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1. Introduction, This paper deals with a problem raised in a paper by 
J. de Groot (1): Do there exist fields 12 whose full automorphism group is 
isomorphic to the additive group of integers Z? 

The answer to this question is yes. In this paper we construct, given any 
subfield k of the complex numbers, extension fields 12 of k such that the auto­
morphism group G(£l/k) of 12 with respect to k is infinite cyclic. Fields having 
the infinite cyclic group as a full group of automorphisms are obtained by 
choosing the base field k in such a way that it does not contain any subfield 
ko so that k possesses non-trivial automorphisms leaving k0 pointwise fixed. 
This property is seen immediately. Examples of such special base fields are 
the field of rationals and the field of real numbers. 

The fields 12 have transcendence degree 1 with respect to kt and can be 
obtained as follows. Let K be an algebraic closure of k(to). For i < 0, define 
the elements tt-i £ k(to) by 

(1) t? = /,_! + 1. 
For i > 0 choose for each i = 1, 2, 3, . . . an element tt £ K satisfying (1). 
Now let 12 be the union of the subfields k(ti) of K. 12 is a field, since for every 
i, k(ti+i) is an algebraic extension of k(tt) of degree 2. The fact that G(Q/k) 
contains a subgroup isomorphic to Z is seen by considering the substitution 
7T : ti—*ti+i (i G Z). This substitution defines a mapping of 12 upon itself. 
I t is an isomorphism because T preserves the relation t? — ti-i + 1 and 
because tt is transcendental with respect to k. T has infinite order and generates 
together with its inverse 7r-1: £i+i —>/* the infinite cyclic group C[T] = Z. 
We shall prove that, besides the automorphisms in C[ir], there are no other 
automorphisms of 12 leaving the elements of k fixed. 

THEOREM. The automorphism group G(ti/k) of the field 12 = \JuZk(tù is 
CM. 

2. Proof of the Theorem. 

LEMMA 1. Every element of the set k(ti)\k(tt-i) (i G Z, i > 1) has algebraic 
degree 2 i with respect to k (to). 

Proof (by induction). Every element of k(ti)\k(to) has degree 2 with respect 

*N.R.C. Postdoctorate Fellow 1963, University of Ottawa. 
Received May 5, 1964. 

665 

https://doi.org/10.4153/CJM-1965-066-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-066-4


666 WILLEM KUYK 

to k(to). We shall show that there are no other elements in 12 with degree 2 over 
k{to). For let 0 be such an element, 6 £ k(tn)\k(tn^i) for some n > 2. Then 
0 = a0 + di tn, with a0, a^ € &(^-i) and ax ^ 0. There exist isomorphisms of 
k(tn-i, 6) into i£ which are the identity on k(tn^i) and take 12 into itself and 
0 into a0 + ai( — tn). But also the isomorphism a of k(tn-.i) into X which is the 
identity on k(tn-2) and takes 4_i into —tn-\ can be extended in two ways to 
isomorphisms of k(tn) which take tn into sn and — sn> where sn is an element of 
K with sn

2 = —tn-\ + 1. These isomorphisms take 0 into atf ± afsn. One can 
easily verify that 

k(tn-u sn) H è(/„) = *(/n_i), 

so these four images of 0 are distinct. Thus 0 has at least four conjugates over 
k(to) and cannot be quadratic over k(t0). 

COROLLARY. 12 has no non-trivial automorphisms with respect to k(t0). 

Proof. Suppose a is such an automorphism. Then let n be the smallest 
integer for which tn is not invariant under a. a changes tn into — tn. But this 
isomorphism cannot be extended to k(tn+i), because the k(fo)-conjugate sn+ij 

which has degree 2 over k(tn), is not in k(tn+i), and hence not in 12. The same 
argument shows that if a ^-automorphism a of 12 carries an element tm into an 
element tn, then a has to be equal to -Kn~m. 

