
Proceedings of the Edinburgh Mathematical Society (1998) 41. 585-609 ©

MAXIMAL OPERATORS AND B.M.O. FOR BANACH LATTICES*
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We investigate the behaviour of the classical (non-smooth) Hardy- Littlewood maximal operator in the
context of Banach lattices. We are mainly concerned with end-point results for p = oo. Naturally, the main
role is played by the space BMO. We analyze the range of the maximal operator in BMOX. This turns out to
depend strongly on the convexity of the Banach lattice X. We apply these results to study the behaviour of
the commutators associated to the maximal operator. We also consider the parallel results for the maximal
fractional integral operator.

1991 Mathematics subject classification: 42A28, 46B20, 43A25.

0. Introduction

In our paper [8] we have introduced the Hardy-Littlewood property (sometimes
abbreviated as H.L. property) of a Banach lattice and have characterized it by several
boundedness properties of the lattice version M of the Hardy-Littlewood maximal
operator or its smooth variants. We refer the reader to this paper and also to [12] for
the basic notation and terminology concerning Banach lattices and function spaces.

As we explain in [8], the Hardy-Littlewood property is intimately connected to the
U.M.D. property, which plays a central role in the development of Vector-Valued
Fourier Analysis and, in spite of having been extensively studied (see [6] and [3]), still
has some aspects that need to be completely understood. By studying systematically
the Hardy-Littlewood property, we hoped to cast some light on the behaviour of
Banach lattices regarding the U.M.D. property.

The key idea in [8] is that the maximal operator M has a smooth version, obtained
by replacing the averages over balls by the convolutions with an appropriate
approximate identity. This smooth version can be viewed as a vector-valued singular
integral, and its boundedness properties are a consequence of the general theory which
was originally set up in [1] and then fully developed in [14]. This latter paper will also
be a basic reference for the present work. In particular, the notation for all our
function spaces will be taken from it.

When one is interested in estimates on the Bochner-Lebesgue spaces LX(K"), only
the size matters, and it is irrelevant whether we look at M or to its smooth version
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which, for a positive function, is almost everywhere equivalent to M in size. However,
when we deal with the endpoints p = 1 or p = oo, we know from the classical theory
of singular integrals that the natural spaces should be Hl

x(E.n) or BMOX(R"). Now in
these spaces, smoothness is a very important ingredient. Actually, already in the scalar
case, we know that the non-smooth operator is not bounded from H1 to L1, while the
smooth operator is bounded (see [16]). This is the reason why the //' -»• L1 and
L°° -*• BMO estimates of [8] are considered only for the smooth version.

In the present paper we analyze completely the behaviour of the non-smooth
Hardy-Littlewood maximal operator M at p = oo. This is done in Section 2, after the
discussion of some general facts about the Hardy-Littlewood property, carried out in
Section 1. One of the main results we obtain is that the boundedness of M from Lx to
BMOX and its boundedness in BMOX, are equivalent, and actually, each of them is
equivalent to the Hardy-Littlewood property. These results are beyond the classical
theory of vector-valued singular integrals and require, as an essential ingredient, the
p-convexity of the lattice for some p > 1. This p-convexity follows from the Hardy-
Littlewood property, as we already proved in [8, Theorem 2.8]. Actually our methods,
which are rather natural in the vector-valued setting, give a very direct and simple
proof of the BMO boundedness of the scalar Hardy-Littlewood operator, which was
proved by Bennet, De Vore and Sharpley (see [2]).

Section 2 also contains a brief discussion of the fractional maximal operator
M", 0 < a < n. Since this operator is bounded by the corresponding fractional integral
operator Ix and the latter is just the convolution with a positive, locally integrable
kernel, all the size estimates in Lebesgue spaces other than L°° are simply consequences
of the corresponding estimates for the fractional integral and those are the same as in
the scalar case. However, the situation becomes different at the endpoints. For example,
p-convexity with p > n/a is required for M*f to be in LX(M") for every/ € Lx\M.n).

In Section 3, we present an example in the same spirit as the one given by Bourgain
in connection with the U.M.D. condition (see [3]), which shows that, for a general
lattice to have the H.L. property, p-convexity even with a high p is not enough.

Still, one of the main motivations of the present paper is to point out the different
behaviour at p = oo between M. and a typical singular integral. If the main point of [8]
was the fact that from the vector-valued point of view, M is nothing more than a
singular integral, at a deeper level there are differences in behaviour between M and,
say, the Hilbert transform. These differences are linked to the convexity of X. If there
is nothing better than 1-convexity, both operators behave in the same way. In the other
extreme, which is when we have oo-convexity as in the scalar case, the two operators
are radically different. In the intermediate cases, there is a continuous scale that
bridges the gap between the two types of behaviour. This is the same phenomenon that
was present in [10] for a particular problem in the theory of the weights associated to
these operators. Here we look at the image of Lx in BMOX for these operators and see
a difference in behaviour of the same nature than that in [10], whose connection with
convexity becomes now evident. All this is discussed in Section 4, where we also give
some applications to the study of the commutators associated to the non-smooth
maximal operator.
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1. The Hardy-Littlewood property

Definition 1.1. Let X be a Banach lattice and let J be a finite subset of the set Q+

of the positive rational numbers. Given a locally integrable function / : R" -»• X (this
means, of course, a strongly measurable/ such that the scalar function y -*• \\f(y)\\x is
locally integrable) we define:

\f(y)\dy
B(xr)

where \B(x, r)\ — cnr" is the Lebesgue measure of the ball B(x, r).

