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DENSITY-LIKE AND GENERALIZED DENSITY IDEALS

ADAM KWELA AND PAOLO LEONETTI

Abstract. We show that there exist uncountably many (tall and nontall) pairwise nonisomorphic
density-like ideals on � which are not generalized density ideals. In addition, they are nonpathological.
This answers a question posed by Borodulin-Nadzieja et al. in [this Journal, vol. 80 (2015), pp. 1268–
1289]. Lastly, we provide sufficient conditions for a density-like ideal to be necessarily a generalized density
ideal.

§1. Introduction. An ideal I on the nonnegative integers � is a family of subsets
of� closed under finite unions and subsets. Unless otherwise stated, we assume that
I is admissible (i.e., it contains Fin := [�]<�) and proper (i.e., � /∈ I). An ideal I
is tall if each infinite set A ⊆ � contains an infinite subset in I. It is a P-ideal if
it is �-directed modulo finite sets, i.e., for each sequence (An) in I there is A ∈ I
such that An \ A is finite for all n. Ideals are regarded as subsets of {0, 1}� with the
Cantor-space topology, hence it is possible to speak about Borel, analytic ideals,
etc. We refer to [11, 27] for recent surveys on ideals and associated filters.

A lower semicontinuous submeasure (lscsm) ϕ : P(�) → [0,∞] is a subadditive
monotone function such that ϕ(∅) = 0, ϕ({n}) <∞ for all n ∈ �, and ϕ(A) =
limn ϕ(A ∩ n) for allA ⊆ � (here, as usual, each n is identified with {0, 1, ... , n – 1}).
Denote by supp(ϕ) := {n ∈ � : ϕ({n}) �= 0} its support. A lscsm with finite support
will be typically denoted by �. It is folklore that the pointwise supremum of lscsms
is a lscsm. For each lscsm ϕ, we associate its exhaustive ideal

Exh(ϕ) := {A ⊆ � : ‖A‖ϕ = 0} ,
where ‖A‖ϕ := infF∈Fin ϕ(A \ F ). A classical result of Solecki states that a (not
necessarily proper) ideal I is an analytic P-ideal if and only if I = Exh(ϕ) for some
lscsm ϕ such that ϕ(�) <∞, see e.g., [6, Section 1.2] for a textbook exposition.
In particular, each analytic P-ideal is F�� . Every lscsm ϕ defines a metric dϕ on
I = Exh(ϕ) given by dϕ(A,B) = ϕ(A
B) for all A,B ∈ I. The topology induced
on I is Polish and does not depend on the choice of ϕ, see [22].

The aim of this work is to study the relationship between two families of analytic
P-ideals defined below.
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Definition 1.1. An ideal I is called a generalized density ideal if there exists a
sequence � = (�n) of lscsms with finite pairwise disjoint supports such that I =
Exh(ϕ�), where ϕ� := supn �n.

Note that if � = (�n) is a sequence of lscsms with finite pairwise disjoint supports,
then

Exh (ϕ�) = Exh
(

lim sup
n→∞

�n

)
.

Generalized density ideals have been introduced by Farah in [7, Section 2.10], see
also [9], and have been used in different contexts, see e.g., [5, 10, 16]. We remark that
Farah’s original definition assumed that {supp(�n) : n ∈ �} is a partition of � into
finite intervals; however, we will show in Proposition 2.1 that this is equivalent to
Definition 1.1. The family of generalized density ideals is very rich. Indeed, if each
�n is a measure then Exh(ϕ�) is a density ideal, as defined in [6, Section 1.13], cf.
also [5, Proposition 6.3]. In particular, it includes ∅ × Fin, the ideal of density zero
sets

Z :=
{
A ⊆ � : lim

n→∞

|A ∩ n|
n

= 0
}
,

and all the Erdős–Ulam ideals introduced by Just and Krawczyk in [12], that is,
ideals of the type Exh(ϕf) wheref : � → (0,∞) is a function such that

∑
n f(n) =

∞, f(n) = o
(∑

i≤n f(i)
)

as n → ∞, and ϕf : P(�) → (0,∞) is the submeasure

defined by

∀A ⊆ �, ϕf(A) = sup
n∈�

∑
i≤n, i∈A f(i)∑
i≤n f(i)

,

see [6, pp. 42–43]. In addition, this family contains the ideals associated with suitable
modifications of the natural asymptotic density, the so-called simple density ideals,
see [2, 15] and Section 3. Lastly, a large class of generalized density ideals has been
defined by Louveau and Veličković in [17, 18], cf. also [7, Section 2.11].

Definition 1.2. An ideal I is said to be density-like if I = Exh(ϕ) for a density-
like lscsm ϕ, that is, a lscsm such that for all ε > 0 there exists � > 0 for which, if
(Fn) ∈ Fin� is a sequence of finite pairwise disjoint sets with ϕ(Fn) < � for all n,
then ϕ(

⋃
i∈I Fi) < ε for some infinite I ⊆ �.

The class of density-like ideals played a role in [19, 25]. The main result of [25]
states that the ideal NWD of all closed nowhere dense subsets of 2� is not Tukey
reducible to any density-like ideal I (that is, there is no functionf : NWD → I such
that for eachA ∈ I there existsB ∈ NWD for whichf(X ) ⊆ A impliesX ⊆ B , i.e.,
preimages of bounded sets are bounded). In particular, this works for Z (since it is
a density-like ideal), thus answering old questions of Isbell from 1972 and Fremlin
from 1991.

It is known that if ϕ is density-like and Exh(ϕ) = Exh(�), for some lscsm�, then
� is density-like too. In addition, tall F� P-ideals are not density-like, see [5, Fact
5.1], and there exists a nontall F� P-ideal which is not density-like, see [19].
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230 ADAM KWELA AND PAOLO LEONETTI

On the one hand, every generalized density ideal I = Exh(ϕ�) is a density-like
ideal (indeed, ϕ� is a density-like lscsm). On the other hand, the converse has been
asked in [5, Question 5.11]:

Question 1. Is there a density-like ideal which is not a generalized density ideal?

This question is closely connected to the notion of representability of ideals in
Polish Abelian groups and in Banach spaces. Following [5], we say that an ideal I
on � is representable in a Polish Abelian group X if there is a function f : � → X
such that

A ∈ I ⇐⇒
∑
n∈A f(n) is unconditionally convergent in X.

By [5, Theorems 4.1 and 4.4], an ideal is representable in some Polish Abelian
group if and only if it is an analytic P-ideal, and it is representable in some
Banach space if and only if it is a nonpathological analytic P-ideal (cf. Remark
3.3). Moreover, for instance, it is known that an ideal is representable in R

� if and
only if it is an intersection of countably many summable ideals [5, Example 3.8]
(i.e., ideals of the form If :=

{
A ⊆ � :

∑
n∈A f(n) <∞

}
for somef : � → [0,∞)

such that
∑
n f(n) = ∞); for more on this notion see [5]. It is worth mentioning that

Borodulin-Nadzieja and Farkas, using representability of ideals in Banach spaces,
constructed a new example of a Banach space [4, Example 5.9], and strengthened
Mazur’s Lemma [4, Corollary 7.6], which is a basic tool in Banach space theory
(they were able to specify the form of the convex combination in Mazur’s Lemma).
This suggests that studying the interplay between representability and theory of
analytic P-ideals may have some relevant yet unexploited potential for the study of
the geometry of Banach spaces.

Question 1 is motivated by the problem of characterizing ideals which are
representable in the Banach space c0 [5, Question 5.10]. It is known that a tall
F� P-ideal is representable in c0 if and only if it is a summable ideal [5, Theorem
5.7] and that all nonpathological generalized density ideals are representable in c0
[5, Example 4.2].

The motivation of this work is to shed some light on [5, Question 5.10] by
providing a large class of density-like ideals which are not generalized density ideals.
In particular, we give a positive answer to Question 1.

Theorem 1.3. There exists a density-like ideal which is not a generalized density
ideal.

More precisely, our main contributions are:

(i) There exist uncountably many nonpathological, nontall, and pairwise
nonisomorphic density-like ideals which are not generalized density ideals,
see Theorem 3.7.

(ii) There exist uncountably many nonpathological, tall, and pairwise noniso-
morphic density-like ideals which are not generalized density ideals, see
Theorem 4.24.

(iii) A characterization of generalized density ideals which is reminiscent of the
definition of density-like ideals, see Theorem 5.3.
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§2. Preliminaries. Given (not necessarily proper or admissible) ideals I,J on�,
we let their disjoint sum and Fubini product be

I ⊕ J :=
{
B ⊆ 2 × � : B(0) ∈ I, B(1) ∈ J

}
,

I × J :=
{
B ⊆ �2 : {m ∈ � : B(m) /∈ J } ∈ I

}
,

where B(m) := {k ∈ � : (m, k) ∈ B}. Then I × J is an ideal on �2. We identify
ideals on �2 with ideals on � through the bijection h : �2 → � defined by

∀(x, y) ∈ �2, h(x, y) := 2x(2y + 1) – 1. (1)

To ease the notation, we define the families Fdisj, Fincr, and Fint of sequences
of nonempty finite sets which are, respectively, pairwise disjoint, increasing, and
increasing intervals:

Fdisj :={(Fn) ∈ (Fin \ {∅})� : ∀{i, j} ∈ [�]2, Fi ∩ Fj = ∅},
Fincr :={(Fn) ∈ Fdisj : ∀n ∈ �,maxFn + 1 ≤ minFn+1},
Fint :={(Fn) ∈ Fincr : ∀n ∈ �,Fn is an interval}.

