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The generalised Kolmogorov equation is used to describe the scale-by-scale turbulence
dynamics in the shear layer and in the separation bubble generated by a bulge at one
of the walls in a turbulent channel flow. The second-order structure function, which
is the basis of such an equation, is used as a proxy to define a scale-energy content,
that is an interpretation of the energy associated with a given scale. Production
and dissipation regions and the flux interchange between them, in both physical
and separation space, are identified. Results show how the generalised Kolmogorov
equation, a five-dimensional equation in our anisotropic and strongly inhomogeneous
flow, can describe the turbulent flow behaviour and related energy mechanisms. Such
complex statistical observables are linked to a visual inspection of instantaneous
turbulent structures detected by means of the Q-criterion. Part of these turbulent
structures are trapped in the recirculation where they undergo a pseudo-cyclic process
of disruption and reformation. The rest are convected downstream, grow and tend to
larger streamwise scales in an inverse cascade. The classical picture of homogeneous
isotropic turbulence in which energy is fed at large scales and transferred to dissipate
at small scales does not simply apply to this flow where the energy dynamics strongly
depends on position, orientation and length scale.

Key words: separated flows, turbulence theory, turbulence simulation

1. Introduction
The language of turbulence is traditionally dichotomous. On the one hand there

are scales and wavelengths and the notion of forward or reverse cascades of energy
which are best suited to dealing with homogenous conditions, see Monin & Yaglom
(1971a). On the other hand, transport processes are described in physical space where
inhomogeneity, Reynolds stresses and local turbulent kinetic energy production are the
keywords, see Monin & Yaglom (1971b). Contrary to quantum mechanics, where the
complementarity is intrinsic to the microscopic world, in turbulence this duality is
substantially an artefact induced by the formal tools used to study the problem. This is
clearly seen by considering the well-known example of canonical wall bounded flows
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where the two aspects coexists. The equilibrium (logarithmic) layer is ideally traversed
by a constant wall-normal flux of turbulent kinetic energy that sustains the fluctuations
in the bulk. At the same time, the local production u3

τ/(κy) is confined to a range
of scales limited below by the characteristic length Lshear = κy, see Corrsin (1958),
with energy cascading to small scale towards local dissipation, where κ is the Kármán
constant, y is the distance from the wall and uτ =

√
τw/ρ is the friction velocity, with

τw the average wall shear stress and ρ the fluid density, see Townsend (1980).
Overcoming the scale/position duality is particularly important for strongly

non-equilibrium conditions, as in the buffer layer of the example above where
the wall-normal flux originates, or in high Reynolds number flows around bluff
bodies or behind abrupt section variations in channels or pipes. In the latter cases,
recirculating regions form behind the obstacle, separated by intense shear layers
from the external flow with open streamlines, see e.g. Landau & Lifshitz (1987).
Such flows are strongly inhomogeneous, with pronounced peaks of turbulent kinetic
energy production. The local dissipation is insufficient to balance production and
spatial fluxes move the energy downstream of the obstacle and into the recirculating
bubble, see Mollicone et al. (2017) for a recent direct numerical simulation (DNS).
Several questions naturally come to mind: What are the scales involved in these
processes? How is the turbulent activity in the different ranges of scale distributed
in space? Which mechanisms sustain eddies of different scale? For obvious reasons,
single-point statistics cannot address these fundamental questions, but at the same time,
the complementary balance in spectral space, Kolmogorov–Onsager–Heisenberg–von
Weiszäcker–Lin equation, see e.g. Eyink & Sreenivasan (2006), does not uncover the
energy transfer in space, due to projection on non-local Fourier modes.

de Karman & Howarth (1938) and Kolmogorov (1941) originally devised their
description of turbulence in terms of two-point observables (correlations and structure
functions, respectively), see e.g. Frisch (1995) for a comprehensive introduction, as
a scale-by-scale approach to develop their theory of homogeneous and isotropic
turbulence. Only recently, their theory has been progressively extended to more
complex flows by using a generalised form of the Kolmogorov equation. The
generalised Kolmogorov equation (GKE), see Hill (2002) for the derivation of
the complete equation, accounts for anisotropic and inhomogeneous conditions
and has been used in various studies of free shear by Casciola et al. (2003,
2005), wall-bounded flows by Danaila et al. (2001), Danaila, Anselmet & Zhou
(2004), Marati, Casciola & Piva (2004), Cimarelli, Angelis & Casciola (2013) and
wake turbulence by Gomes-Fernandes, Ganapathisubramani & Vassilicos (2015).
Alternatively to GKE, other approaches are available to study the energy behaviour
across the scales, see e.g. Cardesa, Vela-Martín & Jiménez (2017). Casciola et al.
(2003) address the link between the intermittency and anisotropy in homogeneous
shear flows and employ the GKE to distinguish the shear-dominated scales by
the small isotropic scales dominated by dissipation. Numerical data show that the
dissipation scales are independent of the mean shear, thus intermittency corrections
are universal. Danaila et al. (2001) provide a generalised form of the Kolmogorov
equation adding additional terms to account for the ‘large-scale turbulent diffusion
acting from the walls through to the centreline of the channel’. The scale-by-scale
budget in a planar turbulent channel flow is numerically studied by means of the GKE
by Marati et al. (2004) and Cimarelli et al. (2013). Such understanding is fundamental
to tune innovative techniques to control boundary layer transition to turbulence
and to design innovative turbulence models, see Thiesset et al. (2013), since it is
able to capture the correct dynamics of the fluctuations for inhomogeneous flows.
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Danaila et al. (2004) show the effects of turbulent diffusion and shear on the
scale-by-scale budget far from the wall in a turbulent channel. The generalised
equation is in agreement with hot-wire measurements in such regions, considered to
be nearly sheared homogeneous turbulence. A more recent study by Cimarelli et al.
(2015), still concerning turbulent channel flow, focuses on peaks of scale energy
found in both the near-wall region and overlap layer and the interaction between
them. Gomes-Fernandes et al. (2015) address the energy transfer across the scales
in a highly non-homogeneous, anisotropic turbulent flow generated by a fractal grid.
They show that the inter-scale energy transfers are characterised by the combination
of both inverse cascade in the streamwise direction and forward cascade in the
spanwise direction, whilst the overall cascade is forward.

The aim of the present work is to understand the production and transfer of
turbulent kinetic energy (TKE) in the combined space of positions and scales for a
definitely more complex geometry. We introduce a bulge (also referred to as bump) at
one of the walls in a periodic turbulent channel flow in order to induce massive flow
separation and strongly localised TKE production. The database is taken from a DNS
recently performed by the authors (Mollicone et al. 2017) using the NEK5000 code
(Fischer, Lottes & Kerkemeier 2008) which is based on the spectral element method,
see Patera (1984). Our focus is on the intense shear layer and the recirculation
bubble that forms just after the bump. The GKE is applied at these specific features
of the flow to study the scale-by-scale energy production, transport and dissipation.
The second-order structure function, which is the basis of such an equation, is used
as a proxy to define a scale-energy content, that is an interpretation of the energy
associated with a given scale. The results show how the GKE, a five-dimensional
equation in our anisotropic and strongly inhomogeneous flow, can describe in detail
the turbulent flow behaviour and related energy mechanisms. As will be shown, the
result of this analysis is readily interpreted in terms of the coherent structures of the
shear layer.