We shall always denote the Lebesgue measure of a set E by \E\.
Notice that the sup in definition 1.1 is a sup in the lattice X. This accounts for the

need to take just a finite collection of radii J. This difficulty will disappear when we
deal with the most relevant examples, which will turn out to be order complete (see
Remark 1.4 below).

Definition 1.2. We shall say that a Banach lattice X satisfies the Hardy-Littlewood
(H.L.) property if there exists some p0, 1 < p0 < oo such that the operators M.j are
uniformly bounded in Lx (R"), that is, the inequality:

holds with C independent of J.
Two remarks are in order here. They are explained in detail in [8].

Remark 1.3. The H.L. property does not depend on the dimension n. We shall keep
n fixed with the understanding that its particular value is irrelevant. Also, the same
notion is obtained if the torus T" is used in place of R".

Remark 1.4. Let (Q, £ , ^ ) be a complete a-finite measure space. If X is a Kothe
function space of functions on Q and / : W -*• X is a locally integrable function, it is
clear that Mjf(x) is a function of co given by:

Mjf(x)((o) = sup —4— / \f{y, aj)| dy
rej \B(x,r)\JBlxr)

where sup is now the sup in the order of R. In this situation we can see / and Mjf
as scalar functions on R" x Q.

Moreover, in this case we can define the operator M given by:

Mf(x, a) = supy^-rr / \f(y, co)\ dy (1.5)
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We recall that a Kothe function space is said to have the Fatou property (see [12])
if everytime we have a sequence of functions /„ e X, such that fn{co) > 0 for a.e.
co, fn(co) t f(co) for a.e. co and also supn ||/n||x < oo, then we have / e X and
ll/llx = HmJ|/J|x.

It is a simple consequence of Lebesgue's monotone convergence theorem for scalar
functions that the space Lx(R") has the Fatou property provided X has it. Therefore, a
Kothe function space having the Fatou property satisfies the H.L. property if and only if
there exists some p0, 1 < p0 < oo such that M is bounded in Lx (Kn).

We shall need to consider as auxiliary operators, smooth versions of Mj and M
which we define next:

Definition 1.6. Let cp : [0, oo[-> R be a smooth function such that

for every t > 0.
Let X be a Banach lattice, J a finite subset of Q+ and / : R" -*• X locally integrable.

We define

= sup
reJ

x 6 R", where c0 = /R» <p(\x\)dx.
If X is a Kothe space of functions on Q, we can also define:

, co) - sup

In the definition of the M9 / s , the sup and the | | are those in X, while in the
definition of M^ they are the corresponding ones in R.

Remark 1.7. If in Definition 1.6 we allow cp = x — X[o,\\' w e obtain operators MxJ

and Mv which differ only from M} or M in the fact that the bars of the absolute
value are placed outside of the integrals rather than inside of them. This difference will
turn out to be irrelevant for our results, so that many times, rather than working with
Mj or M. we shall be using MxJ or Mx and we shall refer to them as the ("non-
smooth") maximal operators "with the bars outside".

The main result of [8] was the following

Theorem 1.8. Given a Banach lattice X and a smooth function <p as in the previous
definition, the following conditions are equivalent:
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(7) X has the H.L. property.

(2) There exists some p0, 1 < p0 < oo, such that

(3) For every p, 1 < p < oo

(4) For every p, 1 < p < oo

II-M^/II^.) < Cp\\f\\L>*y

(5) |{x e R" : \\Mjf(x)\\x > X)\ < f/„„ ||/(x)||x</x.

(5) |{x € R" : \\M9jf(x)\\x > X)\ < j / R , ||/(x)||xdx.

(7) I I M ^ / I I ^ , <

(9) //w is an Ax weight in R" and 0 < p < oo,

/ \\M9J{x)\&w(x)dx < C,(w) f (M(||/||x)(x))pw(x)dx,

where M is the Hardy-Littlewood maximal operator in Rn, which is applied to the scalar
function x >-> ||/(x)||x.

(10) For every cube Q (with sides parallel to the coordinate axes, as we shall always
assume) and every function f e LX

D(R") having support contained in Q, we have:

L \\M9,jf(x)\\xdx<C\\f\\L~\Q\.
IQ

The constants C, Cp, Cp(w) (not the same at each occurrence) depend on X, q>, p or w,
but do not depend on J.