In particular, Fint ⊆ Fincr ⊆ Fdisj.
We start with some characterizations of generalized density ideals, cf. also

Proposition 2.3 and Theorem 5.3.

Proposition 2.1. Let I be an ideal. Then the following are equivalent:

(G1) I = Exh(ϕ�) for a sequence � = (�n) of lscsms with (supp(�n)) ∈ Fint;
(G2) I = Exh(ϕ�) for a sequence � = (�n) of lscsms with (supp(�n)) ∈ Fincr;
(G3) I = Exh(ϕ�) for a sequence � = (�n) of lscsms with (supp(�n)) ∈ Fdisj (that

is, I is a generalized density ideal ); and
(G4) I = Exh(ϕ�) for a sequence � = (�n) of bounded lscsms such that

∀k ∈ �, {n ∈ � : k ∈ supp(�n)} ∈ Fin.

Proof. It is clear that (G1) =⇒ (G2) =⇒ (G3) =⇒ (G4).
(G4) =⇒ (G3) See [5, Proposition 5.4].
(G3) =⇒ (G1) Suppose that I = Exh(ϕ�) for some sequence � = (�n) of lscsms

such that (Sn) ∈ Fdisj, where Sn := supp(�n) for each n. Note that we can assume
without loss of generality thatS :=

⋃
n Sn = �. Indeed, in the opposite, ifSc is finite

then it is sufficient to replace �0(A) with �0(A) + |A ∩ Sc | for allA ⊆ �. Otherwise,
let (xn) be the infinite increasing enumeration of Sc and replace every �n(A) with
�n(A) + 1

n |A ∩ {xn}|. This is possible, considering that

I = Exh(ϕ�) = Exh(lim supn �n).

At this point, let (Tn) ∈ Fin� be the sequence defined recursively as it follows: set
T0 := [0,maxS0] and, for each n ∈ �, set

Tn+1 :=
(

max
⋃
i≤n Ti , max

(
Sn+1 ∪

⋃
{Sk : minSk ≤ max

⋃
i≤n Ti}

)]
.

Observe that (Tn) is a sequence of (possibly empty) pairwise disjoint finite intervals
such that

⋃
n Tn = �. Moreover, for each n ∈ � there exists j = j(n) ∈ � with
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Sn ⊆ Tj(n) ∪ Tj(n)+1: indeed, if j(n) is the minimal integer such that Sn ∩ Tj(n) �= ∅
(so that Tj(n) �= ∅ and minSn ≤ maxTj(n)), then

max(Tj(n)+1) ≥ max
(⋃

{Sk : minSk ≤ max
⋃
i≤j(n) Ti}

)
≥ max(Sn).

Let (Vn) be the biggest subsequence of (Tn) with nonempty elements, so that
(Vn) ∈ Fint, and define the sequence � = (	n) of lscsms by

∀n ∈ �,∀A ⊆ �, 	n(A) := supk �k(A ∩ Vn).

Note that 	n(A) = supk≥n �k(A ∩ Vn), sinceSk ∩ Vn = ∅wheneverk < n (indeed
Sk ⊆

⋃
n≤k Tn ⊆

⋃
n≤k Vn for all k ∈ �). Moreover, it follows by construction that

supp(	n) = Vn for each n ∈ �, hence it is sufficient to show that I = Exh(ϕ�).
On the one hand, it is clear that if �n(A) → 0 then

	n(A) = supk≥n �k(A ∩ Vn) ≤ supk≥n �k(A) → 0,

hence I ⊆ Exh(ϕ�).
On the other hand, suppose that 	n(A) → 0 and fix ε > 0. Then there exists

n0 ∈ � such that 	n(A) ≤ ε/2 for all n > n0. Let k0 be the minimal integer such that
Sk ∩

⋃
n≤n0
Vn = ∅ for all k ≥ k0. Fix k ≥ k0 and n ∈ � such that Sk ⊆ Vn ∪ Vn+1

(hence, in particular, n > n0). We conclude that

�k(A) = �k(A ∩ Sk) ≤ �k(A ∩ (Vn ∪ Vn+1))

≤ �k(A ∩ Vn) + �k(A ∩ Vn+1) ≤ 	n(A) + 	n+1(A) ≤ ε
2 + ε

2 = ε,

which shows that �k(A) → 0, therefore Exh(ϕ�) ⊆ I. �

Some additional notations are in order. Given a lscsm ϕ and a real � > 0, let Gϕ,�
be the set of sequences of subsets of � with ϕ-value smaller than �, that is,

Gϕ,� := {(Fn) ∈ P(�)� : ∀n ∈ �, ϕ(Fn) < �} .

Let I, J be ideals on � and let I+ be the family of I-positive sets, that is,
{A ⊆ � : A /∈ I}. Following Solecki and Todorcevic [24, p. 1892], we say that a
separable metric space X is (I+,J )-calibrated if the following property holds: for
each sequence x = (xn) in X with Γx(I) �= ∅, there existsA ∈ I+ such that {xn : n ∈
A ∩ B} is bounded for all B ∈ J (where Γx(I) denotes the set of I-cluster points
of x, that is, the set of 
 ∈ X such that {n ∈ � : xn ∈ U} /∈ I for all neighborhoods
U of 
, cf. [3]).

We continue with some characterizations of density-like ideals, see also [23,
Theorem 4.5].

Proposition 2.2. Let ϕ be a lscsm and set I := Exh(ϕ). Then the following are
equivalent:

(D1) ∀ε > 0,∃� > 0,∀(Fn) ∈ I� ∩ Gϕ,� ,∃I ∈ [�]�, ϕ
(⋃
i∈I Fi

)
< ε;

(D2) ∀ε > 0,∃� > 0,∀(Fn) ∈ Fin� ∩ Gϕ,� ,∃I ∈ [�]�, ϕ
(⋃
i∈I Fi

)
< ε;

(D3) ∀ε > 0,∃� > 0,∀(Fn) ∈ Fdisj ∩ Gϕ,� ,∃I ∈ [�]�, ϕ
(⋃
i∈I Fi

)
< ε (that is, I

is density-like);
(D4) ∀ε > 0,∃� > 0,∀(Fn) ∈ Fincr ∩ Gϕ,� ,∃I ∈ [�]�, ϕ

(⋃
i∈I Fi

)
< ε; and

(D5) I is ((Fin × Fin)+, ∅ × Fin)-calibrated.
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Proof. It is clear that (D1) =⇒ (D2) =⇒ (D3) =⇒ (D4).
(D3) ⇐⇒ (D5) See [24, Lemma 6.7].
(D4) =⇒ (D1) See [25, Lemma 3.1]. �

To conclude, every density-like ideal is a generalized density ideal, provided that,
in addition, it is F� .

Proposition 2.3. Let I be an F� ideal. Then the following are equivalent:

(F1) I is a generalized density ideal;
(F2) I is a density-like ideal;
(F3) I is ((Fin × Fin)+, ∅ × Fin)-calibrated; and
(F4) I = Fin or I = Fin ⊕ P(�).

Proof. (F1) =⇒ (F2) This is obvious.
(F2) =⇒ (F3) See [24, Lemma 6.7].
(F3) =⇒ (F4) See [24, Proposition 6.8(b)].
(F4) =⇒ (F1) If I = Fin then I = Exh(ϕ�), where � = (�n) and each �n is

the Dirac measure on n ∈ �. If I = Fin ⊕ P(�) is represented on � as {A ⊆ � :
A ∩ 2� ∈ Fin}, then I = Exh(ϕ�), where �n is the Dirac measure on 2n, for each
n ∈ �. �

§3. Nontall solutions to Question 1. In this section, we provide a positive answer
to Question 1 by showing that there exists a nontall density-like ideal which is not a
generalized density ideal.

To this aim, given an ideal I ⊆ P(�), define

Î := h[(∅ × Fin) ∩ (I × ∅)]. (2)

Note that (∅ × Fin) ∩ (I × ∅) is an ideal on �2, hence Î is an ideal on �. The ideal
Î has been introduced and studied by Oliver in [20, Definition 2.1], following an
idea of Hjorth. It is remarkable that Oliver used these ideals Î to show that, in any
model of ZFC, there exist an uncountable family of Borel ideals J such that the
quotient Boolean algebras P(�)/J are pairwise nonisomorphic, see [20, Theorem
3.2], addressing also a well-known question due to Farah [7].

Lemma 3.1. Let I be an ideal. Then Î is a nontall ideal.

Proof. It is sufficient to see that h[{0} × �] is an infinite set which does not
contain any infinite subset in I. �

Here, we show first that if I is an analytic P-ideal [density-like, respectively], then
so is Î; notice that the first claim, with an essentially equivalent proof, can be already
found in Oliver’s work [20, Lemma 3.6], but we repeat it here for the sake of readers’
convenience (e.g., we will make explicit use of the submeasure � defined in (4) also
later). Then, we prove that Î is not a generalized density ideal whenever I is tall.