2. The generalised Kolmogorov equation
2.1. General theory

In a statistically stationary turbulent flow, instantaneous fields uT(x, ti) – the subscript
T meaning total, as opposed to average and fluctuation – sampled at N time instants ti

separated by more than the relevant correlation time, can be considered as elements of
a statistical ensemble of (turbulent) velocity fields. In this context, the average over the
ensemble, U(x)= (1/N)

∑
i uT(x, ti), is the mean flow while u(x, ti)= uT(x, ti)−U(x)

is the fluctuation. Such (Reynolds) decomposition can be used for the other quantities
of interest, e.g. the pressure field, where p(x, t) is the fluctuation and P(x) the average.
In the following, we shall be dealing with the ensemble obtained by sampling the
DNS fields of a turbulent channel flow with a bulge in one of the otherwise planar
and parallel walls, see Mollicone et al. (2017). The flow is statistically stationary,
with a single direction of spatial homogeneity corresponding to the spanwise direction.
All quantities are made dimensionless with respect to the bulk velocity Ub=Q/(2h0),
where Q is the flow rate per unit width and h0 is the half-channel height from the
bottom wall. Beside the bump geometry, here kept fixed, the Reynolds number Re=
Q/(2ν) is the only control parameter of the system.

The focus will be on the second-order structure function, 〈|δu|2〉 = 〈δu · δu〉, where
angular brackets denote ensemble average and δu = ũ − u = u(x̃) − u(x) is the
fluctuation velocity increment between two points, x = (x, y, z) = (x1, x2, x3) and x̃.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.114


The GKE for inhomogeneous anisotropic conditions 1015

The velocity is expressed in one of the forms u= (u, v,w)= (u1, u2, u3). Due to the
inhomogeneity of the flow, the second-order structure function depends on both x and
x̃ or, alternatively, can be considered as a function of the mid-point X = (x̃ + x)/2
and the separation vector r = x̃ − x, namely 〈|δu|2〉 = f (X, r). Starting from the
Navier–Stokes equations, the equation obeyed by the second-order structure function,
hereafter called the generalised Kolmogorov equation (GKE), can be straightforwardly
derived, see Hill (2002). A possible procedure is to consider the Navier–Stokes
equation for the fluctuating field at point x, scalar multiplying it by the velocity
ũ at x̃, exchanging the roles of x and x̃, summing the result and averaging. This
procedure leads to the Kármán–Howarth equation, see de Karman & Howarth (1938),
for the correlation 〈u · ũ〉. It can be restated in terms of velocity increments, leading
to the equation for 〈|δu|2〉. In manipulating the equation, one may take advantage
of expressing the derivatives with respect to the position of the two points, x and x̃,
in terms of mid-point X and increment r, e.g. ∇x/x̃ = 1/2∇X ∓ ∇r. In doing so, the
mid-point average velocity, u∗= (ũ+u)/2, naturally appears. Contrary to homogenous
turbulence, the terms associated with the mean field inhomogeneity do not cancel out
and play a crucial role in the dynamics of 〈|δu|2〉, inducing a strong deviation from
the classical Kolmogorov view of turbulence. The GKE finally reads

1
2
∂

∂t
〈|δu|2〉 +

1
2
∇X · 〈|δu|2u∗〉 +

1
2
∇r · 〈|δu|2δu〉

+
1
2
∇X · 〈|δu|2U∗〉 +

1
2
∇r · 〈|δu|2δU〉

+ 〈δu⊗ u∗〉 : ∇XδU+ 〈δu⊗ δu〉 : ∇rδU=

−∇X · 〈δpδu〉 − 2〈ε〉∗ +
1

4 Re
∇

2
X〈|δu|

2
〉 +

1
Re
∇

2
r 〈|δu|

2
〉. (2.1)

In the above equation, δq is the increment of a generic quantity q and q∗ is the
mid-point average. The symbol ⊗ denotes the diadic product, the colon : denotes
the double tensor contraction and ∇X/r· is the divergence with respect to X or r
variables. In order to slightly simplify the equation, the so-called pseudo-dissipation
ε = 1/Re∇u :∇u is used, see Hill (2002) for the corresponding expression in terms
of dissipation ε̄ = 1/(2Re)(∇u + ∇u)T : (∇u + ∇u)T. The GKE can be re-expressed
to highlight its conservative structure as

1
2
∂

∂t
〈|δu|2〉 +∇X ·ΦX +∇r ·Φr =ΠX +Πr − 2〈ε〉∗, (2.2)

where

ΦX =
1
2
〈|δu|2u∗〉 +

1
2
〈|δu|2U∗〉 + 〈δpδu〉 −

1
4 Re
∇X〈|δu|2〉

Φr =
1
2
〈|δu|2δu〉 +

1
2
〈|δu|2δU〉 −

1
Re
∇r〈|δu|2〉

 (2.3)

are fluxes taking place at (mid-point) position and separation space respectively, and

ΠX = 〈δu⊗ u∗〉 :∇XδU

Πr = 〈δu⊗ δu〉 :∇rδU

}
(2.4)
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are the corresponding production terms. Although we shall not dwell longer on
the issue, it should be noted that our choice of associating the pressure–velocity
correlation with the flux ΦX is to a large extent arbitrary. The corresponding term
could be easily transformed from a divergence in X-space into one in r-space, making
the alternative association of 〈δpδu〉 with Φr perfectly legitimate.

Combining position and separation space in a six-dimensional space (X, r) the
equation becomes

1/2 ∂〈|δu|2〉/∂t+∇6 ·Φ6 =Π6 − 2〈ε∗〉, (2.5)

where the subscript recalls that, in principle, six independent coordinates are involved.
For future convenience, two contributions to the flux are identified, one associated
with convection, 〈|δu|2u∗T〉, 〈|δu|2δuT〉, and one associated with pressure and molecular
diffusion,

ΦD
X = 〈δpδu〉 −

1
4 Re
∇X〈|δu|2〉

ΦD
r =−

1
Re
∇r〈|δu|2〉.

 (2.6)

The interpretation of the GKE is clear from its structure: the second-order structure
function changes in time due to (i) net production, that is the difference between
production, ΠX and Πr, and dissipation, 〈ε∗〉, and (ii) redistribution due to the
fluxes, ΦX and Φr, both in position and separation space, respectively. The high
dimensionality (six spatial coordinates and one time) can be considerably reduced
in presence of symmetries. The extreme case is stationary, homogeneous, isotropic
turbulence, where the GKE reduces to the classical Kolmogorov equation with only
one independent variable, r = |r|. Removing the constraint of isotropy, the number
of variables rises to the three components of the separation vector r. For a steady,
planar channel flow, whose fluctuations are statistically invariant in the streamwise
and spanwise directions, the independent variables add to four: one wall-normal
position coordinate, Y and the separation vector r, see Marati et al. (2004), Cimarelli
et al. (2013). Since streamwise translational invariance is broken by the bump for
our present configuration, the independent coordinates are now five: the wall-normal
and streamwise positions X and Y , and the separation vector r.

