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Abstract

A ring in which every accessible subring is an ideal is called filial. We continue the study of commutative
reduced filial rings started in [R. R. Andruszkiewicz and K. Pryszczepko, ‘A classification of commutative
reduced filial rings’, Comm. Algebra to appear]. In particular we describe the Noetherian commutative
reduced rings and construct nontrivial examples of commutative reduced filial rings without ideals which
are domains.
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1. Introduction and preliminaries

Throughout this paper we assume that all rings are associative not necessarily with
unity. We denote by Z the ring of integers, and by P the set of all prime integers.
If p € P then we write Z, and Q, for the ring of p-adic integers and the quotient
field of p-adic integers, respectively. For arbitrary IT € IP we denote Qrp = [ | pell Qp,
ZH = H pell ZP'

An associative ring R is called filial if A << B <0 R implies A <1 R for all subrings
A, B of R. The problem of describing filial rings was raised by Szdsz in [12]. The
problem has been studied by various authors, namely, Ehrlich [5], Filipowicz and
Puczylowski [6, 7] Sands [10] and Veldsman [13].

A ring R is strongly regular if a € Ra? for every a € R. It is well known that all
strongly regular rings are von Neumann regular and for commutative rings the two
properties coincide. The class of all strongly regular rings S forms a radical in the
sense of Kurosh and Amitsur [8]. A ring is reduced if it has no nontrivial nilpotent
elements.

For a torsion-free ring R let [I(R) ={p € P | pR # R}. A ring R is called a CRF-
ring if R is commutative, reduced and filial. Theorem 4.4 in [2] gives the following
description of the S-semisimple CRF-rings with an identity.
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THEOREM 1.1. Let T1 be an arbitrary nonempty subset of P. Then a ring R is an
S-semisimple CRF-ring with an identity, such that T1(R) =TI if and only if R is
isomorphic to a subring of Qn of the form K N 7Zy where K is the unique strongly
regular subring of Qn with the same identity, such that for every a € K, a = (ap) pen,
we have a, € Z, for almost all p € 1.

The above theorem is important because every CRF-ring is an extension
of a commutative strongly regular ring by an S-semisimple CRF-ring (see [2,
Proposition 4.1]).

In the present paper we study some nontrivial consequences of Theorem 1.1.
In particular, using some techniques from Boolean algebra theory we characterize
Noetherian CRF-rings. We also prove a structure theorem for finitely generated
CRF-rings. Finally, we describe CRF-rings without ideals which are domains, and
we give some nontrivial examples of such rings.

We shall need the following result proved in [2].

THEOREM 1.2. If R is an S-semisimple torsion-free CRF-ring without an identity,
then R is isomorphic to some essential ideal of a ring S, where S is a torsion-free
CRF-subring of the ring Endg (R) with an identity and T1(R) = T1(S).

Let K be a subring of Q1 with the same identity. Take any a € K. Let us denote by
supp(a) the set {p € I1 | a,, # 0}. Then Bk = {supp(a) | a € K} is a Boolean algebra.
For every Y C I, we define xy = (ap)pen € Zn to be

_fo itpey
“P_{l ifpey. -

LEMMA 1.3. Let Il be an arbitrary nonempty subset of P. Let K be a subring of Q
with the same identity. Then K is a strongly regular ring if and only if for every a € K
there exists b € K such that ab = Xsupp(a)- In particular, if K is a strongly regular
ring, then xy € K for every Y € Bg.

LEMMA 1.4. Let Il be an arbitrary nonempty subset of P. Let K be a strongly regular

subring of Qr with the same identity such that for every a € K, a = (ap) per1, we have

ap € Zp for almost all p € T1. Put § = K N Zp. Then:

(1) everyideal J of K is of the form J ={(1/n)i |i € JN S, n € N};

(2) if S is Noetherian, then K is also Noetherian;

(3) S contains a nonzero ideal which is a domain, if and only K contains a nonzero
ideal which is a domain.

