the centre to compensate.
This explains why peripheral PV filaments near the bottom and top outer edges of the
structure move away from the centre for anticyclones.

Many of the trends analysed previously recur in these merging situations. For
example, figure 18 shows that cyclones drift towards each other then merge rapidly.
On the other hand, anticyclones drift away from each other, delaying merger. The
time evolution of the semi-axes lengths of the best-fit ellipsoid marks clearly the
time of merger by the sudden increase of c, the largest length corresponding to
the maximum horizontal span of the largest vortex identified. For anticyclones, the
merger is accompanied by a peak of ageostrophic and imbalanced energies, as shown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.367


Merger of geophysical vortices at finite Rossby and Froude number 405

(a) (b)

(c) (d )

FIGURE 16. Evolution of the vortices, depicted by their bounding contours in each
isopycnal, and in a reference frame stretched in the vertical direction by N/f , for ∆v = 0,
RoPV = 0.6 and δ/rm= 0.18. The view is orthographic at an angle of 60◦ from the vertical
in panels (a–c). Panel (d) provides a top view. Times displayed are (a) tQG = t = 0,
(b) tQG = 5, t= 83.3, (c) tQG = 20, t= 333 and (d) tQG = 40, t= 667.

in figure 19. The merger is a violent event and a source of IGW generation and
enhanced ageostrophic motion. Similar peaks are less pronounced for cyclones. This
is related to the fact that cyclones have smaller relative vorticity and buoyancy
anomalies compared to anticyclones.

We finally illustrate the merger of vertically offset anticyclones which are able to
merge from large initial separation distances. We consider a case with ∆v = 62/83,
δ/rm = 0.52 and RoPV = −0.5 at resolution n3

g = 2563. As seen in figure 20(a), the
vortices are initially well separated. Then the vortices start to shed a small amount
of filamentary PV at t= 460 (tQG = 23). This occurs before the vortices merge. This
means that these debris are not the result of the merger but rather the trace of an
instability which affects each vortex. This is consistent with our conjecture that these
vortices, in particular anticyclones, are sensitive to a mode of instability for which
vertical shear is important. The shedding of filaments continues until t=780 (tQG=38)
when the two main vortices finally merge. The resulting vortex is a tilted dumbbell
vortex surrounded by a ring of filamentary PV (see figure 20d).
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(a) (b)

(c) (d )

FIGURE 17. Evolution of the vortices for ∆v = 0, RoPV =−0.6 and δ/rm= 0.18. The view
is orthographic at an angle of 60◦ from the vertical in panels (a–c). Panel (d) provides
a top view. Times displayed are (a) tQG = 22, t = 366, (b) tQG = 38, t = 633, (c) tQG =

45, t= 750 and (d) tQG = 49, t= 817.
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FIGURE 18. (Colour online) (a) Evolution of the distance d between the vortex centroids
for RoPV = 0.6 (black) and RoPV =−0.6 (red) for ∆v= 0 and δ/rm= 0.18. (b) Evolution of
the best-fit ellipsoid. Black lines represent results for RoPV =0.6, red lines for RoPV =−0.6.
The quantities plotted are a/a0 (solid), b/b0 (dotted) and c/c0 (dashed).
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FIGURE 19. (Colour online) (a) Evolution of the ageostrophic energy Eageo for RoPV =

−0.6 for ∆v = 0 and δ/rm = 0.18. (b) Evolution of the imbalanced energy Eimb for the
same simulation.

(a) (b)

(c) (d )

FIGURE 20. Evolution of the vortices for ∆v = 62/83, RoPV =−0.5 and δ/rm= 0.52. The
view is orthographic at an angle of 60◦ from the vertical. Times displayed are (a) tQG =

t= 0, (b) tQG = 35, t= 700, (c) tQG = 40, t= 900 and (d) tQG = 50, t= 1000.

Figure 21 shows the deformation of the largest vortex, as well as the evolution of
both Eageo and Eimb. As before, the sudden increase of c, the largest semi-axis length
representative of the largest dimension of the vortex, indicates the onset of merger.
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FIGURE 21. (Colour online) (a) Evolution of the best-fit ellipsoid semi-axis lengths for
∆v = 62/83, RoPV =−0.5 and δ/rm= 0.52. (b) Evolution of the ageostrophic energy Eageo
versus t, and (c) evolution of the imbalance energy Eimb versus t for the same simulation.

The merger process is also accompanied by a steep increase in Eageo and Eimb as
observed before. We also notice a secondary peak of Eageo and Eimb, around t= 430,
corresponding to the filamentation of the vortices. Hence filamentation occurs during
a phase of strong ageostrophic activity.

5. Conclusions

In this paper, we have studied the merger of two finite Rossby and finite Froude
number vortices. Such vortices are representative of the submesoscale eddies that
are omnipresent in the oceans. Owing to the large number of submesoscale eddies
observed in the oceans, close-range interactions between vortices are likely. We
have shown that the interaction critically depends on both the Rossby number and
the vertical offset of the vortices. Horizontally aligned cyclones are able to merge
from further apart than anticyclones. Cyclones tend to move closer together while
anticyclones tend to move further apart.

On the other hand, anticyclones appear to be more sensitive to vertical shear, and
deform more readily than cyclones. When the vertical shear is enhanced by a vertical
offset between the vortices, the increase in deformation can trigger the merger of
anticyclones from further initial separation distances. The influence of vertical shear
on a single cyclone or anticyclone should be addressed in future research; our results
suggest that anticyclones may be unstable to a shear or tilt mode.

A possible extension of the work is the addition of opposite-signed PV above and
below the structure as observed in Meddies (Mediterranean Water eddies), as well as
studying the vertical alignment of like-signed structures lying at different depths.

Submesoscale vortices can often, but not always, be generated by the unstable
interaction of a current with coasts or bathymetry (bottom topography). Another
natural extension of the research is to consider the effect of a coastline and/or of a
sloping seabed on the interaction. This will be the focus of future research.
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