Proof. The detailed proof is given in [8]. Here we shall only give the main features
and we shall introduce some tools to be used in the rest of the paper. For X-valued
functions/, which satisfy/(x) > 0 a.e., we have

Mjf(x) < CM9,jf(x\ < GMvftx), x g R".

These inequalities immediately yield (1) o- (2), (3) •«• (4) and (5) -o- (6).
Next we shall prove that (2) =• (6).
We just need to consider one fixed J and see that the boundedness of M9 j in L?

implies that it is bounded from Lx to weak-Lx with a constant depending only on its
norm as an operator bounded in Lx°.

In order to do that, we shall consider an operator T, sending X-valued functions into
functions taking values in the Banach space X(J), consisting of the sequences (x,)reJ

of elements xr e X with ||(xr)r6y||X(J) = || supr |xr|||x.
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F o r / : R" -*• X locally integrable, we define:

reJ

This is to be viewed as a linearization of the operator M9J. Since

the boundedness of MvJ in Lx(K") is equivalent to the boundedness of T, from
x (.K ; to L-XCOU* j .

But T, is a linear operator given by convolution with a kernel Kj(x) e £(X, X(J))
(bounded linear operators from X to X(J)), namely:

v e

The smoothness of (p guarantees that K} satisfies the so-called standard estimates
for Calderon-Zygmund kernels, that is:

\\Kj(x)\\ < C\x\-

and

\\Kj(x) - Kj(x')\\ < C\x - x'\\x\-n-1 for 2|x - x'| < |x|.

Note that these estimates are uniform in J, i.e., the constant C does not depend on
J. Now the theory of vector-valued Calderon-Zygmund operators, as given in [14] can
be applied to T, to obtain

e M": | |r , /(x)| |W ) > k}\ < y f

But this is precisely (6).
That (6) => (9) is obtained by getting, via Cotlar's inequality, a good-A inequality

between the "singular integral" and the "maximal function" (see [9, Chapters 2 and 4]).
Then, trivially (9) => (4) and (4) =» (2). That way we have that (1), (2), (3), (4), (5), (6)
and (9) are equivalent. Then (10) follows from (2) in a rather straightforward way.

Let us briefly recall how to derive (8) from (10), since this is the main type of
estimate we shall be looking for in the rest of the paper.

Let / e L". Given a cube Q with centre x0, we consider the cube Q with the same
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centre and sidelength three times the diameter of Q, and decompose / = /, + / 2 where
f\ =fx$- Then we have

Kx) - MqMxo)h dx<^r.l \\Tjf(x) - T,/2(x0)||X(J) dx
IVJI JQ

- ik I ll^/itollxw)'** + 7̂ 7 / l|T,/2(x) - Tjf2(x0)\\XiJ)dx.

The first term in this sum is handled by using (10) and the second term by using
the standard estimates for K}. That way we obtain (8).

Let us also recall briefly how to obtain (7) from (8), since this argument will also
play a role in the sequel. We take an atom a 6 H\ and show that:

That a is an atom means that a : W -*• X is supported in a cube Q, with centre x0,
say; a has also average 0 and it satisfies ||a(x)||x < \/\Q\ a.e. For x £ Q, we have:

Tja{x) = f Kj(x - y)a(y) dy = I'(Kj(x - y) - Kj(x - xo))a(y) dy,
JQ JQ

which, together with the standard estimates gives:

\\Mv,Ax)\\x < C\Q\]/n\x - xo |—'

and, consequently

\\M9ja(x)\\xdx < C.

On Q we can use (8) which tells us that

\\M,,ja\\BMOx < C\Q\-\

In particular

T-: / IIAV,fl(x)-(-M,.,<O«llx<fr < C\Q\~l.
lyi JQ

But note also that if Q' is a cube adjacent to Q and with the same size

\\(Mv.}a)Q—{M9ja)Q.\\x<C\Q\-\

https://doi.org/10.1017/S001309150001991X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001991X


592 GARCIA-CUERVA, R. A. MACIAS AND J. L. TORREA

as one sees by adding and subtracting the average on the smallest cube containing both
Q and Q\

Also, since Q' c R"\6,

\\(M9,ja)Q.\\x < C\Q\~],

so that, actually

\\(M9ja)6\\x < C\Q\~l,

and

-I- f \\Mv,Ax)\\xdx<C\Q\'1.
\Q\JQ

We get finally

f ||-M,.,a(x)||x<fa= f + f <C.
JR" JQ JR"\Q

That (7) implies (10) is almost immediate. We just need to pass from a general
bounded function to an atom by subtracting its average.

Thus (7), (8) and (10) are equivalent. They imply (2) by interpolation. •

A large class of examples of H.L. Banach lattices is provided by those Kothe
function spaces satisfying the condition known as U.M.D. (from "unconditional
martingale differences"). Recall that a Banach space X is said to be U.M.D. if it
satisfies an inequality

<cp,x
t=l

for all n eN, ek = ±1 and for all X-valued martingale differences [dk}kiU where p is
some exponent such that 1 < p < oo (see [6]).