PROOF. (1) According to the proof of Theorem 4.4 of [2], K ={(1/n)a |a € S,
n € N}. Let us first observe that J <1 K implies that J NS < S. We claim that
J={{/n)i|lieJNS, neN}. Indeed, (1/n)i =((1/n)-1)ieJ forieJNS. If
Jj € J, there exists n € N such that n - j € S. Then obviously j = (1/n)(nj).

Parts (2) and (3) are direct consequences of (1). O
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2. Finiteness conditions for S-semisimple CRF-rings

For a nonempty subset X of aring R, (X) will denote the additive subgroup by X,
and [X] will denote the subring generated generated byX. Let (a, b) denote the
greatest common divisor of given integers a and b.

THEOREM 2.1. Given a ring R with an identity element, the following conditions are
equivalent.

(1) R is a Noetherian S-semisimple CRF-ring.
(2) RZ=}_, Di, where D; is a filial integral domain of characteristic 0, which is
not a field for everyi € (1,2, ..., n} and TI(D;) NTI(D;) = for i # j.

PROOF. Suppose a ring R with an identity satisfies (1). We first note that by
Theorem 1.1 there exist a nonempty subset I[1 C P and a unique strongly regular
subring K of Qp with the same identity, such that for every a € K, a = (ap) pen,
we have a), € Z, for almost all p € [T and R = K N Zp. Lemma 1.4 yields that K is
Noetherian. Applying Lemma 1.3, we get that Bk is an Artinian Boolean algebra (B
satisfies the descending chain condition).

Next, we can take pairwise disjoint atoms Iy, ..., I1; € Bg such that [T =T11; U
[T U - .- UTIlg. This is possible thanks to some standard results in Boolean algebra
theory (see [9]). A trivial verification and Lemma 1.3 show that x11,, xr1,, - . . » X1, €

K are pairwise orthogonal idempotents and 1 = xm, + xr, + - - - + xm,. Since II;
is an atom, xpm;K is an integral domain. But xp, K is an ideal in a strongly
regular ring K, hence xm; K €S. From this we conclude that xp, K is a
field. It follows that K = @_, xn, K and consequently R = @*_,[(xm, K) N Zn, ).
Moreover, [1, Theorem 8.8] gives that D; = (xr; K) N Zy, is a filial integral domain
of characteristic 0 and IT(D;) =11, fori € {1, 2, ..., k}.

Finally, suppose that (2) holds. Note that [4, Corollary 3] implies that R is an S-
semisimple CRF-ring. From [1, Theorem 3.3] it follows that D; is a Noetherian ring
as a principal ideal domain. Obviously R is a Noetherian ring. O

We have been working under the assumption that a ring has an identity element.
This condition was essential for the above proof. We will now show how to dispense
with this assumption.

THEOREM 2.2. The following conditions on a ring R are equivalent.

(1) R is a Noetherian S-semisimple CRF-ring.

2) R= @?:1 m; Dj, where D; is a filial integral domain of characteristic 0, which
is not a field, m; e N for every i € (1,2, ..., n} and TI(D;) NTI(D;) =@ for
i#].

PROOF. Let R be a Noetherian S-semisimple CRF-ring. Let us first observe that

Theorem 1.2 shows that there exists a torsion-free CRF-ring S with an identity such
that R is an essential ideal in S. Since R is a Noetherian ring, Endg(R) is a
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Noetherian R-module. But S is an R-submodule of Endz(R), so S is a Noetherian
R-module. Consequently S is a Noetherian ring. According to Theorem 2.1 we have
S= @?:1 D;, where D; is a filial integral domain of characteristic 0, which is not
a field for every i € {1,2,...,n} and I1(D;) NTI(D;) =¥ for i # j. Since R is
an essential ideal of § it is easy to see that R = @:7:1 Ji, where J; is an nonzero
ideal of D;. Applying [1, Theorem 3.3], we get J; =m;D;, m; € N for every
ief{l,2,...,n}. Finally, R = @;’:1 m; D;. This shows that (1) implies (2).
Suppose that (2) holds. From [1, Theorem 3.3] we get that D; is a Noetherian ring.

