THE CONSTRUCTION OF FIELDS WITH INFINITE
CYCLIC AUTOMORPHISM GROUP

WILLEM KUYK*

1. Introduction. This paper deals with a problem raised in a paper by
J. de Groot (1): Do there exist fields @ whose full automorphism group is
isomorphic to the additive group of integers Z?

The answer to this question is yes. In this paper we construct, given any
subfield £ of the complex numbers, extension fields  of % such that the auto-
morphism group G(2/k) of @ with respect to & is infinite cyclic. Fields having
the infinite cyclic group as a full group of automorphisms are obtained by
choosing the base field % in such a way that it does not contain any subfield
ko so that k possesses non-trivial automorphisms leaving k, pointwise fixed.
This property is seen immediately. Examples of such special base fields are
the field of rationals and the field of real numbers.

The fields @ have transcendence degree 1 with respect to k, and can be
obtained as follows. Let K be an algebraic closure of k(ty). For 7 < 0, define
the elements ¢;_; € k(%) by

(1) ti2 = ti—l + 1.

For 7 > 0 choose for each 7 =1,2,3,... an element ¢; € K satisfying (1).
Now let © be the union of the subfields k(¢;) of K. Q is a field, since for every
7, k(¢:;31) 1s an algebraic extension of k(¢;) of degree 2. The fact that G(Q/k)
contains a subgroup isomorphic to Z is seen by considering the substitution
7w t;—t1 (1 € Z). This substitution defines a mapping of @ upon itself.
It is an isomorphism because = preserves the relation ¢ = {,_; + 1 and
because ¢, is transcendental with respect to £. 7 has infinite order and generates
together with its inverse m':¢{,.; — {; the infinite cyclic group C[r] = Z.
We shall prove that, besides the automorphisms in C[r], there are no other
automorphisms of @ leaving the elements of k fixed.

THEOREM. The automorphism group G(Q/R) of the field @ = U, k() is
Clr].
2. Proof of the Theorem.

LeEMMA 1. Every element of the set k(t;)\k(¢:=1) (2 € Z, © > 1) has algebraic
degree 2% with respect to k(t,).

Proof (by induction). Every element of k(¢,)\k(fo) has degree 2 with respect
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to k(¢¢). We shall show that there are no other elements in  with degree 2 over
k(t)). For let 6 be such an element, 0 € k(t,)\k(t,_1) for some # > 2. Then
0 = ao+ ait,, with ag, a1 € k(t,_1) and a; # 0. There exist isomorphisms of
E(t,_1, 0) into K which are the identity on k(f,_;) and take Q into itself and
6 into ay + a:(—t¢,). But also the isomorphism ¢ of k(,_;) into K which is the
identity on k(t,—») and takes f,_; into —¢,_; can be extended in two ways to
isomorphisms of k(¢,) which take ¢, into s, and —s,, where s, is an element of
K with 5,2 = —t,_1 + 1. These isomorphisms take 6 into ¢¢° = a1°s,. One can
easily verify that

k(tn—ly Sn) N k(tn) = k(tn—l)y

so these four images of 6 are distinct. Thus 6 has at least four conjugates over
E(ty) and cannot be quadratic over & (£).

COROLLARY. Q has no non-trivial automorphisms with respect to k(t).

Proof. Suppose ¢ is such an automorphism. Then let # be the smallest
integer for which £, is not invariant under o. o changes ¢, into —#,. But this
isomorphism cannot be extended to k(t,+1), because the k(¢y)-conjugate s,41,
which has degree 2 over k(¢,), is not in k(f,+1), and hence not in Q. The same
argument shows that if a k-automorphism o of Q carries an element ¢, into an
element ¢,, then ¢ has to be equal to 7"™.

LeMMA 2. Any automorphism o of Q@ which is the identity on k and takes k(i)
into itself is the identity.

Proof. By a well-known theorem (2, Section 63), ¢ takes #, into

s_at0+b ab
T g+ d’ cd

Lets; = o(#1). By isomorphism, 5,2 = so + 1, and k(s;) is the unique quadratic
extension of k(sg) = k(¢o) in Q. Thus k(s1) = k(¢t;) and

ab,c,d € k; # 0.

pZ
so+ 1= 7 (to+ 1),
with p, ¢ € kl[te]. Suppose p/q is in lowest terms. Then
@ @+ot+b+d_pilot1)
cto + d gz '

Case 1, (to + 1)1 g. Then the right side of (2) is still in lowest terms, so ¢*
is a constant and ¢ = 0. We may assume that d = ¢ = 1. Then (2) becomes
aty + b + 1 = p%, + p%; by comparing coefficients we see that p is a constant
and that sy = p%o + p? — 1. This yields s;2 = p2(t + 1), s1 = pt1 (for p
suitably chosen in k), and

(0'52)2 =s5r=s51+1= pti + 1.
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By the same argument, (pt; + 1)/(¢1 + 1) must be the square of an element
of k(t1), which cannot be true unless p = 1.
Case 2, q = q1(ty + 1) Then
@+ott+b+d___ p°
Ct0+d Q12(to + 1)21—1 ’

with both sides in lowest terms; so p = constant, ¢; = constant, and 7z = 1.
We can take ¢; = 1 and obtain

—th+p =1 p

P R P
This yields s; = pt;~1. As before,
si+1  p+ 4

41 b +1)

must be a square in £(¢;), but there can be no such square. Therefore Lemma 2
follows.

Proof of the theorem. Let ¢ be any automorphism of Q@ which is the identity
on k. Then ¢ty = 5o € k(,) for some smallest integer #. Replacing ¢ by "¢
if necessary, we may assume that

gty = So € k(to)\k(t_l).

Let s, = of, for each ». Then there is a smallest m with ¢ty € k(s,), since ¢ is
a k-automorphism. Then m > 0, since otherwise sy € k(fo), so ¢ k(s_1) gives
a contradiction. k(s,) contains k(sy) and is of degree 2™ over it. Applying
Lemma 1, we see that E(so, o) = k(o) is of degree 2™ over k(so), and hence
E(t)) = k(sn). Now s, = ar™y; hence on™ takes k(fy) onto itself and is by
Lemma 2 equal to the identity.

Remark 1. If we take the defining equation for ¢; to be ¢;2 = t,_; + ¢ with
0 £ ¢ € k, then the proof of the theorem remains valid. We obtain in this way
a set of different field extensions of k having infinite cyclic automorphism group.
If, however, the relation is chosen to be ¢;2 = ¢;_;, then the theorem remains
true only if 2 does not contain the imaginary unit <. It is easily seen that in
that case the lemma remains valid because ¢ ¢ k implies that

E((=ta)®) N E(t) = k(taa).

Remark 2. We may try to take the defining relations between the ¢; to be
of higher degree. If, for example, ¢;* = {,_; 4 ¢, 0 # ¢ € K, then the theorem
still holds true, but the computational work as carried out in the lemmas is
considerably more complicated. If ¢;* = ¢;,_;, where K does not contain a
primitive third root of unity, then G(Q/k) is isomorphic to the direct product
of Z and a group of order 2. The automorphism of the latter group stems from
the fact that

E((—ta)'®) (VR () = k(t).
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Remark 3. The proof of the theorem can be seen to remain valid if we take
for k a field of characteristic p > 0, p # 2.
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