Based on the expression 〈u · ũ〉 = 2k∗ − 1/2〈|δu|2〉, where k = 1/2〈|u|2〉 is the
turbulent kinetic energy, one obtains the equation for k∗,

∂k∗

∂t
+

1
2
∇X ·ψ

∗
+∇r · δψ =−

1
2
〈u⊗ u〉∗ : (∇U)∗ − δ〈u⊗ u〉 : δ∇U− 〈ε∗〉, (2.7)

where ψ = |u|2u+ pu+ |u|2U− ν∇u is the (ordinary) flux of turbulent kinetic energy
and −〈u⊗ u〉 is the Reynolds stress. The combination of (2.1) and (2.7) is equivalent
to the Kármán–Howarth equation for the correlation. Hence, the information provided
is equivalent to the classical spectral description of turbulence (Eyink & Sreenivasan
2006), whenever the latter applies.

Two additional comments are useful. First, dependences on X and the associated
flux ΦX account for the broken translational symmetry (statistical inhomogeneity),
dependence on the direction of the separation vector r concerns statistical anisotropy
and that on the length |r| describes scale dependence. The second comment is about
the nature of the second-order structure function. Although it can be understood as
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rough indication of the energy content associated with a given scale, this interpretation
is technically incorrect. Energy is actually an extensive concept (i.e. it is additive)
while adding second-order structure function is meaningless. This lack of additivity
makes 〈|δu|2〉 somewhat less intuitive than the energy spectrum. The big intuition
beside the spectrum (Wiener–Khintchine–Einstein theorem: Wiener (1930), Khintchine
(1934), Jerison, Singer & Stroock (1997)) is that the Fourier transform of the
correlation provides the (average) energy density in wavenumber space, i.e. an
additive quantity. The price to pay for this big advantage is the lack of positional
information. Whilst this can be sacrificed in some cases, positional information is
crucial in strongly out-of-equilibrium flows such as the one to be discussed below.
In the physical space, the second-order structure function is the energy up to the
considered scale, i.e. it accounts for the contribution of all the scales ranging from
vanishing separation to the scale |r|, see e.g. Thiesset et al. (2011), Davidson (2015).

2.2. Lagrangian interpretation
The evolution of two Lagrangian points, identified by the mid-point χ and the
separation vector ρ (here χ and ρ are used instead of X and r when considering
Lagrangian variables) and advected by the instantaneous velocity uT , is governed by

χ̇ = u∗T =U∗ + u∗

ρ̇ = δuT = δU+ δu.

}
(2.8)

From the Navier–Stokes equations for the fluctuating velocity, the velocity difference
δu transported along the path characteristics defined by (2.8) evolves according to

δu̇=−δ∇p+
1

Re
δ∇2u− δ∇ · 〈u⊗ u〉 + δ(u · ∇U). (2.9)

Scalar multiplication by the velocity increment and few manipulations yield

1
2

d|δu|2

dt
= −∇X · (δp δu)+

∇
2
X|δu|2

4Re
+
∇

2
r |δu|

2

Re
− 2ε∗

+ δu⊗ δu : ∇rδU+ δu⊗ u∗ : ∇XδU. (2.10)

After averaging, taking into account that〈
1
2

D|δu|2

Dt

〉
=

〈(
∂

∂t
+ χ̇ · ∇X + ρ̇ · ∇r

)
1
2
|δu|2

〉
, (2.11)

the equation〈(
∂

∂t
+ u∗T · ∇X + δuT · ∇r

)
1
2
|δu|2

〉
=Π6 − 2〈ε∗〉 −∇6 ·Φ

D
6 (2.12)

follows. Since the field is solenoidal, the left-hand side of this equation can be
rearranged to read

1
2
∂〈|δu|2〉
∂t

+
1
2
∇X · 〈u∗T |δu|

2
〉 +

1
2
∇r · 〈δuT |δu|2〉. (2.13)
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Transport velocities of the structure function 〈|δu|2〉 in separation space, wr, and
position space, wX, can be conveniently defined as

ξ̇ =wX =
〈u∗T |δu|

2
〉

〈|δu|2〉

ζ̇ =wr =
〈δuT |δu|2〉
〈|δu|2〉

.

 (2.14)

The resulting velocity in the six-dimensional space will be denoted by

w6 = (wX,wr)= (wX,wY,wZ,wrx,wry,wrz). (2.15)

Equation (2.13) can then be recast as

1
2

d〈|δu|2〉
dt

=Π6 − 2〈ε∗〉 −∇6 ·Φ
D
6 −

1
2
〈|δu|2〉∇6 ·w6 (2.16)

where
d〈|δu|2〉

dt
=
∂〈|δu|2〉
∂t

+w6 · ∇6〈|δu|2〉. (2.17)

Equation (2.16) is the Lagrangian version of the GKE and its interpretation is
revealing. The velocity structure function is transported in space by the field wX and
moved to a different separation and orientation by the field wr. Along the convection,
the structure function changes due to pressure–velocity correlation, diffusion and
dissipation. The physical process of turbulent kinetic energy production corresponds
to the two terms ΠX and Πr. Two additional source terms occur due to the definition
of the transport velocity, wX and wr, which are generally not solenoidal.

One expects that, at large separations, far from boundaries and from strong shear
layers such as those occurring at the edge of separation bubbles, diffusion is negligible.
On the other hand, diffusion is expected to become dominant at small scale and near
solid walls and not negligible in strong shear layers. It may be stressed that the notion
of a turbulent cascade is explicitly captured by this formulation. Denoting the length
of ζ as ` and ê its unit vector, ζ = `ê, the second line of (2.14) can be expressed as
˙̀ê+ ` ˙̂e= wr, where ˙̀ = wr · ê and ˙̂e= (ê× wr)× ê/`. A forward cascade is implied
by ˙̀< 0, i.e. the structure function is advected (in separation space) towards smaller
scales. On the other hand, ˙̀>0 indicates that locally, a backward cascade is occurring.
˙̂e accounts for the reorientation of the separation vector ζ . While these two processes
take place, the position where the structure function is evaluated, as described by the
mid-point ξ , changes with velocity wX. In addition to transport, the intensity of the
structure function is modified according to the right-hand side of (2.16).

For the flow over a bulge in a channel, statistics are independent of the mid-point
coordinate Z, hence we shall be dealing with a five-dimensional phase space that
is quite difficult to grasp. To provide a visualisation of the results and make things
as clear as possible, we shall employ different two-dimensional sections of the
phase space. In doing so, the subscript ‖ will be used to denote projections of
five-dimensional vectors on a given planar section. The (three-dimensional) orthogonal
component of the vector will be denoted by the subscript ⊥. For example, when
selecting the plane (Y, rx), the parallel component of the flux will be Φ‖ = (ΦY, Φrx).
The orthogonal component of, e.g. the transport velocity will be w⊥ = (wX, wry, wrz).
When plotting data in the selected plane, the following conventions are used: if both
directions belong to either the mid-point position or the separation space, the plane
will be plotted according to the rules of three-dimensional vector spaces. Otherwise
X and/or Y will be placed on abscissas and ordinates, respectively.
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3. Flow separation over a bulge in a channel
The following is a brief account of the flow and the simulations. An extensive

description including one-point statistics can be found in Mollicone et al. (2017).