By filiality of D; it follows that m; D; is a Noetherian ring for every i € {1, 2, ..., n}.
Consequently, R is a Noetherian ring. Moreover, from [4, Corollary 3] it may be
concluded that R is an S-semisimple CRF-ring. O

Our next goal is to determine the structure of Noetherian CRF-rings. Suppose
now that R is a Noetherian CRF-ring such that S(R) # 0. It is easy to verify that
S(R) is a Noetherian ring with an identity. So S(R) is a direct summand of R. Let
R =S(R) & T. Since T satisfies conditions of Theorem 2.2 so we need only consider
S(R). But the standard computation shows that every strongly regular, Noetherian
CRF-ring is a finite direct sum of fields (see, for instance, [11]).

Applying the above observation and Theorem 2.2, one can immediately obtain the
following structure theorem.

THEOREM 2.3. The following conditions on a ring R are equivalent.

(1) R is a Noetherian CRF-ring.

2) R= (@];:1 Fj)® (@}_, m;D;), where Dj is a filial integral domain of
characteristic 0, which is not a field, m; €N for every i €{1,2,...,n},
I(D;) NTI(Dy) =@ fori #t and F; is a field for every j € {1, 2, ..., k}.

As a final result in this section, we prove an analogue of Theorem 2.3 for finitely
generated S-semisimple CRF-rings.

THEOREM 2.4. The following conditions on a ring R are equivalent.

(1) R is a finitely generated CRF-ring.

2) R= (@];:1 Fj)® (@l’-’:l m; D;) where D; is a finitely generated subring of Q
with identity, m; € N for everyi € {1,2,...,n}, II(D;) NTI(D;) =0 fori #t
and F; is a finite field for every j € {1,2, ..., k}.

PROOF. Suppose that R satisfies condition (1). It is clear that R is Noetherian,
so by Theorem 2.3 we obtain that R = (@I;':l Fj) @ (P7_, m;D;), where D; is
a filial integral domain of characteristic 0, which is not a field, m; € N for every
ief{l,2,...,n}, I(D;) NTI(D;) =0 for i #¢ and F; is a field for every j €
{1,2, ..., k}. Moreover, every m; D; is a homomorphic image of the ring R. So
m; D; is finitely generated, but by filiality of D; we have D; =m;D; +7Z - 1, so
consequently D; is finitely generated. Applying [1, Theorem 5.1], we see at once
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that D; is a finitely generated subring of Q. Every F; is also a homomorphic image
of R. Hence every Fj is finitely generated. But every finitely generated field is finite.

Suppose that (2) holds. Since D; is a finitely generated subring of Q with
identity, there exists M € N such that D; =[1/M]. Hence there exists kK € N such
that (k, M) =1 and m; D; = k[1/M] (where k =m;/(m;, M)). We will show that
m;D; =[k/M]. Clearly [k/M] C k[1/M]. Let a € [1/M]. Then there exist [ € Z
and ¢t € N such that @ =[/M". But (k, M) =1, so there are integers u, v such that
k''y + M'~'v = 1. Thus ka = (k/M)'lu + (k/M)lv € [k/M]. Consequently, m; D;
is finitely generated for every i =1, ..., n. It is obvious that every F; is finitely
generated. Hence R is a finitely generated. Moreover, @_, m; D; is a CRF-ring
by [4, Corollary 3] and EB];: | Fj is clearly a subidempotent ring. Proposition 3 of [3]
implies that R is filial. O

3. CRF-rings without ideals which are domains

THEOREM 3.1. Let Tl be an arbitrary nonempty subset of P. Then R is an S-
semisimple CRF-ring with an identity without ideals which are domains, such that
[T(R) =11 if and only if R is isomorphic to a subring of Qp of the form K N Zy
where K is the unique strongly regular subring of Qr with the same identity, such that
foreverya € K, a=(ap)pen, we have a, € Z, for almost all p € T1 and the Boolean
algebra Bk is atom-free.