The concrete relationship between the U.M.D. and H.L. properties for a Kothe
function space is given in the following theorem due to J. Bourgain and J. L. Rubio de
Francia (see [4 and 13]).

Proposition 1.9. For a Kothe function space X with the Fatou property, the following
conditions are equivalent:

(a) X is U.M.D.

(Jb) Both X and its function space dual X' satisfy the H.L. property.
For a general Kothe function space, still (a) implies (b).

We know that I" is U.M.D. provided 1 < p < oo. Thus, for this range, I" is H.L.
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This fact follows from the inequality

4PTL
due to C. Fefferman and E. M. Stein (see [7]). The simplest way to prove (1.10) for
q < p is to use the obvious result for p = q plus the observation that we have a version
of (1.10) for p — oo, namely

isupAfJ <C,J|sup|j5l| (1.11)
II i I IL' (R") II ) I IL' (R")

Since M is linearizable, we can interpolate (see [9, Chapter V, Section 1]), obtaining
the result for q < p. Now Theorem 1.9 gives (1.10) for every q, 1 < q < oo, once we
have it for one q. (1.11) tells us that £°°, and also c0, have the H.L. property.

The main example of a Banach lattice without the H.L. property is given by

Proposition 1.12. l) does not have the H.L. property.

The proof is in [8, Proposition 2.4], where it is used to derive the convexity result
that we shall explain next, which will turn out to be basic in what follows.

Definition 1.13. A Banach lattice X is said to be p-convex 1 < p < oo, if the
following inequality holds:

IIX \ j=

with a constant Cp independent of m.
It is said to be co-convex if we have

I sup |x;| < Cx sup ||xjx.
i <><"> II x ' sy<m

When X is a lattice of functions or, more generally, when X is order continuous,
the concrete representation of the lattice allows us to define (£J=i I*/!')"" m t n e

obvious way. However, for a general lattice, these expressions need to be defined (see
[12, l.d]).

In Definition 1.13, the sums can be replaced by integrals and it is precisely in this
way that we shall be using the p-convexity.

Here is the basic convexity result (Theorem 2.8 in [8]).
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Theorem 1.14. If a Banach lattice X has the H.L. property, then X is p-convex for
some p > 1.

Remark 1.15. In general, M is not bounded in L£\ In [8] we give an example which
actually proves that if X = V, M is bounded in L" only when p — oo.

We finish this section by proving a stability result for the H.L. property for Kothe
function spaces.

Definition 1.16. Given a Kothe space X of measurable functions on a measure
space Q, and given s > 0, we define X1 to be the lattice consisting of those measurable
functions/ such that |/ | l /5 e X. We also define

ll/ll* = I/I 1/5

II X

Proposition 1.17. Let s > 1. Then X1 is a Banach lattice if and only i/X is s-convex.

The proof is straightforward.
J. L. Rubio de Francia proved (see [13]) that if X is U.M.D., then there is some

e > 0, such that Xs is also U.M.D. for every s such that 1 < s < 1 +e. Now we can see
that the H.L. property is also a Rubio de Francia property in the sense that the
following result holds.

Theorem 1.18. Let X be a Kothe space with the Fatou property. Suppose that X
satisfies the H.L. property. Then there is some e > 0, such that X1 also satisfies the H.L.
property for every s in the range 1 < s < 1 + e.

Proof. First of all we observe that it is enough to prove the following.

Claim. The operator A4S defined by M,(f) = M.(\f\')l/' is bounded in L\ for some
s > 1 and every p such that s < p < co.

Indeed, assuming that the claim is true, we can write, for q > 1 and our s

/ IIM/)(x)||x. dx = f \\\M(f)(x)\l"\\Z dx = (setting g = |/|1/J)
JK" JR"

= I \\MXg)(x)\\sUx<C f \\g(x)\\'fdx = C [ ||/Wlll.dx.

Thus we get that X5 satisfies the H.L. property.
Now, in order to prove the claim, we start from the boundedness of M in L% and

use the Rubio de Francia algorithm as in [9, Chapter IV] to construct
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which also satisfies

\\F\\L'X < 2||/||Lj and MF(x, co) < 2||>W||F(x, co) for a.e. (x, co) e R" x Q.

This tells us that x i-» F(x, co) is an ,4, weight uniformly in co e Q. Consequently, all
these weights satisfy uniform reverse Holder's inequalities (see [9, Chapter IV]). By
taking s > 1 for which these reverse Holder's inequalities hold, we get

M,(fXx, co) < M,(F)(x, co) < CMF(x, co).

Thus

/ \\M,(Mx)\\xdx <C f \\M(F)(x)\\p
xdx < C||F||4 < C||/||t;,

which establishes the claim and completes the proof of the theorem. •

2. The classical (non-smooth) maximal operator

In this section we present the new results we have obtained for the non-smooth
Hardy-Littlewood maximal operator, which fall outside of the Calderon-Zygmund
theory.