Theorem 3.2. Let I be an analytic P-ideal. Then Î is an analytic P-ideal.

Proof. Letϕ be a lscsm such thatI = Exh(ϕ). We may assume that supp(ϕ) = �
(indeed, it is easy check that I = Exh(ϕ̃), where ϕ̃ is the lscsm defined by ϕ̃(A) :=
ϕ(A) +

∑
a∈A\supp(ϕ) 1/(a + 1)2 for all A ⊆ �).
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Let 	 be the submeasure defined by

∀B ⊆ �2, 	(B) := ϕ
({
m ∈ � : B(m) �= ∅

})
. (3)

To conclude the proof, we claim that Î = Exh(�), where � is the submeasure defined
by

∀A ⊆ �, �(A) := 	(h–1[A]). (4)

(Note that � is a lscsm and that supp(�) = �.)
Exh(�) ⊆ Î: Fix A ∈ Exh(�) and set B := h–1[A]. Then

0 = ‖A‖� = infF∈Fin �(A \ F ) = infG∈[�2]<� 	(B \G). (5)

First, we want to prove that B ∈ ∅ × Fin. Indeed, in the opposite, there would exist
m ∈ � such that B(m) /∈ Fin. However, we would obtain

	(B \G) ≥ 	(({m} × B(m)) \G) = ϕ({m}) > 0,

for every finite setG ⊆ �2, which contradicts (5). Secondly, we show thatB ∈ I × ∅.
Thanks to (5), for every ε > 0, there exists a finite set G ⊆ �2 such that 	(B \G) <
ε. Let F = {m ∈ � : G(m) �= ∅} ∈ Fin. Then

ϕ
({
m ∈ � : B(m) �= ∅

}
\ F

)
≤ ϕ

({
m ∈ � : (B \G)(m) �= ∅

})
= 	(B \G) < ε.

By the arbitrariness of ε, we have B ∈ I × ∅. To sum up, we have B ∈ (∅ × Fin) ∩
(I × ∅), so that h–1[Exh(�)] ⊆ (∅ × Fin) ∩ (I × ∅).

Î ⊆ Exh(�): Suppose now that B ∈ (∅ × Fin) ∩ (I × ∅) and fix ε > 0. Since B ∈
I × ∅, there exists F ∈ Fin such that ϕ

({
m ∈ � : B(m) �= ∅

}
\ F

)
< ε. However,

since B ∈ ∅ × Fin, the set G := B ∩ (F × �) is finite. Hence

	(B \G) = ϕ
({
m ∈ � : (B \G)(m) �= ∅

})
= ϕ

({
m ∈ � : B(m) �= ∅

}
\ F

)
< ε.

Therefore Î = Exh(�), which concludes the proof. �

Remark 3.3. Let us suppose that ϕ is a nonpathological lscsm (in the sense of
Farah [6, Section 1.7]), that is,

∀A ⊆ �, ϕ(A) = sup�∈N (ϕ) �(A),

where N (ϕ) stands for the set of finitely additive measures � such that �(V ) ≤ ϕ(V )
for allV ⊆ � (note that N (ϕ) �= ∅ as it contains � = 0); strictly related notions have
been used in game theory, see [21], and in the context of measure algebras, see [8,
13, 26].

Then the lscsm � defined in (4) is nonpathological as well. To this aim, fix A ⊆ �
such that �(A) �= 0 (otherwise the claim is trivial), and recall that

�(A) = 	(h–1[A]) = ϕ(M ), whereM := {m ∈ � : h–1[A](m) �= ∅}.

In particular, M is nonempty. For each m ∈M , pick am ∈ h–1[A](m). Since ϕ
is nonpathological, there exists a sequence (�n) ∈ N (ϕ)� such that ϕ(M ) =
limn �n(M ). At this point, define

∀n ∈ �,∀V ⊆ �, �n(V ) := �n({m ∈M : (m, am) ∈ h–1[V ]}).
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It is easy to see that each �n is a finitely additive measure. Moreover, since each �n
is pointwise dominated by ϕ, we have

∀n ∈ �,∀V ⊆ �, �n(V ) ≤ ϕ({m ∈M : (m, am) ∈ h–1[V ]})

≤ ϕ({m ∈M : h–1[V ](m) �= ∅}) ≤ �(V ),

which implies that (�n) ∈ N (�)� . Lastly, we have that

�(A) = ϕ(M ) = limn→∞ �n(M )

= lim
n→∞

�n({m ∈M : h–1[A](m) �= ∅}) = lim
n→∞

�n(A).

This proves that �(A) = sup�∈N (�)�(A), i.e., � is nonpathological.

Now we show that the submeasure � defined in (4) is density-like provided that ϕ
is density-like (for an alternative shorter proof in the case where I is an Erdős-Ulam
ideal, see Corollary 4.15).

Theorem 3.4. Let I be a density-like ideal. Then Î is a density-like ideal as well.

Proof. Let ϕ be a density-like lscsm such that I = Exh(ϕ) and consider the
lscsm � defined as in the proof of Theorem 3.2. Fix ε > 0. By Proposition 2.2,
there is � = �(ε) > 0 such that for all (En) ∈ Fin� ∩ Gϕ,� there exists I ∈ [�]� with
ϕ

(⋃
i∈I Ei

)
< ε. We claim that the same � witnesses the fact that � is density-like.

Fix (Fn) ∈ Fdisj ∩ G�,� . DefineEn :=
{
m ∈ � : h–1[Fn](m) �= ∅

}
∈ Fin for each n ∈

� and note that

ϕ(En) = ϕ
({
m ∈ � : h–1[Fn](m) �= ∅

})
= �(Fn) < �.

Thus, (En) ∈ Fin� ∩ Gϕ,� and there exists I ∈ [�]� with ϕ
(⋃
i∈I Ei

)
< ε. Then

�(F ) = ϕ({m ∈ � : h–1[F ](m) �= ∅}) = ϕ(
⋃
i∈I Ei) < ε,

where F :=
⋃
i∈I Fi . This concludes the proof. �

Theorem 3.5. Let I be a tall ideal. Then Î is not a generalized density ideal.

Proof. Let us suppose that Î = Exh(ϕ�), where � = (�n) is a sequence of lscsms
such that (Gn) ∈ Fdisj, where Gn := supp(�n) for each n ∈ �.

Fix a strictly increasing sequence (xn) ∈ �� such that

∀n ∈ �, xn ∈ h[{n} × �] and |Gn ∩ X | ≤ 1,

where X := {xk : k ∈ �} (it is easy to see that such sequence exists). It follows
that X /∈ h[I × ∅], hence X /∈ Î = Exh(ϕ�). This implies that there exists ε > 0
and a strictly increasing sequence (mt) ∈ �� such that �mt (X ) ≥ ε for all t ∈ �.
However, by construction, each Gmt contains at most one element from X ; hence,
exactly one since�mt (X ) �= 0, let us say {yt} := Gmt ∩ X for all t ∈ �. It follows that
�mt (Z) �→ 0, where Z stands for any infinite subset of Y := {yt : t ∈ �}, therefore
P(Y ) ∩ [�]� ∩ Exh(ϕ�) = ∅. This implies that every infinite subset of Y does not
belong to Î. Considering thatY ∩ h[{n} × �] is finite for all n ∈ �, this contradicts
the hypothesis that I is tall. �

As an immediate consequence, we obtain the proof of Theorem 1.3
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Proof of Theorem 1.3. Let Id be the ideal of density zero sets, which is a tall
generalized density ideal. By Lemma 3.1 and Theorems 3.4 and 3.5, we get that Îd
is a (nontall) density-like ideal which is not a generalized density ideal. �

At this point, a natural question would be:

Question 2. How many pairwise nonisomorphic ideals Î are there, with I tall
density-like ideal?

To this aim, given ideals I,J on � we say that I is isomorphic to J if there exists
a bijection f : � → � such that A ∈ I if and only if f–1[A] ∈ J for all A ⊆ �. In
addition, we say that Iis below J in the Katětov order (written as I ≤K J ) if there
exists a function κ : � → � such that A ∈ I implies κ–1[A] ∈ J for all A ⊆ �, cf.
e.g., [15].

Lastly, we recall that an ideal I is called a simple density ideal if there exists a
function g : � → [0,∞) such that g(n) → ∞, n/g(n) �→ 0 and

I = Zg :=
{
A ⊆ � : lim

n→∞

|A ∩ n|
g(n)

= 0
}
,

see [2, 14, 15]. In particular, it has been proved in [2, Theorem 3.2] that Zg is a
density ideal (hence, in particular, a generalized density ideal). It is also evident that
Zg is tall.

The next result can be deduced also as an immediate consequence of [20, Theorem
3.4]; however, the latter one has a different (and seemingly more complicated) proof,
hence we present our argument for the sake of completeness.

Theorem 3.6. There are 2� tall density-like ideals I such that the ideals Î are
pairwise nonisomorphic.

Proof. Thanks to [15, Theorem 3], there exists a family of simple density ideals
{Iα : α < 2�} such that Iα �≤K I� for all distinct α, � < 2� .