3.1. Simulation set-up
The computational domain has dimensions (Lx× Ly× Lz)= (26× 2× 2π)× h0, where
x, y and z are the streamwise, wall-normal and spanwise coordinates respectively
and h0 is half the nominal channel height. Flow is in the x direction with periodic
boundary conditions in both x and z directions. No-slip boundary conditions are
enforced at the top and bottom walls. The bottom wall contains a bulge (or bump)
and therefore the periodicity in x replicates a periodic array of bumps, similar to
the experimental configuration found in Kähler, Scharnowski & Cierpka (2016).
The periodic configuration is instrumental in avoiding spurious effects that artificial
inflow/outflow boundary conditions could induce in the sophisticated statistics to be
discussed. The period is chosen as large as possible, within computational limitations,
to allow the analysis of an almost isolated bump, with definite flow reattachment and
negligible streamwise correlation. Direct numerical simulation (DNS) is used to solve
the incompressible Navier–Stokes equations on supercomputing facilities using the
Nek5000 solver, see Fischer et al. (2008), which is based on the spectral element
method (SEM), see Patera (1984). The simulations are carried out at bulk Reynolds
numbers Re = 2500 and Re = 10 000. As anticipated, all length scales are made
dimensionless with the nominal channel half-height, time with h0/Ub and pressure
with ρU2

b . The maximum friction Reynolds numbers, achieved close to the bump tip,
are Reτ = 300 and Reτ = 900, defined as Reτ = uτh/ν, where uτ and h are the local
friction velocity and channel half-height respectively. To the best of our knowledge,
the latter friction Reynolds number is the highest reached in the literature concerning
DNS of similar geometries. The statistics to be discussed are based on a collection of
NF = 500 independent samples of the flow field collected at instants separated in time
by more than the flow turnover time which largely exceeds the maximum correlation
time of velocity and pressure fluctuations. Convergence is enhanced by exploiting the
statistical spanwise homogeneity of the flow.

3.2. Flow description
Instantaneous plots of streamwise velocity in an x–y plane for both low and high
Reynolds numbers are shown in figure 1 in (a) and (b) respectively. The incoming
flow accelerates at the channel restriction and a recirculating region forms behind
the bump, starting downstream of the bump tip. An intense shear layer separates the
recirculating region from the outer flow. Downstream of the bump, the flow re-attaches
completely. The higher Reynolds number shows a larger range of turbulent scales and
the shear layer and recirculating region are smaller and more attached to the bump.
Panels (c) and (d) show the turbulent kinetic energy (TKE) production. The flow
re-attachment occurs at an earlier x position for the higher Reynolds number, as shown
by the dividing streamline that separates the recirculation bubble from the outer flow.
The effect of the Reynolds number on the turbulence dynamics and energy transfer
mechanisms is discussed in detail in Mollicone et al. (2017).

The shear layer will predominate in the following section since it is the main source
of fluctuations. We shall focus on the region of maximum TKE production, shown in
the background of panels (c) and (d), with the maxima occurring at x=5.8 and x=5.1
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FIGURE 1. (Colour online) Instantaneous streamwise velocity in an (x, y) plane for Re=
2500 in panel (a) and Re = 10 000 in panel (b). Single-point turbulent kinetic energy
production as a coloured contour plot with the zero mean velocity isoline shown by
the dashed line and the boundary of the recirculation bubble shown by the solid line,
Re= 2500 in panel (c) and Re= 10 000 in panel (d).

for lower and higher Reynolds number, respectively. For the reader’s convenience, the
picture provided by the (single-point) energy balance discussed in Mollicone et al.
(2017) is briefly summarised here and reproduced in figure 2. Panel (a) shows the
production of TKE π = −〈u ⊗ u : ∇U〉 which is concentrated in the shear layer
separating the recirculation bubble from the outer flow, see also figure 8 displaying
the mean velocity field and the dividing streamline. The production π largely exceeds
the mean kinetic energy dissipation rate εM so that, in a simplified picture, the local
balance of mean flow kinetic energy, 1/2|U|2, can be approximated as ∇ ·ψM '−π,
where ψM is the flux of mean flow kinetic energy. The turbulence is mostly generated
through the divergence of the mean flow kinetic energy flux. The divergence of the
mean flow kinetic energy is converted to TKE production which is the direct source of
the TKE fluxes ψ shown in (b). The comparison between TKE production and TKE
dissipation rate 〈ε〉 confirms that we are dealing with a strongly out-of-equilibrium
flow. The position of production and dissipation peaks do not coincide and production
in the shear layer largely exceeds dissipation. The excess production in the shear layer
in part feeds the recirculation bubble and in part sustains the turbulence downstream
of the bump through the TKE fluxes ψ . From this picture, the shear layer emerges
as the most active turbulent source from which the spatial fluxes originate. We shall
see how this picture is confirmed, reinforced and understood in much finer detail by
looking at the same process in the combined space of mid-point positions and scales
through the use of the GKE.

4. Results
In order to visualise the second-order velocity structure function, it is helpful to

consider two-dimensional sections of the five-dimensional phase space (X, Y, rx, ry, rz)
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FIGURE 2. (Colour online) Re = 2500. (a) Flux of kinetic energy of the mean flow
ψM (vectors), mean flow dissipation εM (solid yellow isolines) and turbulent kinetic
energy production π (coloured contours). (b) Flux of turbulent kinetic energy ψ (vectors),
turbulent kinetic energy dissipation rate ε (solid yellow isolines) and turbulent kinetic
energy production π (coloured contours). Reprinted from Mollicone et al. (2017). The
boundary of the recirculation bubble is shown by the solid black line.

(a) (b)

d

d d

d

FIGURE 3. (Colour online) A point in the (Y, rx)-plane at constant X=X0, Z=Z0, ry= r0
y ,

rz = r0
z (a) corresponds to two points, x̃, x, of the physical space such that the mid-point

X is constrained at X = X0, Z = Z0 and two components of the separation vector r are
fixed, ry = r0

y , rz = r0
z (b). The red lines sketch the lower wall of the channel and the

bump. By moving from (Y, rx) to (Y + dY, rx + drx) the separation vector r (b) changes
from the blue to the green one.

introduced in § 2. The sketch in figure 3 addresses a typical (Y, rx)-plane (section at
constant X=X0, Z=Z0, ry= r0

y and rz= r0
z ). It shows the physical space points, x̃ and

x, across which the velocity difference is evaluated and the corresponding separation
vector r for two different phase space points in the section. By analogy, the reader
may easily figure out the picture for the other planar sections.