Theorem 2.1. IfX is a Banach lattice with the H.L. property, then the operators
Mj are uniformly bounded from L% (Rn) to J5M OX(R").

Proof. Since Mj(J) = Mt,j(|/|), we can restrict our attention to / > 0 and use the
linearized operators 7} corresponding to MxJ. So, let / e L~(R"), / > 0. Given Q, we
write, exactly as in the proof that (10) =* (8) in Theorem 1.8,/=/i+/2, where/, =fi§.
Let x0 be the centre of Q and 2d its diameter. Then

- Mjf2(x0)\\x dx<±-( ||7}/(x) - T,/2(x0)||xy) dx
\\L\JQ

< 4 : /" WTjfMW^dx + -L f \\Tj
\V.\jQ IVJI J Q

\\Tjf2(x) - ^(xpJHxy, dx.

By using Holder's inequality with any p > 1 and applying the H.L. property of X, we
can estimate the first term in this sum by
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The second term is bounded by the average over Q of the X-norm of

where x e Q and y e R"\Q. The integral will vanish unless, either \x - y\ < r and
lxo — y\ > r< or e 'se \x — y\ > r and |x0 — y\ < r. In the first case r < \x0 — y\ < \x — y\+
\x — xo\ < r + <5, and in the second r > \x0 — y\ > \x — y\ — \x0 — x\ > r — 5. Therefore,
the integral is actually restricted to r — 5 < |x0 — y\ < r + d. On the other hand, this
region must intersect the support of f2. So, we must have |x0 — y\ > 3<5, for some y in
the region. It follows that r + 5 > 3d. In other words, only those r > 25 are involved.
Consequently, (2.2) is bounded by

sup-nf \f{y)\dy
r>2i I Jr-S<\xo-y\<r+S

<™p-n([ \f(y)\s dy) \{r + ST - (r - «5)"}1/J'

= Csup(7 hr(x0-y)\f(y)\'dy) ,

where

But now H is just an integrable kernel with L'-norm independent of 5. It follows that
the X-norm of (2.2) is bounded by

I f f H(x0 - y)\f(y)\'dy) II < (if Xis s-convex)
II V R " / II x

< ^ H(x0 - y)||/(};)||x dy\ " < C||/|| t». D

Only a small modification is needed to obtain

Theorem 2.3. If X is a Banach lattice with the H.L. property, then the operators
Mj are uniformly bounded in BMOX(W).

Proof. Since / e BMOX => | / | e BMOX and |||/|||BMOx < ||/||BMOx, we may still
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restrict our attention to / 6 BMOX(R"), / > 0 and use the linearization 7} of MxJ.
Given a cube Q, with x0 and 5 having the same meaning as in the proof of Theorem
2.1, we decompose/ as follows

/ = / -fe + / e = if -fQ)Xa + ( / -/G)XR"\C + / B = 9X+ ft.

where fQ denotes the average of / over Q and gx — ( / — /Q)XQ- Let us also write
h2 = (f -/c)xR»\e- Then

T^T f \\Mjf(x) - MxJg2(x0)\\x dx<±-( \\Tjf(x) - T^2(x0)||X(J) dx

- T7TT f WTJ9\(x)\\Xindx + -l- f \\Tjg2(x) - Tj

As before, using the H.L. property, we estimate the first term in this sum by

The second term equals j^fQ ||7}/i2(x) — Tjh2(x0)\\X(J)dx, whose integrand we bound, just
as in the proof of Theorem 2.1 by

' IJ / 1( f H(x0 - JOH/OO -fQ\\'x dx]' < I J / H(x0 - y)\\f(x) -fQ\\'x dx 1

\H(xo-y)\'dy) \2k+iQ\l"'\

'7'"'

where t > 1, and 2'Q denotes the cube concentric with Q with diameter 2' times that
of Q, that is, 2y+1<5. But

( 1 /•

( , / • \ !/(«')

j r ^ T ^ / Il/W - / ^ ' e +/2<+'G /cllx^x <Cfc||/||BMOx

and
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l8\2lQ

Thus the second term is bounded by

J =
BMOX = c\\f\\BMOx. a

Theorem 2.3 is a vector-valued version of the theorem of Bennett, De Vore and
Sharpley (see [2]), which becomes a particular case.

Actually, as we shall presently see, the converses of Theorems 2.1 and 2.3 are also
true, so that they provide other characterizations of the H.L. property. We just need to
prove the following.

Theorem 2.4. Let X be a Banach lattice for which the operators Mj are uniformly
bounded from L~ (K") to BMOX(R"). Then X satisfies the H.L. property.