Hence, given distinct α, � < 2� , we claim that Îα is not isomorphic to Î� , i.e.,
there is no bijection f : �2 → �2 such that f[A] ∈ (∅ × Fin) ∩ (Iα × ∅) if and only
if A ∈ (∅ × Fin) ∩ (I� × ∅) for all A ⊆ �2.

Suppose that f : �2 → �2 is a bijection and suppose that there exist an infinite
set A ⊆ � and k ∈ � such that f[A× {0}] ⊆ {k} × �. Since I� is tall, there is an
infinite B ⊆ A such that B ∈ I� . Thus, B × {0} ∈ (∅ × Fin) ∩ (I� × ∅), but f[B ×
{0}] /∈ (∅ × Fin) ∩ (Iα × ∅) as f[B × {0}] ∩ ({k} × �) is infinite. This implies that
the function g : � → � defined by f(n, 0) ∈ {g(n)} × � for all n ∈ � is finite-to-
one.

Since Iα �≤K I� , there exists a (necessarily infinite) setX ∈ Iα such that g–1[X ] /∈
I� . Define Y := f[� × {0}] ∩ (X × �). Note that, since g is finite-to-one, then
Y ⊆ f[� × {0}] ∈ ∅ × Fin. Hence Y ∈ (∅ × Fin) ∩ (Iα × ∅).

To conclude the proof, let us suppose for the sake of contradiction that f–1[Y ] ∈
(∅ × Fin) ∩ (I� × ∅). Hence, in particular, f–1[Y ] ∈ I� × ∅, that is,

Z := {n ∈ � : f–1[Y ](n) �= ∅} ∈ I� .
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On the other hand, we have

Z = {n ∈ � : ∃k ∈ �, (n, k) ∈ f–1[Y ]} = {n ∈ � : ∃k ∈ �,f(n, k) ∈ Y}
= {n ∈ � : f(n, 0) ∈ Y} ⊇ {n ∈ � : g(n) ∈ X} = g–1[X ] /∈ I� ,

where we used that, if g(n) ∈ X , then f(n, 0) ∈ {g(n)} × � and f(n, 0) ∈ f[� ×
{0}], i.e., f(n, 0) ∈ Y . This completes the proof. �

Thus, we can answer Question 2:

Theorem 3.7. There are 2� nonpathological and pairwise nonisomorphic nontall
density-like ideals which are not generalized density ideals.

Proof. Let I be a simple density ideal. Then I is a density ideal and, in particular,
it is nonpathological. Thanks to Remark 3.3, Î is nonpathological as well. The claim
follows by Lemma 3.1, Theorems 3.4–3.6. �

§4. Tall solutions to Question 1. In the previous Section we have shown that there
exists a nontall density-like ideal which is not a generalized density ideal, providing
a positive answer to Question 1. Hence, we may ask:

Question 3. Does there exist a tall density-like ideal which is not a generalized
density ideal?

In this section, we answer positively also Question 3.

Definition 4.1. A sequence � = (�n) of lscsms is equi-density-like if for all ε > 0
there exists � > 0 such that for all n ∈ � and (Fk) ∈ Fdisj ∩ G�n,� there exists an
infinite set I ⊆ � such that �n(

⋃
i∈I Fi) < ε.

In words, each lscsm �n is density-like and the choice of � = �(ε) is uniform
within all �ns.

Theorem 4.2. Let � = (�n) be a sequence of lscsms with pairwise disjoint supports.
Then ϕ := supn �n is density-like if and only if � is equi-density-like.

Proof. Define Sn := supp(�n) for each n ∈ �.
Only If part. Suppose that � is not equi-density-like. Then there exists ε > 0 such

that for all � > 0 there are n ∈ � and (Fk) ∈ Fdisj ∩ G�n,� for which �n(
⋃
i∈I Fi) ≥ ε

whenever I ∈ [�]� . We claim that this ε > 0 witnesses that ϕ is not density-like. To
this aim, fix any � > 0 and let n and (Fk) be as before. Define Ek := Fk ∩ Sn for
all k ∈ �. Then ϕ(Ek) = �n(Ek) < � and (Ek) ∈ Fdisj ∩ Gϕ,� . At the same time, we
have

∀I ∈ [�]�, ϕ
(⋃
i∈I Ei

)
= �n

(⋃
i∈I Ei

)
= �n

(⋃
i∈I Fi

)
≥ ε.

Therefore ϕ is not density-like.
If part. Conversely, suppose that � is equi-density-like, and fix ε > 0. Then there

exists a sufficiently small � ∈ (0, ε/4) such that

∀n ∈ �,∀(Fk) ∈ Fdisj ∩ G�n,� ,∃I ∈ [�]�, �n
(⋃
i∈I Fi

)
< ε

4 . (6)

https://doi.org/10.1017/jsl.2021.95 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.95


238 ADAM KWELA AND PAOLO LEONETTI

Fix (Fk) ∈ Fdisj ∩ Gϕ,� and define (Tk) ∈ Fin� by Tk := {n ∈ � : Fk ∩ Sn �= ∅} for
all k ∈ �. At this point, we claim that there exist a sequence of infinite sets (Xj) ∈
(Fin+)� and an increasing sequence (ij) ∈ �� such that, for all j ∈ �:

(i) ij = minXj ,
(ii) Xj+1 ⊆ Xj \ {ij}, and

(iii) �t
(
F (j) ∪

⋃
i∈Xj+1

Fi

)
< ε

2 for each t ∈ T (j), where F (j) :=
⋃
k≤j Fik and

T (j) :=
⋃
k≤j Tik .

We define these sequences recursively. Start with X0 = � and i0 = 0. Suppose
now that Xk and ik have been defined for all k ≤ j ∈ � and satisfy (i)–(iii). If
T := Tij \ T (j–1) is empty, set Xj+1 := Xj \ {ij} and ij+1 := minXj+1; if T �= ∅,
since �n(Fk) ≤ ϕ(Fk) < � for all n, k ∈ �, we can find Xj+1 ⊆ Xj \ {ij} such that

�t

(⋃
i∈Xj+1

Fi

)
< ε

4 for all t ∈ T ; finally, set ij+1 := minXj+1. If j �= 0 and t ∈
T (j–1), it follows by the induction hypothesis that

�t

(
F (j) ∪

⋃
i∈Xj+1

Fi

)
≤ �t

(
F (j–1) ∪

⋃
i∈Xj Fi

)
< ε

2 .

On the other hand, if j = 0 or t ∈ T , then

�t

(
F (j) ∪

⋃
i∈Xj+1

Fi

)
≤ �t(Fij ) + �t

(⋃
i∈Xj+1

Fi

)
< � + ε

4 <
ε
2 ,

which proves the condition (iii) and completes the induction.

To complete the proof, note that if n /∈
⋃
k T

(k) then �n
(⋃

k F
(k)

)
= 0 for all

n ∈ �. Moreover, if n ∈
⋃
k T

(k) then

∀j ∈ �, �n
(⋃

k F
(k)

)
≤ �n

(
F (j) ∪

⋃
i∈Xj+1

Fi

)
< ε

2 .

Thus ϕ
(⋃

k F
(k)

)
≤ ε

2 < ε, which shows that ϕ is density-like. �

It is worth noting that the above proof works also if � is a sequence of lscsms
such that {n ∈ � : k ∈ supp(�n)} is finite for all k ∈ �, in the same spirit of [5,
Proposition 5.4], cf. Proposition 2.1.

The aim of the next example is twofold: first of all, it shows that there exist
sequences of lscsms that are not equi-density-like (hence, their pointwise supremum
is not density-like); secondly, it proves that the ideal Exh(supn �n) depends on the
sequence of lscsms (�n), not on the sequence of ideals (Exh(�n)), that is, there are
two sequences of lscsms (�n) and (	n) such that Exh(�n) = Exh(	n) for each n ∈ �
and, on the other hand, Exh(supn �n) �= Exh(supn 	n).

Example 4.3. Let (In,m)n,m∈� be a sequence of pairwise disjoint finite subsets of
� such that |In,m| = 2m for each n,m ∈ �. Moreover, let (�n,m)n,m∈� be the sequence
of probability measures on � defined by

∀n,m ∈ �,∀A ⊆ �, �n,m(A) =
|A ∩ In,m|

2m
.
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Then, define the sequences of lscsms � = (�n) and � = (	n) by

∀n ∈ �, �n = sup
m∈�
�n,m and 	n = sup

M∈[�]n+1

∑
m∈M

�n,m,

where the suprema are meant in the pointwise order.
On the one hand, it is easy to see that ‖A‖�n = 0 if and only if ‖A‖	n = 0, so that

Exh(�n) and Exh(	n) are density ideals and they coincide for each n ∈ �.
On the other hand, Exh(supn �n) = Exh(supn,m �n,m) is a density ideal (hence,

in particular, it is a density-like ideal), and it is not equal to Exh(supn 	n). Indeed,
we will prove that Exh(supn 	n) is not density-like. Thanks to Theorem 4.2, this is
equivalent to show that � is not equi-density-like.