PROOF. Let R be an S-semisimple CRF-ring with an identity without ideals which are
domains, such that IT(R) = I'1. From Theorem 1.1 we have that R is isomorphic to a
subring of Qp of the form K N Zyp where K is the unique strongly regular subring
of Qp with the same identity, such that for every a € K, a = (ap)pen, we have
ap € Z, for almost all p € I1. Lemma 1.4 implies that a ring K does not contain an
ideal which is a domain. Take any nonempty Y € Bx. By Lemma 1.3, a = xy € K.
But / = Ka is not a domain so there exist ¢, d € I such that cd =0. Obviously
@ # supp(c) €Y and @ # supp(d) C Y. Moreover, supp(c) N supp(d) =@ because
cd = 0. Hence supp(c) C Y or supp(d) C Y and Bk is atom-free.

Conversely, according to Lemma 1.4 it is sufficient to prove that a ring K does not
contain an ideal which is a domain. Let {0} # [ < K. Take any nonzero a € I. Bk
is atom-free so exists ¥ € Bk such that ¥ # Y C supp(a). Lemma 1.3 implies that
XY Xsupp@)\y € K and axy, axsupp(a)\r are nonzero elements of /. Finally, I is not a
domain and the proof is complete. O

From Theorems 1.2 and 3.1 we can easy obtain following structure theorem.

THEOREM 3.2. R is an S-semisimple CRF-ring without ideals which are domains if
and only if R is isomorphic to some essential ideal of a ring of the form K N Zy,
where K is the unique strongly regular subring of Q with the same identity, such that
foreverya € K, a=(ap)pen, we have ay, € Z, for almost all p € T1 and the Boolean
algebra Bk is atom-free.
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4. Example

EXAMPLE 4.1. Let p be any prime number. Let A; ; = {pit +k|teN)} forieN
andke{0,1,..., p' —1}. Let

o= |U)x

j=1

~~~~~ p'—1

HENVJ' HiGNO 3/{6{0,1 i1 Xj:Ai’k}.

It is easy to see that for i} < iy,

Ak, ifk; =k mod ph

Ak N Aiy ey = {@ if k1 = ko mod Pi]-

So every element of ® can be written as a disjoint sum of sets A; . This means
that if X, Y €® then XNY €®. Next, it is also clear that A;’k =N\Ai=
Uje0.1....pi—1y.j2k Ai,j € D. So D is a field of sets. Of course, for every A, x and for
every j > i, Ajr 2 Ajj.

EXAMPLE 4.2. LetIT1 = {p1, pa, ...} be any infinite subset of prime numbers. Let O
be any atom-free Boolean algebra of subsets of I1. Such an algebra does exist, by
Example 4.1. In Qrp we define

K=laxy:Ye®,0#a€cqQ] 4.1)
It is easy to see that
K={(axy:Ye®,0+#a€cQ). (4.2)
Hence every nonzero d € K can be written in the form
d=aixy, +axxy, +- - +akxy, (4.3)
where 0 #a; e Q, W #Y; e®D foreveryie{l,2,...,k},Y;NY; =0 fori## j and
supp(d) =Y 1 UY,U.--UY;. We claim that K is strongly regular. Let d be as
in (4.3). Putd = a]_l)(y1 + az_l)(y2 4+ ak_l)(yk. Obviously d’ € K; moreover,
d - d" = Xsupp@) € K. So by Lemma 1.3, K is strongly regular subring of Q. Clearly
K NZnp #{0}. It is easy to see that By is atom-free, so Theorem 3.1 implies that

K NZn is a nonzero S-semisimple CRF-ring, without an ideal which is a domain.
Moreover, I[T(K N Z) = I1.
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