Proof. First of all we observe that our hypothesis implies that X is p-convex for
some p > 1. To prove this we proceed very much like in [8]. We start by seeing that M
is not bounded from L~ to BMOti. The way to establish this fact, for n — 1, as we
may assume, is to examine more closely the counterexample given in [8, Proposition
2.4]. Let m be a fixed natural number and consider the function Fm : R -*• £' given by:

Fm(x) = (/,(*), /2(x), . . . . fm(x), 0, 0,...),

where

fj(x) = X[L^i](x), 1 < j < m

Then

and

On the other hand, for every I < j <m,

Mfj(x)= - ^ if x e [0,^1]

^ *xe\i,l],
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from which we get

/•' 1
/ Mfj(x)dx = -{l+ log; + log(m - ; + 1)) = a,.
Jo m

Now assume m—j+l <j, and let b} <^jp be such that Mfj(bj) = ajt in other words
Oj = (j - mbj)'1. Then

i/m

A simple computation yields a; < m'}/2 for m large. Therefore, if we carry this estimate
to (2.5), we obtain

j f |AfJ5(x)-fl,|>^logm,

and, consequently, writing / = [0, 1] for simplicity

\\M(FJ -

which finishes the proof of the claim. Next, after we know that M is not bounded from
L~ to BMOt\, we prove that X is p-convex for some p > 1 exactly as in [8, Theorem
2.8], using the fact that if this were not the case, X would contain 'almost isometric'
copies of l\ for every n.

Finally, in order to establish the H.L. property for X, we are going to see that our
X satisfies condition (10) in Theorem 1.8. Of course we just need to check it for Mj in
place of M9j. We take a cube Q and a bounded X-valued function having support in
Q. We assume temporarily that the average of/ over Q equals 0 and estimate, for

C llx(y)

(KAx-y)-KAx-xo))f(y)dy\\

<C \\sup-l \f(y)\dy\.
[| r>26 T Jr-l<\y-x\<r+6 IIX
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The geometric argument is entirely similar to that in the proof of Theorem 2.1,
although the positions of x and y are now interchanged. We continue now as in the
proof of Theorem 2.1, that is we use Holder's inequality with some exponent s > 1,
such that X is s-convex. We get

I < (by s-convexity)

< C (j H(x - y)||/()0llx dy\' < c\\f \\Loooo for x £ Q.

The restriction on / to have average 0 over Q can be easily removed by adding and
subtracting the average. Then we can pass from MtJ to Mj by using | / | in place of/.
Therefore, we have, for every bounded X-valued/ supported in Q and x & Q

\\Mjf(x)\\x < C||/||L».

Now if Q* is a cube of the same size as Q, having just one common face with Q, since
Q* c R"\<2 almost everywhere, we see that the BMO function \\Mjf(x)\\x has an
average over Q* which is bounded by C||/||L°°. But for a BMO function like
\\Mjf(x)\\x, the difference between its averages over Q and Q* is bounded by its BMO
norm, which is itself bounded by C||/||L°o. Consequently, we also have

IQ

and the proof is finished. •

It is interesting to compare the behaviour of the Hardy-Littlewood maximal
function with that of the fractional maximal operator defined by

M'Jix) = sup * , / \f(y)\ dy, 0 < a < n,
rtJ \tS[X, r)\ " JB(x.r)

or its smooth version

= sup 0 < a < n.

When the subindex J is not necessary, in particular for Kothe function spaces, we shall
simply write M* and we shall use the consistent notation M* for the scalar version.

We have the following result.

Theorem 2.6. Let X be a Banach lattice which is r-convex, with 1 < r. Then the
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operators M) are bounded from L"x\R") to BMOX(W) uniformly in J and ifr>\, we
even have the boundedness M* : L%*(Rn) -> L%(R") uniformly in J.

Proof. We can obviously use M\j instead of M'. Given / and Q we proceed as
we did in Theorem 2.3 for M. We write / = / , +/2, where /, =fx$- The difference is
that now, for the "local" part/,, we can simply control M*,f\ or Mx

xjft by / J / J , where
/„ is the fractional integral given by

'•**> = /. .]£:

But /, is a convolution operator with a positive kernel, and consequently, the Hardy-
Littlewood-Sobolev theorem is still valid for X-valued functions; in other words, /„ is
bounded from U to Lq, provided p < n/a. and \/q = \/p — (a/n). We use this to get

<
(2 / r \ 'IP n / /• \ «/« Jit

- lei17' v;e

since

||/(x)||'x dxj < -^ (J ||/(x)||? dxj

Now for/2, we have to estimate the X-norm of

f
< sup - is / |/(y)| dy

e>i t Jc-i<|xo-y|<£+*

< sup ̂ ( f l/OI'd)

= Csup(7

where

£(n a)r «-«<|x|<«+« | x | »

Then
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ix

G(x0 - y)\f{y)\r dy\ I (since X is r-convex)
/ IIII x

since |G|w is an integrable function with integral independent of 5.
If r > n/x, we simply have to observe that, by using Holder's inequality,

"»dy) = ( [ \f(y)\n/* dy)
J VB(x.ro) /

\f(y)\) ([
B(x.r) J VB(x.ro)

if r0 denotes the maximum radius in J. Then we use the n/a-convexity to get

< ( i \\Ky)\\Tdy) < ll/IU^n,.
XJBtx.ro) /

n

Next we shall present an example to show that the convexity requirements in
Theorem 2.6 are really needed.