To this aim, put ε = 1 and fix any � > 0. There is k ∈ � such that 1
2k
< �. We will

find a sequence (Fn) ∈ Fdisj ∩ G	
2k
,� such that 	2k (

⋃
i∈I Fi) ≥ ε for each infinite I ⊆

�. For each n ∈ �, fix a subset Fn ⊆ I2k ,k+n such that |Fn| = 2n. Note that 	2k (Fn) =
�2k ,n+k(Fn) = 1/2k < � for all n ∈ �. Therefore (Fn) ∈ Fdisj ∩ G	

2k
,� . Lastly, fix an

infinite set I ⊆ � and a subsetM ⊆ I such that |M | = 2k + 1. Then

	2k

(⋃
i∈I
Fi

)
≥ 	2k

( ⋃
i∈M
Fi

)
≥

∑
m∈M

�2k ,k+m

( ⋃
i∈M
Fi

)
=

∑
m∈M

�2k ,k+m(Fm) > 1,

which proves that � is not equi-density-like.

Definition 4.4. A lscsm ϕ is strongly-density-like if there is a constant c =
c(ϕ) > 0 such that, for all ε > 0 and (Fk) ∈ Fdisj ∩ Gϕ,cε , there exists an infinite
set I ⊆ � such that ϕ(

⋃
i∈I Fi) < ε.

Remark 4.5. Observe that if � is a sequence of lscsms with pairwise disjoint finite
supports, then ϕ� = supn �n is strongly-density-like with any constant c(ϕ�) < 1.
Thus, if I is a generalized density ideal, then there is a strongly-density-like lscsm ϕ
with ϕ with I = Exh(ϕ).

In the following example we show that there exist density-like lscsms which are
not strongly-density-like, cf. also Section 6.

Example 4.6. Let h : �2 → � be the bijection defined in (1). For each n ∈ �
define Xn := h–1[{n} × �], so that {Xn} is a partition of � into infinite sets. Define
ak := 1/(k + 2)! for each k ∈ � and note that ak → 0 as k → +∞ and ak–1 >
(k + 1)ak for all k > 0. Moreover, set ϕ := supn �n, where (�n) is the sequence of
lscsms given by

∀n ∈ �,∀A ⊆ �, �n(A) = an min{n + 1, |A ∩ Xn|}.
We claim that ϕ is a density-like lscsm which is not strongly-density-like.

First, we show that ϕ is not strongly-density-like. To this aim, fix an arbitrary
constant c > 0 and a positive integer k such that 1/k ≤ c. Then, set ε := (k + 1)ak
and Fn := {h–1(k, n)} for each n ∈ �. It follows that

∀n ∈ �, ϕ(Fn) = �k(Fk) = ak <
(k+1)ak
k ≤ cε,

hence (Fn) ∈ Fdisj ∩ Gϕ,cε . On the other hand, for each infinite set I ⊆ �, we have
ϕ(

⋃
i∈I Fi) = �k(

⋃
i∈I Fi) = (k + 1)ak = ε.
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Now let us show that ϕ is density-like. Fix ε > 0 and define � := ak , where k
is an integer such that (k + 1)ak < ε. Fix also (Fk) ∈ Fdisj ∩ Gϕ,� . Note that Fk ∩⋃
n≤k–1Xn = ∅ for each k ∈ �: indeed

∀x ∈
⋃
n≤k–1Xn, ϕ({x}) ≥ ak–1 > (k + 1)ak ≥ ak = �.

Therefore

∀I ∈ [�]�, ϕ

(⋃
i∈I
Fi

)
≤ ϕ

⎛⎝⋃
n≥k
Xn

⎞⎠ = sup
k≥n
�k(Xk) = (k + 1)ak < ε,

concluding the proof.

Proposition 4.7. Fix q ∈ [1,∞). Then the set of strongly-density-like lscsms is
q-convex, that is, for each strongly-density-like lscsmsϕ1, ... , ϕk and a1, ... , ak ∈ [0, 1]
with

∑
i≤k ai = 1, the lscsmϕ := (

∑
i≤k aiϕ

q
i )1/q is strongly-density-like. In addition,

a witnessing constant of ϕ is c(ϕ) = 1
2 min{c(ϕ1), ... , c(ϕk)}.

Proof. Let ϕ1, ... , ϕk be strongly-density-like lscsms, fix a1, ... , ak ∈ [0, 1] with∑
i≤k ai = 1, and define the lscsm ϕ := (

∑
i≤k aiϕ

q
i )1/q . Set c := 1

2 mini≤k c(ϕi), so
that 2c is a witnessing constant for each ϕi .

Fix ε > 0 and a sequence (Fj) ∈ Fdisj ∩ Gϕ,cε . For each j ∈ � and i ∈ {1, ... , k}
define the integer zi,j := �ϕi(Fj)/cε� . Note that zi,j < a

–1/q
i , indeed

∀i = 1, ... , k, cε > ϕ(Fj) ≥ a1/q
i ϕi(Fj) ≥ a

1/q
i zi,jcε.

Considering that L :=
∏k
i=1(� ∩ [0, a–1/q

i )) is finite, there exists 
 = (
1, ... , 
k) ∈ L
and an infinite set J ⊆ � such that zi,j = 
i for all i = 1, ... , k and j ∈ J .

At this point, observe that
∑
i≤k ai 


q
i < 1, indeed∑

i≤k
ai(cε
i)q =

∑
i≤k
ai(cεzi,min J )q ≤

∑
i≤k
aiϕi(Fmin J )q = ϕ(Fmin J )q < (cε)q.

Since each ϕi is strongly-density-like with witnessing constant 2c, we have that
ϕi(Fj) < (zi,j + 1)cε = (2c) · (
i+1)ε

2 for all j ∈ J . Hence there exists an infinite set

T ⊆ J such that ϕi(
⋃
t∈T Ft) <

(
i+1) ε
2 . for all i = 1, ... , k.

Thanks to Minkowski’s inequality, we conclude that

ϕ(
⋃
t∈T Ft) <

ε
2

(∑
i≤k ai(
i + 1)q

)1/q
≤ ε

2

((∑
i≤k ai 


q
i

)1/q
+ 1

)
< ε,

which proves that ϕ is strongly-density-like. �
Definition 4.8. An ideal I is said to be a DL-ideal if it is isomorphic to some

Exh(�), where � = �(ϕ, q, a, S) is a lscsm on �2 defined by

∀A ⊆ �2, �(A) := sup
n∈�

(
∑
k∈Sn

akϕ
qn
k (A(k)))1/qn , (7)

where ϕ = (ϕn) is a sequence a strongly-density-like lscsms on �, q = (qn) is a
sequence in [1,∞), and a = (an) ∈ [0, 1]� and S = (Sn) ∈ Fdisj are sequences such
that

∑
k∈Sn ak = 1 for all n ∈ �.
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For the rest of this section, it may be helpful to take in mind the following example
of DL-ideals.

Example 4.9. Fix a strictly increasing sequence (�n) of nonnegative integers such
that �0 := 0 and limn |In| = ∞, where In := [�n, �n+1) for all n ∈ �. In particular,
thanks to Remark 4.5, the map P(�) → [0,∞] defined by S �→ supm |S ∩ Im|/|Im|
is a strongly-density-like lscsm. It follows that I := {h[A] : A ∈ Exh(�)} is a DL-
ideal, where � : �2 → [0,∞] is the lscsm defined by

∀A ⊆ �2, �(A) := sup
n∈�

⎛⎝ 1
|In|

∑
k∈In

sup
m∈�

|A(k) ∩ Im|
|Im|

⎞⎠ .
As it will be shown below in Corollary 4.21, the above ideal provides an affirmative

answer to Question 3.

Remark 4.10. It is not difficult to see that, if � = �(ϕ, q, a, S) is a lscsm on �2

as in (7) such that q is the constant sequence (1) and each ϕn is nonpathological,
then � is nonpathological as well. For each lscsm φ on � and for each k ∈ �, let
φ̃(k) be the lscsm on �2 defined by φ̃(k)(A) := φ(A(k)) for all A ⊆ �2. Then, with
the same notation of Remark 3.3, we know that

∀A ⊆ �2,∀k ∈ �, ϕk(A(k)) = sup
�∈N (ϕk )

�(A(k)) = sup
�̃(k)∈Nk (ϕk )

�̃(k)(A),

where Nk(ϕk) := {�̃(k) : � ∈ N (ϕk)} (note that, if k �= k′, then measures in Nk(ϕk)
have disjoint supports from measures in Nk′(ϕk′)). Let Ñ (�) be the set of finitely
additive measures on �2 which are pointwise dominated by �. Then

∀A ⊆ �2, sup
�̃∈Ñ (�)

�̃(A) ≤ �(A) = sup
n∈�

∑
k∈Sn

ak sup
�̃(k)∈Nk (ϕk )

�̃(k)(A)

= sup
n∈�

sup
�̃(k)∈Nk (ϕk ),

with k∈Sn

∑
k∈Sn

ak�̃
(k)(A) ≤ sup

�̃∈Ñ (�)

�̃(A),

where the last inequality is justified by the fact that each
∑
k∈Sn ak�̃

(k) is finitely
additive measure which is dominated by �. Therefore � is nonpathological.

Remark 4.11. Each generalized density ideal is a DL-ideal. Indeed, let � =
(�n) be a sequence of lscsms with pairwise disjoint finite supports such that I =
Exh(supn �n). Moreover, let h : �2 → � be the bijection defined in (1) and f :
�2 → � be a bijection such that

∀n,m ∈ �, supp(�h(n,m)) ⊆ f[{n} × �].