The isolines of the second-order structure function 〈|δu|2〉 in four selected phase
space planes are plotted in figure 4. We shall focus near the maximum of the
effective production of the second-order structure function intensity Π6 − 2〈ε∗〉.
Based on the physical intuition provided by the single-point energy balance discussed
in § 3 on the one hand and on the formal theory developed in § 2 on the other, that
region (i.e. that range of mid-point positions and separations) is expected to be the
source of turbulent fluxes that redistribute turbulent activity across the phase space to
different positions X and scales r. The planes addressed in the four panels actually go
through the production maximum. Although not difficult to interpret, the plots are not
immediately readable. They will be illustrated in detail in the following discussions
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FIGURE 4. (Colour online) Re = 2500. The second-order structure function in different
planes. (a) (Y, rx)-plane at X0

= 5.8, r0
y = 0, r0

z = 0.4. (b) (X, Y)-plane at r0
x = 0.45, r0

y = 0,
r0

z = 0.4. (c) (Y, ry)-plane at X0
= 5.8, r0

x = 0.45, r0
z = 0.4. (d) (X, rx)-plane at Y0

= 0.45,
r0

y = 0, r0
z = 0.4. See figure 7 and the related discussion for a description of the yellow

symbols.

regarding the in-plane components of the flux Φ‖, after a few more details are given
on how the four planes shown in figure 4 were selected.

4.1. Two-dimensional sub-manifold analysis
We need to specify five coordinates to identify the maximum of a function in phase
space. Identifying maxima in a five-dimensional space is already non-trivial. In the
present case, the issue is more difficult due to the statistical nature of our object.
For example, a standard Newton iteration would require the evaluation of the average
to be maximised and its five-dimensional gradient at an arbitrary phase space point.
Two different strategies may be conceived: either evaluating statistical average and
its derivatives at the corresponding coordinate on the fly or having function and
derivatives pre-evaluated on a suitable five-dimensional lattice. Both choices are
unaffordable given the dimension of the dataset to be manipulated.

As an alternative, we may exploit physical intuition and start by fixing the
streamwise coordinate of the mid-point X to the cross-stream plane of maximum
(single-point) kinetic energy production, namely X0

= 5.8 and X0
= 5.1 for the two

cases, § 3. The remaining coordinates, Y0, r0
x , r0

y , r0
z , will be progressively found from
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FIGURE 5. (Colour online) Contour plots of the net production Π6 − 2〈ε∗〉 for the
dataset at Re= 2500. (a) Plane (Y, rx)|X=5.8,ry=rz=0; (b) plane (Y, ry)|X=5.8,rx=rz=0; (c) plane
(Y, rz)|X=5.8,rx=ry=0; (d) plane (Y, ry)|rx=0.45,rz=0.4.

the maxima on selected two-dimensional sub-manifolds. We deliberately choose to
fix the streamwise coordinate since the shear layer is elongated in this direction
and the dependence on X is mild. The emerging picture from slightly different X
sections is therefore negligibly sensitive to the precise location. On the other hand,
the dependence on Y is strong and requires a careful determination.

Let us take r parallel to the streamwise direction, r = (rx, 0, 0), keeping in mind
that X belongs to the fixed cross-stream plane X = X0. Accounting for translational
invariance in the spanwise direction, this manifold is described by the two independent
variables Y and rx (the reader may wish to have a further look at figure 3). We shall
therefore first search for the maximum of Π6 − 2〈ε∗〉 in this plane, figure 5(a). The
blank areas in the plot correspond to the physical domain boundaries which limit the
allowed range of separation vectors. For this specific case, only rx > 0 is considered
given the rx→−rx symmetry that holds since ry, rz are still zero. In this plane, the
production peak is located at Y0

= 0.45 and r0
x = 0.45. Note that Y0 corresponds to

the distance of the shear layer from the bottom wall, ysl = 0.45.
Keeping X constant and taking the separation vector in the wall-normal direction,

r = (0, ry, 0), the two independent variables are now Y and ry, panel (b). Although
two inclined bands of intense production (to be further discussed in the following)
are apparent, a single definite maximum cannot unambiguously be identified in this
plane.
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FIGURE 6. (Colour online) Instantaneous streamwise velocity contours for Re = 2500.
(a) (y, z)-plane at x0

= 5.8; (b) (x, y)-plane at arbitrary z0; (c) (x, z)-plane at y0
= 0.45.

Panel (d) shows the spanwise correlation Ruu
z = 〈u(x

0, y0, z)u(x0, y0, z+ rz)/〈u(x0, y0, z)〉2〉
for x0

= 5.8 in the shear layer, y0
= 0.45 (red) and at the centreline, y0

= 1.0 (blue).

For separations in the spanwise direction, r= (0, 0, rz), the maximum is determined
from panel (c). The highest production occurs at Y0

= 0.45, again matching the height
of the shear layer and, although the isolines are rather elongated, the maximum is
found at r0

z = 0.4. Instantaneous configurations of the velocity field coinciding with
x = X0 and y = Y0 are shown in figure 6. From panels (a) and (c), a well-defined
transversal scale is apparent. The minimum of the transversal correlation coefficient
Ruu

z = 〈u(x
0, y0, z)u(x0, y0, z + rz)〉/〈u(x0, y0, z)2〉 shown in panel (d) identifies this

characteristic length scale at the shear layer (red curve) as LT ' 0.42. This value
is consistent with the transversal scale where the maximum net production occurs
(r0

z = 0.4).
Recalling that ry is still undetermined, the plane of panel (b) is relocated, see panel

(d) which shows the production in the plane (Y, ry)|X=5.8,rx=0.45,rz=0.4. The maximum is
clearly found at the intersection of the inclined bands at Y = 0.45 and r0

y = 0.
All the planes considered so far can now be repositioned: the first one – (Y, rx) –

will now be the plane X = X0, ry = r0
y , rz = r0

z , while the second – (Y, ry) – and the
third – (Y, rz) – will be X=X0, rz= r0

z , rx= r0
x and X=X0, rx= r0

x , ry= r0
y , respectively.

Based on this approach, an iterative algorithm that looks for the maxima and updates
the planes until convergence could in principle be set-up but, for the present cases, it
is found to leave the result essentially unaltered.

For the dataset at Re= 10 000 (not shown), the behaviour is similar but everything
occurs closer to the bump since the shear layer, together with the maxima of Π6 −

2〈ε∗〉, moves towards the bump at increasing Reynolds number as shown in Mollicone
et al. (2017).

In summary, to a degree of accuracy sufficient for our next discussion, the maximum
net production intensity (Π6 − 2〈ε∗〉)max is found at X0

= 5.8, Y0
= 0.45, r0

x = 0.45,
r0

y = 0. and r0
z = 0.4 for the case at Re= 2500 and at X0

= 5.1, Y0
= 0.45, r0

x = 0.17,
r0

y = 0. and r0
z = 0.13 for Re= 10 000.
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As discussed in § 2, a way to represent the five-dimensional fields involved in the
GKE consists in selecting two-dimensional planes. Considering, e.g. the (Y, ry)-plane,
the in-plane component of the flux vector Φ6, Φ‖ = (ΦY, Φry), follows the equation

∇‖ ·Φ‖ =Π6 − 2〈ε∗〉 −∇⊥ ·Φ⊥, (4.1)

where the general six-dimensional gradient is expressed as the sum of in-plane and
normal component, ∇‖ = (∂/∂Y, ∂/∂ry) and ∇⊥ = (∂/∂X, ∂/∂rz, ∂/∂rx), respectively.
The actual number of dimensions of the phase space is reduced to five given the
invariance to z-translations, ∂/∂Z = 0. Equation (4.1) is obtained from (2.5) after
moving the orthogonal components of the flux, Φ⊥= (ΦX, Φrz, Φrx), to the right-hand
side.