Proposition 2.7. Let 0 < a < 1. Then M* is bounded from L\i\[0, 1]) to L~[(0, 1)] if
and only if p >K

Proof. Let p < K We are going to construct / e L^/a([0, 1]) such that
M'f ? L?([0, 1]). Define /(x) = QJ(x))~, = (ajXl2-i,2-i+^ for appropriate a, > 0. We
start by choosing the a'jS so that we have

Now, if 0 < x < 2~', M*(fj)(x) — $~ >,. In particular, given n e N, if j < n and
0 < x < Tn, M\ft){x) > Caj2'ix. It follows that, for 0 < x < 2""

y) >c

Now if we choose the a;'s in such a way that the sequence (a,2~;ai) belongs to li/x, but
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it does not belong to V, which is possible since l'^ll/*, we make sure that
M'f # L?[0, 1] •

3. Convexity is not sufficient for the H.L. property

The main purpose of this section is to present an example, based upon one given
by Bourgain in [3] for the U.M.D. property, which shows that the assumption that a
Banach lattice X is p-convex for some p > 1, even for large p < oo, is not enough to
guarantee that X satisfies the H.L. property. The example is based upon the following
simple observation.

Proposition 3.1. Let X be a Banach lattice of functions on the torus T, whose norm
is translation invariant. Then if X satisfies the H.L. property, necessarily the Hardy-
Littlewood maximal operator M must be bounded in X with a norm depending only on the
norm of M on the spaces LX(T).

Proof. Fix 0 < p < oo. Then we know that M is bounded in LX(T). Given a
function q> e X, we define / : T -*• X by making /(x) = q>x, where cpx denotes the
translated function (px{t) = <p(t + x). Since the norm of X is translation-invariant, we
have H/Ĥ ffD = IMIx- On the other hand, Mf(x) — (M<p)x, and, consequently

= (J ||(M(p)x||x) '= (J HMf(x)\\£) '< C (j ||/(x)||x) '= C|MIX. •

Therefore, what we need to do is to construct a Banach lattice with translation-
invariant norm which is p-convex for a fixed p > 1 and such that M is not bounded in
X. Actually, it is enough if we are able to build a family of lattices XN, all of them
translation-invariant and p-convex so that the norm of M in XN tends to oo as n -*• oo,
because then we can simply consider the £p-direct sum of all the XN, and that will be
a lattice still p-convex on which the maximal operator is unbounded.

The key to the construction is the following result.

Lemma 3.2. Let 1 < p < oo and JVeN. Then there exist a function
cp : [0, 1] -*• [0, co[ and a Borel set E C [0, 1], actually a finite union of intervals, such
that

(a) f q>{xYdx=l
Jo

(b) I (p(xY dx<\/N for allO<t<l where E+t = {x + t modulo 1 : x e £}
JE+t

(c) f(M(p)(xYdx>(l/3y.
JE

Proof. For every j such that 1 < j < N, we define
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_ \ 2 ~ J if j < N

«-2-*~ and 4 = ±y

Then we consider the sets Dj = [xy, xy + Sj], for all ; < N, £, - [x; + 2<5;, xs + 3<5y] if
j < N and EN = DN. Finally, we let

I
 a n d D =

We shall see that the function q> has the three required properties.

since EHD = DN.
Now we just need to realize that if we fix some Ej and we look at all the translates

Dk + d for a fix 8 and all fe > j , only one of these translates can intersect Ej. It follows
that, given S, there are only one couple;, k, such that Ej + Sn Dk^ 0. Consequently

dx =

Finally we realize that if x e £,, then M(xD;)(x) > 1/3. Therefore

= (1/3)". D

Definition 3.3. Let 1 < p < oo and N e N. Then we have the set £ = £(p, N)
instructed as in Lemma 3.2. We use

[0, 1], by means of the function norm
constructed as in Lemma 3.2. We use it to define a Banach lattice XpN of functions on

ll/llx,, = sup ||/z£+lll,.
'€[0.1]

Then we have the following result.

Proposition 3.4. XpJV is a Banach lattice of functions on [0,1], with translation-
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invariant norm, which is r-convex for every r such that 1 < r < p, and on which the
maximal operator has a norm ̂  i—-.

Proof. That the norm is translation-invariant follows immediately from its
definition. Also, the existence of the function q> in Lemma 3.2, gives

so that the norm of M in XpN is > ^ - .
It only remains for us to prove that the lattice XpN is r-convex for every 1 < r < p.