Then it suffices to set ϕ = (ϕn), where ϕn(A) = supm∈� �h(n,m)(f[{n} × A]) for
all n ∈ � and A ⊆ �, q = (1), a = (1), and S = ({n}). It follows that each ϕn is
strongly-density-like (cf. Remark 4.5) and that I is isomorphic to Exh(�), where
� = �(ϕ, q, a, S) is the lscsm on �2 defined as in (7).

Proposition 4.12. Let I be an Erdős–Ulam ideal. Then Î is a DL-ideal.
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Proof. By [6, Example 1.2.3(d), Theorem 1.13.3(a), and Lemma 1.13.9(Z3)],
there is a sequence � = (�n) of probability measures on � such that I =
Exh(supn �n), and (Mn) ∈ Fdisj, where Mn := supp(�n) for each n ∈ �. Then Î
is isomorphic to the ideal Exh(	) on �2, where 	 is the lscsm defined by

∀A ⊆ �2, 	(A) = supn∈� �n({k ∈ � : A(k) �= ∅}),

cf. (3) in the proof of Theorem 3.2.
To conclude the proof, we show that 	 = �, for some � = �(ϕ, q, a, S). To this

aim, let ϕ be the constant sequence (ϕ), where ϕ is the strongly-density-like lscsm
defined by ϕ(∅) = 0 and ϕ(S) = 1 for all nonempty S ⊆ �. Let also q be the
constant sequence (1), Sn =Mn, and ak := supn �n({k}) for all n ∈ � (note that∑
k∈Sn ak = 1 for all n ∈ �). It follows that

∀A ⊆ �2, �(A) = sup
n∈�

∑
k∈Sn

akϕ(A(k)) = sup
n∈�
�n({k ∈ Sn : A(k) �= ∅}) = 	(A).

Therefore Î is a DL-ideal. �
Theorem 4.13. Let � = �(ϕ, q, a, S) be a lscsm on �2 as in (7) such that

infn c(ϕn) > 0. Then � is a density-like lscsm.

Proof. For each k ∈ � define the lscsm ϕ̃k on �2 by

∀A ⊆ �2, ϕ̃k(A) = ϕk(A(k)).

Then each ϕ̃k is a strongly-density-like lscsm such that c(ϕ̃k) = c(ϕk). Moreover,
for each n ∈ �, define the lscsm �n by

∀A ⊆ �2, �n(A) =

⎛⎝ ∑
k∈Sn

akϕ̃k(A)qn

⎞⎠1/qn

.

It follows by Proposition 4.7 that each lscsm �n is strongly-density-like with
witnessing constant c(�n) = 1

2 min{c(ϕ̃k) : k ∈ Sn}. Since infn c(ϕn) > 0, we have
also infn c(�n) > 0, which implies that (�n) is equi-density-like sequence of lscsms
with pairwise disjoint supports (indeed supp(�n) =

⋃
k∈Sn{k} × supp(ϕn) ⊆ Sn ×

�). Therefore, thanks to Theorem 4.2, � = supn �n is density-like. �
The following corollary is immediate.

Corollary 4.14. Let I be a DL-ideal isomorphic to Exh(�), where � =
�(ϕ, q, a, S) is a lscsm on�2 such thatϕ is a constant sequence. Then I is density-like.

Note that, as it follows from the proof of Proposition 4.12, if I is an Erdős–Ulam
ideal, then Î is isomorphic to Exh(�), where � = �(ϕ, q, a, S) is a lscsm such that
ϕ is a constant sequence. Therefore, thanks to Corollary 4.14, we obtain:

Corollary 4.15. Let I be an Erdős–Ulam ideal. Then Î is a density-like ideal.

Note that Corollary 4.15 is also a consequence of Theorem 3.4; however, the proof
of the latter uses Proposition 2.2, which in turn relies on [25, Lemma 3.1].

Note that, thanks to Proposition 4.7, � is the pointwise supremum of strongly-
density-like lscsms. Now we show that, under some additional hypotheses, the
exhaustive ideal generated by � is tall.
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Proposition 4.16. Let � = �(ϕ, q, a, S) be a lscsm on �2 as in (7) and assume
that Exh(ϕn) is tall for all n ∈ �, M := supn,k ϕn({k}) <∞, and max{a1/qn

k : k ∈
Sn} → 0 as n → ∞. Then Exh(�) is tall.

Proof. Let A ⊆ �2 be an infinite set. If A ∈ Exh(�) then the claim is trivial.
Hence, suppose hereafter that A ∈ Exh(�)+, that is,

‖A‖� = inf
F∈[�2]<�

sup
n∈�

⎛⎝ ∑
k∈Sn

akϕ
qn
k (A(k) \ F )

⎞⎠1/qn

> 0. (8)

Now, suppose that there exists m ∈ � such that A(m) is infinite. Since Exh(ϕm)
is tall, there exists an infinite set B ⊆ A ∩ ({m} × �) such that B(m) ∈ Exh(ϕm). It
follows by the definition of � that B ∈ Exh(�).

Otherwise A ∈ (∅ × Fin) ∩ Exh(�)+, so that A(m) is finite for each m ∈ �. Let
B be an infinite subset of A such that |B ∩

⋃
m∈Sn A(m)| ≤ 1 for all n ∈ � (which

exists, otherwise A itself would be finite, contradicting (8)). It follows that

‖B‖� ≤ inf
m∈�

‖B \

⎛⎝⋃
i≤m
Si × �

⎞⎠ ‖� ≤ inf
m∈�
�

⎛⎝B \

⎛⎝⋃
i≤m
Si × �

⎞⎠⎞⎠
≤ inf
m∈�

sup
n≥m

⎛⎝ ∑
k∈Sn

akϕ
qn
k (B(k))

⎞⎠1/qn

≤M lim sup
n→∞

max{a1/qn
k : k ∈ Sn} = 0.

Therefore B ∈ Exh(�), concluding the proof. �
As a consequence, we obtain that:

Corollary 4.17. Let � = �(ϕ, q, a, S) be a lscsm on �2 as in (7) and assume
that ϕ is the constant sequence (ϕ), q is a bounded sequence, Exh(ϕ) is tall, and
limn an = 0. Then Exh(�) is tall.

Proof. First of all, we have supn ϕ({n}) <∞: indeed, in the opposite case, there
would exist an increasing sequence (nk) in � such that ϕ({nk}) ≥ k for all k and
every infinite subset of {nk : k ∈ �} would not belong to Exh(ϕ), contradicting the
hypothesis that Exh(ϕ) is tall. Moreover, since Q := supn qn <∞, we obtain

limn max{a1/qn
k : k ∈ Sn} ≤ limn max{a1/Q

k : k ∈ Sn} = 0.

The claim follows by Proposition 4.16. �
Theorem 4.18. Let � = �(ϕ, q, a, S) be a lscsm on �2 as in (7) such that

0 < infn∈� ‖�‖ϕn ≤ supn∈� ϕn(�) <∞,

and max{a1/qn
k : k ∈ Sn} → 0 as n → ∞. Then Exh(�) is not a generalized density

ideal.

Proof. Suppose for the sake of contradiction that Exh(�) = Exh(supn �n),
where (�n) is a sequence of lscsms on �2 with finite pairwise disjoint supports
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and setMn := supp(�n) for each n (note thatMn ⊆ �2). It follows by the standing
assumptions that there exists a sequence (Fn) ∈ Fincr such that

∀n ∈ �, ϕn(Fn) ≥
infk∈� ‖�‖ϕk

2
and Xn ∩

⋃
k∈�:

Mk∩
⋃
i≤n–1 Xi 	=∅

Mk = ∅, (9)

where Xn := {n} × Fn for each n.
Set X :=

⋃
n Xn. Then X /∈ Exh(�). Indeed

‖X‖� = inf
F∈Fin

sup
n∈�

(
∑
k∈Sn

akϕ
qn
k (X(k) \ F ))1/qn

≥ inf
F∈Fin

sup
n∈�

min
k∈Sn

{ϕk(X(k) \ F )} ≥
infk∈� ‖�‖ϕk

2
> 0.

It follows thatX /∈ Exh(supn �n), i.e., there exist ε > 0 and an increasing sequence
(nk) in � such that �nk (X ) > ε for all k ∈ �. However, thanks to (9), for each k
there exists a unique mk ∈ � such that X ∩Mnk ⊆ Xmk . Therefore �nk (Xmk ) > ε
for all k ∈ �. Let M be an infinite subset of {mk : k ∈ �} such that |Sn ∩M | ≤ 1
for all n. Define Y :=

⋃
m∈M Xm and note that Y /∈ Exh(supn �n).