4.2. Sub-manifold (Y, ry)

Figure 7(a) shows Φ‖ in the (Y, ry)X0=5.8,r0
x=0.45,r0

z=0.4-plane which passes through the
maximum of net production. A surface in the ordinary three-dimensional space, f (x)=
0, generates two images in phase space depending on which one of the two points, x̃
or x, belongs to the surface, e.g. f (x̃/x)= f (X± r/2)= 0. The diamond shaped region
of the plot is delimited below by the two images of the (curved) lower wall, flw(x̃/x)=
0, and above by those of the (straight) upper wall of the channel, fuw(x̃/x)= 0. Since
the section is taken at r0

x 6= 0, the lower boundary of the phase space domain is
asymmetric due to the presence of the bump. In the figure, the two curves highlighted
with the yellow symbols represent the loci in the (Y, ry)-plane corresponding to either
x̃ or x belonging to the separatrix defining the recirculation bubble, i.e. solid line
in figure 8. In physical space, the separatrix is defined by an equation of the form
fb(x)= 0 or equivalently, given the translational invariance in the z direction, y= gb(x).
When x̃ is on the separatrix, fb(x̃) = 0, i.e. fb(X + r/2) = 0 since x̃ = X + r/2. It is
assumed that fb<0 identifies the region B inside the recirculating bubble. Analogously,
when the second of the two points across which the structure function is evaluated
belongs to the separatrix, fb(X− r/2)= 0. The two manifolds fb(X± r/2)= 0 split the
phase space into four regions, namely DII = {X(x̃, x), r(x̃, x) : x̃, x ∈ B}, where both
x̃ and x are inside the bubble, DIO = {X(x̃, x), r(x̃, x) : x̃ ∈ B, x /∈ B}, where only x
is outside B, DOI = {X(x̃, x), r(x̃, x) : x̃ /∈ B, x ∈ B}, where only x̃ is outside B, and
DOO = {X(x̃, x), r(x̃, x) : x̃ /∈B, x /∈B}, where both x̃ and x are outside B.

In the (Y, ry)-plane, shown in figure 7(a), the traces of the two manifolds reduce
to the two (straight) curves Y = gb(X0

± r0
x/2) ∓ ry/2 shown by the yellow symbols

in the plot, where triangles show the trace of the manifold fb(x̃) = 0 whilst circles
correspond to fb(x) = 0. The solid isolines show the magnitude of the second-order
structure function 〈|δu|2〉 of figure 4(c), the colour background gives the isolevels of
the right-hand side of (4.1) (dubbed the source in the following description) whilst
vectors represent Φ‖. Just above the two images of the separatrix, inside DOO, the
two elongated regions of intense source correspond to the shear layer. The in-plane
flux Φ‖ in these regions is directed toward decreasing mid-point wall distance Y and
decreasing wall-normal separations ry. The physical interpretation of this process will
be provided later, after a more complete description of the flow in the phase space.
Two (almost) symmetric spots of intense source are observed where the images of
the separatrix touch the images of the walls (the one on the left is located around the
intersection at Y ' 0.25, ry '−0.45, solution of the equation gb(X0

− r0
x/2)+ ry/2=

gw(X0
+ r0

x/2) − ry/2, where y = gw(x) is the explicit equation of the lower channel
wall, implicitly described by flw(x)). In the high intensity red spot on the left, the
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FIGURE 7. (Colour online) Re= 2500, (Y, ry)-plane at X0
= 5.8, r0

x = 0.45, r0
z = 0.4. Solid

isolines represent 〈|δu|2〉. (a) In-plane component of the flux Φ‖ = (ΦY, Φry) as vectors,
equation (2.3). The coloured contour denotes the source terms Π6 − 2〈ε∗〉 − ∇⊥ · Φ⊥,
equation (4.1), where ∇⊥ = (∂X, ∂rz, ∂rx) and Φ⊥ = (ΦX, Φrz, Φrx). (b) In-plane transport
velocity w‖ = (wY, wry) as vectors, equation (2.15), and effective net production in the
plane M, equation (4.3), as coloured contour. The yellow symbols denote the images of
the bubble separatrix: fb(x̃)=0 (triangles, x̃=X+ r on the separatrix) and fb(x)=0 (circles,
x = X − r on the separatrix). The inset shows where M is positive (red) or negative
(blue). (c) Normal component of the in-plane transport contribution w‖1/2〈|δu|2〉 to the
flux (vectors) shown on the bubble separatrix. Coloured contour shows M̃, equation (4.5).

point x is outside the bubble and within the shear layer (phase space region above the
yellow circles). The other point, x̃, is inside the bubble (below the yellow triangles)
and close to the wall. An almost symmetric arrangement is found for the right spot.
The absolute maximum of the source is found when both x̃ and x are in the shear
layer, just above the intersection of the two images of the separatrix. On the other
hand, in the region DII (the rhomboidal region limited by lower wall and separatrix)
a negative source is present. The fluxes enter this region from outside. The integration
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FIGURE 8. (Colour online) Re= 2500, (a) Mean velocity field near the bump. Coloured
contour denotes the (single-point) TKE production. (b) Enlargement of the recirculating
region. The solid line is the stream line separating the bubble from the outer flow.

of (2.5) over the phase space domain DII leads to∮
∂DII

Φ6 · ν6 dS6 =

∫
DII

(Π6 − 2〈ε∗〉) d3X d3r. (4.2)

In the physical sense, the bubble is expected to be of dissipative nature, hence
one would guess Π6 − 2〈ε∗〉 < 0. Clearly, the sign of Π6 − 2〈ε∗〉 in the entire
five-dimensional domain corresponding to the bubble could not be directly checked.
However, two-dimensional sections of such domain, like the one shown in figure 7(a),
see also the successive figures 9, 10, 11 and 12, suggest that this is indeed the case.
This confirms that, being the bubble a statistically steady dissipative feature, the
second-order structure function in the bubble region is sustained in time by fluxes
entering the domain.

The Lagrangian theory in § 2.2 allows us to define a velocity field w6 which
transports the structure function in phase space. This, in a way, provides the phase
space equivalent of the advection of fluid particles by the velocity field in physical
space. Again, the transport velocity field defined in (2.14), (2.15) is not easily
visualised. Planar sections can provide an illuminating, though admittedly incomplete,
view. In a planar section, the transport (2.16), (2.17) for the structure function can
be rearranged as

D‖
Dt

(
1
2
〈|δu|2〉

)
=M, (4.3)

where D‖/Dt= ∂/∂t+w‖ · ∇‖ is the transport derivative in the plane (∂/∂t= 0 for the
present statistically steady conditions) and the source term on the right-hand side is

M=Π6 − 2〈ε∗〉 −∇⊥ ·Φ⊥ −∇‖ ·ΦD
‖
−

1
2 〈|δu|

2
〉∇‖ ·w‖, (4.4)

with the superscript D denoting diffusion, equation (2.6). The transport velocity
w‖ = (wY,wry) in the (Y, ry)-plane is shown in figure 7(b). As in panel (a), the solid
isolines represent the structure function and the yellow symbols the two images of
the separatrix. The colour contours now provide M, the right-hand side of (4.3),
explicitly defined in (4.4). The inset highlights the zero isolevel of M, with red and
blue denoting positive and negative values respectively.