LEMMA 2. Any automorphism a of 12 which is the identity on k and takes k(to) 
into itself is the identity. 

Proof. By a well-known theorem (2, Section 63), a takes to into 

^ 0 . ato + b , , r , 
So = ——— , a,b,c,a k. k\ 

cto + a 
Let 5i = <r(ti). By isomorphism, Si2 = s0 + 1, and k(si) is the unique quadratic 
extension of k(s0) = k(t0) in 12. Thus &(si) = k(h) and 

£2 

* o + l = - - 2 ( / o + l ) , 

with p, q 6 &[£o]« Suppose £/g is in lowest terms. Then 

f0\ (a + c)tp + b + d _ p\h + 1) 
{Z) cto + d " g2 

Case 1, (Jo + I K #• Then the right side of (2) is still in lowest terms, so q2 

is a constant and c = 0. We may assume that d = q = 1. Then (2) becomes 
ato + b + 1 = P2h + P2 ; by comparing coefficients we see that £ is a constant 
and that s0 = p% + p2 — 1. This yields Si2 = p2(t0 + 1 ) , Si = ph (for p 
suitably chosen in k), and 

(ri2)2 = 522 = Sl + i = ^ + i. 
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By the same argument, (pti + l ) / ( / i + 1) must be the square of an element 
of k(t\), which cannot be true unless p = 1. 

Case 2, q = qi(t0 + 1)*. Then 
2 (a + c)h + b + d p 

cto + d qi
2(t0 + I ) 2 ' " 1 ' 

with both sides in lowest terms; so p = constant, qi = constant, and i = 1. 
We can take gi = 1 and obtain 

ç = -*o + P2 ~ 1
 = P2 _ i 

to+1 to+1 

This yields Si = ph~l. As before, 

si + 1 = P + h 
h+ 1 h(h+ 1) 

must be a square in k(ti), but there can be no such square. Therefore Lemma 2 
follows. 

Proof of the theorem. Let a be any automorphism of 0 which is the identity 
on k. Then at0 = s0 £ &(4) for some smallest integer w. Replacing cr by 7r~V 
if necessary, we may assume that 

<rt0 = SQ 6 è(/o)W*-i). 

Let s„ = cr/v for each p. Then there is a smallest m with t0 G k(sm), since o- is 
a ^-automorphism. Then m > 0, since otherwise SQ G &(£o), s0 $ &(s-i) gives 
a contradiction. £(sm) contains &(s0) and is of degree 2m over it. Applying 
Lemma 1, we see that k(s0, t0) = k(t0) is of degree 2m over k(s0), and hence 
k(t0) = &CO- Now sm = o-7Tm/0; hence o-7rm takes &(/0) onto itself and is by 
Lemma 2 equal to the identity. 

Remark 1. If we take the defining equation for tt to be tt
2 = ^_i + c with 

0 3̂  c 6 &, then the proof of the theorem remains valid. We obtain in this way 
a set of different field extensions of k having infinite cyclic automorphism group. 
If, however, the relation is chosen to be tt

2 = tt-i, then the theorem remains 
true only if k does not contain the imaginary unit i. I t is easily seen that in 
that case the lemma remains valid because i & k implies that 

* ( ( - k - i ) * ) n * ( k ) = *(k-i) . 

Remark 2. We may try to take the defining relations between the tt to be 
of higher degree. If, for example, tt

z = tt-i + c, 0 ?* c £ K, then the theorem 
still holds true, but the computational work as carried out in the lemmas is 
considerably more complicated. If tf = ^_i , where K does not contain a 
primitive third root of unity, then G(£l/k) is isomorphic to the direct product 
of Z and a group of order 2. The automorphism of the latter group stems from 
the fact that 

* ( ( - k - i ) 1 / 8 ) n * ( 0 =k(tn). 
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Remark 3. The proof of the theorem can be seen to remain valid if we take 
for k a field of characteristic p > 0, p 9e 2. 
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