Then necessarily Y /∈ Exh(�). However, considering that there is at most one
k ∈ Sn such that Y(k) �= ∅, we obtain

‖Y‖� ≤ inf
F∈[�2]<�

sup
n∈�

max
k∈Sn

{a1/qn
k ϕk((Y \ F )(k))}

≤ sup
n∈�
ϕn(�) lim sup

t→∞
max
k∈St

{a1/qt
k } = 0,

which is the wanted contradiction. �

With the same technique of Corollary 4.17, we obtain (details are omitted):

Corollary 4.19. Let ϕ be a strongly-density-like lscsm on � such that

0 < ‖�‖ϕ ≤ ϕ(�) <∞. (10)

Moreover, let � = �(ϕ, q, a, S) be a lscsm on �2 as in (7) and assume that ϕ is the
constant sequence (ϕ), q is a bounded sequence, and limn an = 0. Then Exh(�) is not
a generalized density ideal.

Note that condition (10) has been already used in the literature, see e.g., [22,
Theorem 3.1].

Putting all together, we have the following:

Theorem 4.20. Let � = �(ϕ, q, a, S) be a lscsm on �2 as in (7) such that:

(i) Exh(ϕn) is tall for each n ∈ �;
(ii) limn max{a1/qn

k : k ∈ Sn} = 0;
(iii) infn c(ϕn) > 0; and
(iv) 0 < infn ‖�‖ϕn ≤ supn ϕn(�) <∞.

Then Exh(�) is a tall density-like ideal which is not a generalized density ideal.
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Proof. Thanks to (iv), we have supn,k ϕn({k}) ≤ supn ϕn(�) <∞. The conclu-
sion follows by Proposition 4.16 and Theorems 4.13 and 4.18. �

In the case where ϕ is a constant sequence and q is bounded, we can simplify the
above conditions:

Corollary 4.21. Let ϕ be a strongly-density-like lscsm on � such that Exh(ϕ) is
tall and satisfies (10). Moreover, let � = �(ϕ, q, a, S) be a lscsm on �2 as in (7) such
that ϕ is the constant sequence (ϕ), q is bounded, and limn an = 0.

Then Exh(�) is a tall density-like ideal which is not a generalized density ideal.

Proof. It follows by Corollaries 4.14, 4.17, and 4.19. �
Thus, we answer Question 3, giving an alternative proof of Theorem 1.3.

Theorem 4.22. There exists a tall density-like ideal which is not a generalized
density ideal.

Proof. Let Id be the ideal of density zero sets, which is a tall ideal. Thanks to
[6, Example 1.2.3(d), Theorem 1.13.3(a), and Lemma 1.13.9(Z3)], there exists a
sequence (�n) of probability measures with finite pairwise disjoint supports such
that Id = Exh(ϕ), where ϕ := supn �n. In particular, ϕ(�) = ‖�‖ϕ = 1. The claim
follows by Corollary 4.21. �

With the same spirit of Question 2, we ask:

Question 4. How many pairwise nonisomorphic tall density-like ideals which are
not generalized density ideals are there?

We will show that, as in Theorem 3.7, there is a family of 2� such ideals. To this
aim, we need a preliminary lemma.

Lemma 4.23. There exists a family A of 2� subsets of �2 such that

∀(A,A′) ∈ [A]2,∀k ∈ �, A(k) /∈ Fin and A ∩ A′ ∈ Fin. (11)

Proof. It is known that there exists a family B of 2� subsets of � such that

∀(B,B ′) ∈ [B]2, B /∈ Fin and B ∩ B ′ ∈ Fin,

see e.g., [1, Lemma 2.5.3]. Then, it is sufficient to see that {
⋃
n∈�{n} × (B \ n) :

B ∈ B} satisfies (11). �
Theorem 4.24. There are 2� nonpathological and pairwise nonisomorphic tall

density-like ideals which are not generalized density ideals.

Proof. Let h : �2 → � be the bijection defined in (1). Let also M = {Mz : z ∈
�2} be a partition of �2 into nonempty finite sets such thatM(n,m) ⊆ {n} × � for
all n,m ∈ � and

∀n ∈ �, mh–1(n+1) ≥ (n + 2)
∑
i≤n
mh–1(i), (12)

where mz := |Mz |. Moreover, for each (n,m) ∈ �2, let �(n,m) be the uniform
probability measure given by �(n,m)(X ) = |({n} × X ) ∩M(n,m)|/m(n,m) for all
X ⊆ �.
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Fix (Sn) ∈ Fincr such that limn |Sn| = ∞ and let A be a family of 2� subsets of�2

which satisfies (11) (existing by Lemma 4.23). For each A ∈ A, let �A be the lscsm
on �2 defined by

�A := sup
n∈�

∑
k∈Sn

1
|Sn|
ϕA,k, where ϕA,k := sup

t∈A(k)

�(k,t),

for all k ∈ �. It follows that, for each A ∈ A, the lscsm �A is of the type (7), where
qn = 1 for all n and ak = 1/|Si | whenever k ∈ Si ; hence limn an = 0. In addition,
for each A ∈ A and k ∈ �, the ideal Exh(ϕA,k) is tall and ‖�‖ϕA,k = ϕA,k(�) = 1.
Lastly, thanks to Remark 4.5, each ϕA,k is strongly-density-like with any witnessing
constant c(ϕA,k) < 1. In particular, infA,k c(ϕA,k) ≥ 1/2 > 0. Therefore, by Theorem
4.20, each Exh(�A) is a tall density-like ideal which is not a generalized density ideal.
Also, by Remark 4.10, each Exh(�A) is nonpathological.

At this point, we claim that, for all distinct A,A′ ∈ A, the ideals Exh(�A) and
Exh(�A′) are not isomorphic. To this aim, fix distinct A,A′ ∈ A and suppose for
the sake of contradiction that Exh(�A) and Exh(�A′) are isomorphic, witnessed by
a bijection f : �2 → �2. Let (xn) be the enumeration of the infinite set A \ A′ such
that the sequence (h(xn)) is increasing. Then, pick a sequence (Fn) ∈ Fdisj such that

∀n ∈ �, Fn ⊆Mxn , |Fn| =
⌊mxn

2

⌋
, and Fn+1 ∩

⋃
z∈�2:

h(z)<h(xn+1)

f[Mz ] = ∅.

Note that this is really possible: indeed, letting U be the latter union, it follows by
(12) that

|U | =
∑

h(z)<h(xn+1)

mz =
∑

i≤h(xn+1)–1

mh–1(i) ≤
1
2
mxn+1 .

Set F :=
⋃
n Fn. It follows by construction that ‖F ‖ϕA,k = 1/2 for all k ∈ �, hence

F /∈ Exh(�A). On the other hand, we obtain by (12) that

∀(i, j) ∈ A′ \ A, �(i,j)((f–1[F ])(i)) =
|F ∩ f[M(i,j)]|

m(i,j)

≤
∑
n∈{k: h(xk )<h((i,j))} |Fn|

m(i,j)

≤
∑
k≤h((i,j))–1mh–1(k)

mh–1(h((i,j)))
≤ 1
h((i, j)) + 1

,

which implies that f–1[F ] ∈ Exh(�A′). This contradiction concludes the proof. �

§5. Characterization of generalized density ideals. In this section, we provide a
characterization of generalized density ideals which resembles the one of density-like
ideal given in Definition 1.2. This provides sufficient conditions for a density-like
ideal to be necessarily a generalized density ideal,
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Let H be the set of strictly increasing sequences in �. Then, given a lscsm ϕ and
a real ε > 0, define

Ks,F := {(kn) ∈ H : ∀n ∈ �,∃m ∈ �,maxFkn ≤ sm < minFkn+1},

for all s = (sn) ∈ H and F = (Fn) ∈ Fdisj ∩ Gϕ,ε (note that Ks,F �= ∅).

Definition 5.1. A lscsm ϕ on � satisfies condition Dweak if for all ε > 0 there
exist � > 0 and a sequence s ∈ H such that, if F = (Fn) ∈ Fincr ∩ Gϕ,� and k ∈ Ks,F ,
then ϕ(

⋃
n Fkn ) < ε.

If the sequence s ∈ H can be chosen uniformly in ε > 0, we have the following:

Definition 5.2. A lscsmϕ on� satisfies condition Dstrong if there exists a sequence
s ∈ H for which for all ε > 0 there exists � > 0 such that, if F = (Fn) ∈ Fincr ∩ Gϕ,�
and k ∈ Ks,F , then ϕ(

⋃
n Fkn ) < ε.

It is clear that every lscsm ϕ satisfying condition Dstrong satisfies also condition
Dweak. Thus, we state the main result of this section.

Theorem 5.3. Let I be an ideal. Then the following are equivalent:

(A1) I is a generalized density ideal;
(A2) every lscsm ϕ such that I = Exh(ϕ) satisfies condition Dstrong;
(A3) every lscsm ϕ such that I = Exh(ϕ) satisfies condition Dweak;
(A4) I = Exh(ϕ) for some lscsm ϕ satisfying condition Dstrong; and
(A5) I = Exh(ϕ) for some lscsm ϕ satisfying condition Dweak.

The proof is divided in some intermediate steps.

Lemma 5.4. Let ϕ be a lscsm and assume that Exh(ϕ) is a generalized density
ideal. Then ϕ satisfies condition Dstrong.

Proof. Let us suppose for the sake of contradiction that ϕ does not satisfy
condition Dstrong. Thanks to Proposition 2.1, we can suppose without loss of
generality that there exist a sequence (�n) of submeasures and a sequence (Sn) ∈ Fint

of consecutive intervals of� such thatϕ = supn �n andSn = supp(�n) for all n ∈ �.
In particular, Exh(ϕ) = {A ⊆ � : limn �n(A) = 0} and �n(�) �→ 0.