Following the standard interpretation of substantial derivatives, equation (4.3) is
interpreted by saying that the structure function is advected along the trajectories
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(a) (b)

(c) (d )

FIGURE 9. (Colour online) Re = 2500, (Y, rx)-plane at X0
= 5.8, r0

y = 0, r0
z = 0.4. In

this plane ∇‖ = (∂Y, ∂rx). Solid isolines represent 〈|δu|2〉. (a) In-plane component of the
flux Φ‖= (ΦY, Φrx) as vectors, equation (2.3). Coloured contour denotes the source terms
Π6 − 2〈ε∗〉 − ∇⊥ · Φ⊥, equation (4.1), where ∇⊥ = (∂X, ∂ry, ∂rz) and Φ⊥ = (ΦX, Φry, Φrz).
(b) In-plane transport velocity w‖ = (wY, wrx) as vectors, equation (2.15) and effective
net production in the plane M, equation (4.3), as coloured contour. The yellow symbols
denote the images of the bubble separatrix, see text and figure 7. The inset shows the
sign of M. (c) Same as (a) with the in-plane velocity magnified in the region D‖II , see
text. (d) Normal component of the in-plane transport contribution w‖1/2〈|δu|2〉 to the flux
(vectors) shown on the bubble separatrix. Coloured contour shows M̃, equation (4.5).

0 1.0–1.0 0 1.0–1.0

0.5

0
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0.5

0
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0.04–0.08 0.16 0.01–0.05 0.07

Y

(a) (b)

FIGURE 10. (Colour online) Re= 2500, (Y, rx)-plane at X0
= 5.8, r0

y = 0.12, r0
z = 0.4.

Panels (a) and (b) same as corresponding panels of figure 9.

of the field w‖ and changes its magnitude due to the source term on the right-hand
side. Overall, the structure function is advected toward decreasing mid-point distance
from the lower wall Y and toward decreasing wall-normal separation ry, indicating
that most of the flux Φ‖ taking place in the same region is associated with transport.
Focusing on the shear layer, coincident with the two elongated regions where M is
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(d)

0 0.25–0.25 0.50–0.50 –0.2 0 0.1 0.2–0.1

–0.2 0 0.1 0.2–0.1 –0.30 0 0.15 0.30–0.15

X X

FIGURE 11. (Colour online) Re = 2500, (X, rx)-plane at Y0
= 0.45, r0

y = 0, r0
z = 0.4. In

this plane ∇‖ = (∂X, ∂rx). Solid isolines represent 〈|δu|2〉. (a) In-plane component of the
flux Φ‖= (ΦX, Φrx) as vectors, equation (2.3). Coloured contour denotes the source terms
Π6 − 2〈ε∗〉 − ∇⊥ · Φ⊥, equation (4.1), where ∇⊥ = (∂Y, ∂ry, ∂rz) and Φ⊥ = (ΦY, Φry, Φrz).
(b) In-plane transport velocity w‖ = (wX, wrx) as vectors, equation (2.15) and effective
net production in the plane M, equation (4.3), as coloured contour. The inset shows the
sign of M. The yellow symbols denote the images of the bubble separatrix, see text
and figure 7. (c) Same as (a) with the in-plane velocity magnified in the region D‖II , see
text. (d) Normal component of the in-plane transport contribution w‖1/2〈|δu|2〉 to the flux
(vectors) shown on the bubble separatrix. Coloured contour shows M̃, equation (4.5).
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–0.08 0.100.01 –0.06 0.06 0.120

FIGURE 12. (Colour online) Re = 2500, (X, Y)-plane at r0
x = 0.45, r0

y = 0, r0
z = 0.4. In

this plane ∇‖ = (∂X, ∂Y). Solid isolines represent 〈|δu|2〉. (a) In-plane component of the
flux Φ‖= (ΦX, ΦY) as vectors, equation (2.3). Coloured contour denotes the source terms
Π6 − 2〈ε∗〉 −∇⊥ ·Φ⊥, equation (4.1), where ∇⊥ = (∂rx , ∂ry, ∂rz) and Φ⊥ = (Φrx , Φry, Φrz).
(b) In-plane transport velocity w‖ = (wX, wY) as vectors, equation (2.15) and effective
net production in the plane M, equation (4.3), as coloured contour. The yellow symbols
denote the images of the bubble separatrix, see text and figure 7. (c) Same as (a) with
the in-plane velocity magnified in the region D‖II , see text. (d) Normal component of the
in-plane transport contribution w‖1/2〈|δu|2〉 to the flux (vectors) shown on the bubble
separatrix. Coloured contour shows M̃, equation (4.5).

intense just above the two images of the separatrix, the advection velocity is directed
almost parallel to the images of the separatrix, towards smaller wall-normal mid-point
distances Y and smaller wall-normal separations ry. A bias is added to this gross trend,
such that the w‖ velocity is slightly more inclined downwards than the local tangent
to the separatrix. This means that the structure function, advected by the velocity
field, crosses the separatrix from region DOO above to enter region DIO (left half of
the plot, crossing the triangles) or DOI (right half of the plot, crossing the circles). In
other words, one of the two points (e.g. x̃ as concerning the left part) is entering the
recirculation bubble, while the other one remains outside. Following the advection
velocity, the former point eventually enters the bubble. When this happens the point
in phase space crosses the second image of the separatrix (the circles) leaving region
DIO to enter DII . Just before the second image of the separatrix is crossed (point
x still in the shear layer) a positive value of M is encountered, implying that the
intensity of the structure function increases while advection by w‖ occurs.

Equation (4.3) can be recast in conservative form as

∇‖ ·
(
w‖ 1

2 〈|δu|
2
〉
)
= M̃=M+ 1

2 〈|δu|
2
〉∇‖ ·w‖. (4.5)

This equation can be integrated in the domain D‖II , defined as the trace of the phase
space domain DII in the considered (Y, ry)-plane, to yield∫

∂D‖II
w‖

1
2
〈|δu|2〉 · n‖ dl‖ =

∫
D‖II

M̃ dS‖, (4.6)
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where n‖ is the outward normal. Panel (c) of figure 7 provides the isolines of M̃
and shows the normal component of the advective flux on the boundary of region D‖II
shown as the vector field n‖ ·w‖1/2〈|δu|2〉n‖. The structure function is advected inside
the bubble, with the corresponding flux balancing the negative value of the relevant
source term M̃.