The reason is that, in the terminology of [12], XpN satisfies an upper p-estimate with
constant 1. This means that, for every choice of functions^ with pairwise disjoint
supports

\ i/p

i=\ '

This inequality is immediate from the definition of the norm. Then we simply have to
use the result of Maurey and Pisier that if a Banach lattice satisfies an upper p-
estimate, then it is r-convex for 1 < r < p, even though it may fail to be p-convex. A
proof of this result can be seen in [12, Theorem l.f.7]. •

4. The image of Lx in BMOX

For any Banach space X, the Hardy space Hx is defined in the usual way (as in
[14]) by means of atoms. It is a well known fact, due to J. Garcia-Cuerva and Bourgain
(see [5]) that

Hl
x = {/ 6 I i : G(f) € U ) ,

where G(f) is the "grand" maximal function, defined by G(/)(x) = sup£>0 ||<p, */(x)||
for cp in a nice class of smooth functions.

IfXisU.M.D.

Hi = {/ 6 Lx : H(J) e Ll
x},

where H is the Hilbert transform.
If X is a H.L. Banach lattice

H% = {/ e I i : M^JJ) e Li uniformly},

IfXisU.M.D., we have (Hi-)* = BMOX. This duality, together with the characterization
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of Hl by means of the Hilbert transform H, leads to the following description of
BMOX.

BMOx = [f + Hg:f,geL?}

(see the first chapter of [9], where this is done in detail for the scalar case).
Now we ask ourselves if the characterization of Hx by means of Mv for X a H.L.

Banach lattice will have as a consequence a parallel characterization of BMOX. We
shall present a very simple negative result which shows the difference in behaviour
between M9 and a "typical" singular integral. The singularities of M9f for/ e Lx are
better than those of a typical function in BMOX and they get better as the lattice gets
more convex. In the limit case of oo-convexity (the scalar case or £°°) we get, of course,
bounded functions. We shall present this result for the torus T".

Theorem 4.1. Let X be a Banach lattice with the H.L. property and r-convex with a
given r > 1. Then for every f e LX(T") and for every cube Q

with C independent off and Q.

Proof. Given Q and / , we write / = / , +/2, where /i =/Xg. Then Mjf(x) <
•Mjfi(x) + Mjf2(x), and we estimate the two terms separately.

The first term gives, by using the H.L. property with some p > 1

1̂ 1 / \\MjMx)\\xdx < (jLJ ||^/,(x)||Wx) < C (j^J \\f(x)\\xdx' (^J dx^ "< C||/||L-x^ "<

which is even better than the estimate we are looking for, since the logarithmic term
is absent.

For the second term we have

Mjf2{x) < M^(|/2|)(x) = sup-L f

< s u p f - L / J\^y\)\f2(y)\'dy) ' <([ — ^ - \f(y)\'dy\' •
eej \coe Jr \ £ / ) \Jr\Q \x~ y\ )

Since X is r-convex
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As an application, we give a sufficient condition for the boundedness from Lx to
BMOX of the commutator

sup = MJ(x).

By restricting e to a finite set J of positive rationals, we have the corresponding
operators MbJ.

Theorem 4.2. If X is a H.L. Banach lattice which is r-convex for some r > 1, then a
sufficient condition for the boundedness of Mb from L^fT") to BMOX(T") (i.e. uniform
boundedness of the operators MbJ) is that b e BMO,fo ^-IA, by which we mean that

". (4.3)

The condition (4.3) defines a subspace of BMOX(V). Of course, in the limit case
r = oo, which includes the scalar case, we simply need b e BMO.

Proof. If we write T for the linearization of M, forgetting about the subindex J
to simplify notation, and consider the commutator

TJ(x) = b(x)Tf(x) - T(bf)(x),

it will be enough to establish the uniform boundedness of TbJ from Lx to BM0X(J).
Given Q, we write, exactly as in the proof of Theorem 2 . 1 , / = / , +/2, where/, =fx$-
Then, for x,u e Q, we have

Tbf(x) - (Tbf)Q = T6/,(x) - (Tbft)Q + (b(x) - bQ)Tf2(x)

- T((b - bQ)f2)(x) - -L. f(b(z) - bQ)Tf2{z) + - i - / T((b - bQ)f2)(z) dz/

- Tf2(u)) + (6(x) - bQ)Tf2(u)

- 7̂ 7 / W ) - bQ)(Tf2(z) - TfM) dz

+ T^T [{T(ib - bQ)f2)(z) - T((b - bQ)f2)(x)) dz

= °\(x) - (<r,)c + o2(x, u) + aA(x, u) - (o2(-, u))Q

where
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a2(x, u) = (b(x) - bQ)(Tf2(x) - Tf2(u)),

<73(x, z) = T((b - bQ)f2)(z) - T((b - bQ)f2)(x) and

Now, since b e BMO, Tb is bounded in L' for 1 < p < oo (see [15]), and, consequently

/r r

- \W\J-
]/p

Also

T^T f
\V,\JQ

= T7TT |fcW " M l T / 2 W " ^ m ^ dx

as in the proof of Theorem 2.1, and

x-y\\ f\z-y\~*l
V

as in the proof of Theorem 2.3.
Finally, from our assumption that b e BMO,io Ly\/r and from Theorem 4.1, we get

TTTT

sup / h
• M 6

1/r

This finishes the proof of the theorem. •
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