Define s ∈ H by sn := maxSn for all n ∈ �. Since ϕ does not satisfy condition
Dstrong, there exists ε > 0 such that for all nonzero m ∈ � there are Fm = (Fmn ) ∈
Fincr ∩ Gϕ, ε2m and km = (kmn ) ∈ Ks,Fm for which ϕ(

⋃
n F

m
kmn

) ≥ ε. Since ϕ is a lscsm,
for each m there exists 
m ∈ � such that ϕ(

⋃
n≤
m F

m
kmn

) ≥ ε/2.
Set Gm :=

⋃
n≤
m F

m
kmn

and note that G :=
⋃
m Gm does not belong to Exh(ϕ). To

this aim, fix a nonzero j ∈ �. Since (kjn ) ∈ Ks,F j , there are at most j many sets F j
k
j
n

which have nonempty intersection with the set sj + 1 and each of them has ϕ-value
smaller than ε/2j . Thus

ϕ(G \ (sj + 1)) ≥ ϕ(Gj \ (sj + 1)) ≥ ϕ(Gj) – ϕ(Gj ∩ (sj + 1)) ≥ ε – j
ε

2j
≥ ε

2
.

Therefore ‖G‖ϕ ≥ ε/2 > 0. In particular, there exists a sequence (ji) ∈ H such that
�ji (G) > ε/3 for all i ∈ �. Passing eventually to a subsequence, we can assume
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without loss of generality that

∀i ∈ �, sji > maxGi+1. (13)

At this point, define X := G ∩
⋃
i Sji . Then by construction ‖X‖ϕ ≥ ε/3 > 0, so

that X /∈ Exh(ϕ). On the other hand, we will show that limn �n(X ) = 0, reaching
a contradiction. Taking into account (13), note that Sji ∩ X = Sji ∩

⋃
m>i Gm for

all i. Moreover, recall that, for all i, m ∈ �, there exists at most one n such that
Fm
kmn

∩ Sji �= ∅. It follows that

∀i ∈ �, ϕ(Sji ∩ X ) = �ji

(⋃
m>i

Gm

)
≤

∑
m>i

�ji (Gm) ≤
∑
m>i

ε

2m
=
ε

2i
.

To conclude, we obtain that

∀t ∈ �, ϕ

⎛⎝X \
⋃
i≤t
Sji

⎞⎠ = ϕ

(
X ∩

⋃
i>t

Sji

)
≤

∑
i>t

ϕ(Sji ∩ X ) ≤
∑
i>t

ε

2i
=
ε

2t
,

which tends to 0 as t → ∞. Hence X ∈ Exh(ϕ), which is the wanted
contradiction. �

Now, we show that condition Dweak implies (a variant of) condition Dstrong.

Lemma 5.5. Let ϕ be a lscsm which satisfies condition Dweak. Then there is a
lscsm 	 and a sequence s ∈ H such that for every ε > 0 there is � > 0 for which, if
F ∈ Fincr ∩ G	,� and k ∈ Ks,F , then 	(

⋃
n Fk2n ) < ε, and Exh(ϕ) = Exh(	).

Proof. Let (εk) be a strictly decreasing sequence such that limk εk = 0. Then, for
each k, there are �k > 0 and a sequence sk = (skn ) ∈ H such that, if F ∈ Fincr ∩ Gϕ,�k
and k ∈ Ksk,F , thenϕ(

⋃
n Fkn ) < εk . Without loss of generality, we can assume that

�k+1 < �k < εk . Let us define s = (sn) ∈ H as follows: s0 := s0
0 and, for each n ∈ �,

let sn+1 be such that for allm ≤ n + 1 there is 
 ∈ � such that sn ≤ sm
 < sn+1. Then,
set S0 := [0, s0] and Sn+1 := (sn, sn+1] for all n ∈ �.

Also, let � be the lscsm defined by �(∅) = 0 and, for each nonempty A ⊆ �,
�(A) := �k , where k is the minimal integer such that A ∩ Sk �= ∅. At this point, set
	 := max{ϕ,�}. Then 	 is a lscsm such that Exh(	) = Exh(ϕ). Indeed, on the one
hand, 	 ≥ ϕ, hence Exh(	) ⊆ Exh(ϕ). On the other hand, fixA ∈ Exh(ϕ) and ε > 0,
hence there is n0 ∈ � such that �(A \ n) < ε for all n ≥ n0. Also, there is n1 ∈ �
such that �n < ε for all n ≥ n1. Thus, for each n such that n ≥ n0 and

⋃
i<n1
Si ⊆ n

we have 	(A \ n) < ε. Therefore A ∈ Exh(	), which proves the opposite inclusion
Exh(ϕ) ⊆ Exh(	).

Lastly, we show that 	 satisfies the condition in the statement. Fix ε > 0 and let
m be the minimal integer such that εm ≤ ε. We claim that � := �m witnesses this
condition. Fix (Fn) ∈ Fincr ∩ G	,� , k ∈ Ks,F , and j ∈ �. Then there exist 
 ′, 
 ′′ ∈ �
such that

maxFk2j ≤ s
′ < minFk2j+1 ≤ maxFk2j+1 ≤ s
′′ < minFk2(j+1)
.

Note that m < 
 ′ < 
 ′′, where the former inequality follows by the fact that Fn ∩⋃
i≤m Si = ∅ for all n (by the definition of 	 and the hypothesis (Fn) ∈ Fincr ∩ G	,�)
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Figure 1. Relationship between generalized density ideals and density-like ideals,
assuming I is an analytic P-ideal.

and the latter since s ∈ H . Thus, there exists 
 ∈ � such that

s
′ ≤ sm
 < s
′+1 ≤ s
′′ .
It follows that maxFk2j ≤ sm
 < minFk2(j+1)

, so that (k2n) ∈ Ksm,F . Therefore
ϕ(

⋃
n Fk2n ) < εm ≤ ε. It is also easy to see that �(

⋃
n Fk2n ) ≤ � = �m < εm ≤ ε.

Putting all together, we conclude that 	(
⋃
n Fk2n ) < ε. �

Lemma 5.6. Let 	 be a lscsm as in Lemma 5.5. Then Exh(	) is a generalized density
ideal.

Proof. Define S0 := [0, s0] and Sn+1 := (sn, sn+1] for all n ∈ �. Let � = (�n) be
the sequence of lscsms defined by

∀n ∈ �,∀A ⊆ �, �n(A) := 	(A ∩ Sn).
We claim that Exh(ϕ�) = Exh(	), where ϕ� := supn �n.

It is clear that ϕ� ≤ 	, hence Exh(	) ⊆ Exh(ϕ�). Conversely, fix A ∈ Exh(ϕ�)
and ε > 0, hence there is � > 0 such that, if F = (Fn) ∈ Fincr ∩ G	,� and k ∈ Ks,F ,
then 	(

⋃
n Fk2n ) < ε/2. There exists n0 ∈ � such that �n(A) < � for all n ≥ n0.

Define Fn := A ∩ Sn+n0 for all n ∈ �. Then 	(Fn) = �n+n0(A) < � for all n ∈ �.
Thus (Fn) ∈ Fincr ∩ G	,� and for each k ∈ Ks,F we have 	(

⋃
n Fk2n ) < ε/2. Note the

sequences (n) and (n + 1) belong toKs,F , so that 	(
⋃
n F2n) < ε/2 and 	(

⋃
n F2n+1) <

ε/2. Define m := minSn0 . Then for each m ≥ m0 we have

	(A \m) ≤ 	(A \m0) = 	

(⋃
n∈�
Fn

)
≤ 	

(⋃
n∈�
F2n

)
+ 	

(⋃
n∈�
F2n+1

)
< ε.

We conclude that A ∈ Exh(	), therefore Exh(ϕ�) ⊆ Exh(	). �
We are finally ready to prove Theorem 5.3, cf. Figure 1 below.

Proof of Theorem 5.3. (A1) =⇒ (A2) follows by Lemma 5.4. The implications
(A2) =⇒ (A3) =⇒ (A5) and (A2) =⇒ (A4) =⇒ (A5) are obvious. Lastly, (A5)
=⇒ (A1) follows by Lemmas 5.5 and 5.6. �
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§6. Concluding remarks. Differently from the case of density-like lscsms, if ϕ and
� are two lscsms such that Exh(ϕ) = Exh(�) and ϕ is strongly-density-like, then �
is not necessarily strongly-density-like.

Indeed, letϕ be the strongly-density-like lscsm defined in Example 4.6. Then, with
the same notations, it is easily seen that A ∈ Exh(ϕ) if and only if A ∩ Xn ∈ Fin for
all n ∈ �, hence Exh(ϕ) is isomorphic to ∅ × Fin. However, ∅ × Fin is a generalized
density ideal and, thanks to Remark 4.5, there exists a strongly-density-like lscsm �
such that Exh(ϕ) = Exh(�). We conclude with an open question.

Question 5. Does there exist a density-like ideal I such that I �= Exh(ϕ) for each
strongly-density-like lscsm ϕ?
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