4.3. Sub-manifold (Y, rx)

Figure 9 addresses the (Y, rx)X0=5.8,ry=0,rx=0.4-plane, which also crosses the maximum
of net production. The interpretation of the different panels should now be familiar
from the discussion of the previous plane. Panel (a) shows the in-plane component
of the flux as vectors, Φ‖ = (ΦY, Φrx), the source term of (4.1) as colour contours,
where now Φ⊥ = (ΦX, Φry, Φrz), and the structure function as solid isolines. The two
images of the separatrix in this plane, curves of the form Y = gb(X0

± rx/2) ∓ r0
y/2,

are represented by the yellow symbols with the same meaning discussed previously.
The in-plane flux is significant in regions D‖IO and D‖OI (one point is in the shear
layer and the second inside the bubble) and is directed towards larger streamwise
separations, |rx|. This trend is similar in region D‖II (both points inside the bubble).
The in-plane transport velocity w‖ = (wY, wrx) shown in panel (b) together with
the colour isolines of M, equation (4.4), confirms the same picture and shows the
advection of the structure function towards increasing streamwise separations in the
regions D‖IO and D‖OI . Therefore, the separation vector r is stretched in the streamwise
direction along the trajectory in phase space, at an almost constant mid-point distance
from the lower wall. This effect corresponds to ˙̀ > 0 in the language adopted in
the last paragraphs of § 2.2. Additional features are observed inside D‖II , where the
advection velocity reverses close to the wall images. The vectors are magnified in
panel (c) for a better view. In this region, the structure function is transported in
a recirculating way. It is advected to smaller streamwise scales close to the wall,
then away from the wall towards the separatrix and finally towards larger streamwise
separations to match the behaviour in the regions above. In Lagrangian terms, the
process would correspond to stretching ˙̀ > 0 in the higher part of the (physical)
recirculating bubble and compressing ˙̀ < 0 in the lower part. Panel (d) shows the
normal component of the advection flux w‖1/2〈|δu|2〉 across the boundaries of region
D‖II . The flux enters the bubble to balance the relevant source term M̃.

It is instructive to consider the same kind of plane, now at a positive wall-normal
separation r0

y = 0.12, figure 10. This choice is motivated by the fact that flux vectors
in figure 7 converge into a sink for this specific separation. The point x̃ is now
further from the lower channel wall than x (ỹ − y = ry > 0), a configuration that
enhances the role of the shear. In panel (a), a substantial flux Φ‖ is found in the
region of intense production corresponding to the shear layer (region D‖OO, just above
the yellow symbols). The flux is systematically directed from negative streamwise
separations (rx < 0) towards positive ones (rx > 0), i.e. the flux vectors are oriented
from left to right. The flux is mostly inertial, as seen in panel (b) which shows the
corresponding transport velocity w‖. One may imagine to reconstruct the kinematics
of this transport process. Following the trajectories of w‖, the motion is at more
or less constant Y , that is the mid-point distance from the wall remains almost
constant. Starting from the left side where rx < 0, rx progressively increases along the
trajectory to eventually become increasingly positive. Keeping in mind that r0

y > 0 in
this plane, the processes can be interpreted as a sequence where the separation vector
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follows kinematics described by rx = rx[s(t)], ry = r0
y , rz = r0

z , with s(t) the arc length
along the phase space trajectory increasing with time along the advection, ṡ = |w‖|,
with drx/ds > 0 as apparent from the plot. This is consistent with a rotation of the
separation vector induced by the shear, see § 2.2. It is however important to consider
that the separation vector components outside the plane (ry and rz) are frozen in the
present plane.

4.4. Sub-manifold (X, rx)

The downstream behaviour is addressed in figure 11 that shows the
(X, rx)Y0=0.45,r0

y=0,r0
z=0.4-plane. Outside the bubble (D‖OO region), the in-plane flux

Φ‖ = (ΦX, Φrx) is directed in the streamwise direction X, with a small component
towards larger streamwise scales |rx|, see panel (a). The physical origin of this flux
is basically convective, as shown by the transport velocity field w‖ of panel (b).
The rx component of the transport velocity becomes dominant in regions D‖IO/OI

and in D‖II , see panel (c) where the vectors in the latter region are magnified for
better readability. The Lagrangian interpretation corresponds to the stretching of
the separation vector, ˙̀ > 0, implying that the structure function is advected at
larger scales in the streamwise direction. A peculiar aspect of this plane is that
the convective flux w‖1/2〈|δu|2〉 is directed outside the bubble region feeding the
neighbouring regions, D‖IO/OI , a feature already apparent from the total in-plane flux
Φ‖ of panel (a).

4.5. Sub-manifold (X, Y)
Finally, figure 12 examines the dynamics of the combined shear layer/separation
bubble system in the (X, Y)-plane at fixed r0

x = 0.45, r0
y = 0, r0

z = 0.4. The in-plane
flux Φ‖ = (ΦX, ΦY) is particularly strong in the shear layer, above the yellow circles
(region D‖OO), where the intensity of net production is large (red background contours).
The flux is mainly directed in the streamwise direction X and roughly follows the
profile of the separatrix (circles), bends downwards, and encounters a region of
negative net production (blue). The in-plane velocity w‖, panel (b), confirms a
significant convective effect transporting the structure function downstream. The
magnified vectors inside the bubble, region D‖II , panel (c), provide evidence of the
recirculating advection of the structure function inside the bubble where the source
term is mostly negative (blue region below the yellow triangles). In this plane,
where the separation vector is constant, the mid-point where the structure function
is evaluated is advected along a recirculating path. Along a closed phase space
streamline, panel (c), the structure function is attenuated in intensity in the lower part
of the path, where the advection is upstream (negative X-direction) to regain intensity
in the upper part of the circuit, just below the separatrix. Panel (d) shows the normal
component of the advection flux w‖1/2〈|δu|2〉 across the boundaries of region D‖II .
Clearly, the inward fluxes prevail, confirming the dissipative features of the (physical)
recirculating bubble.

In the above statistical analysis of the shear layer/recirculation bubble dynamics
based on the GKE, we find that the bubble exchanges fluxes of structure function
intensity with the surroundings, the shear layer being identified as the corresponding
physical source. The exchange is mostly associated with convection, as shown by the
normal component of the advective flux. The convective flux exchanged between the
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neighbouring regions DOO, DIO/OI and DII can easily be shown to be a genuine effect
of fluctuations. Indeed, the transport velocity w6, equations (2.14) and (2.15), follows
from two distinct contributions and can be decomposed as

wX =
〈U∗|δu|2〉
〈|δu|2〉

+
〈u∗|δu|2〉
〈|δu|2〉

=wM
X +wf

X

wr =
〈δU|δu|2〉
〈|δu|2〉

+
〈δu|δu|2〉
〈|δu|2〉

=wM
r +wf

r,

 (4.7)

where the superscripts M and f stand for mean, to recall the advection due to the
mean flow U, and for fluctuation, to remind the advection of the turbulent fluctuations
u, respectively. U∗ = (U(x̃) + U(x))/2 and δU = U(x̃) − U(x) are non-fluctuating
quantities, hence, from (4.7), wM

X = U∗ and wM
r = δU. As a consequence, the phase

space point (X, r) advected by the field w6 cannot be made to cross the two manifolds
fb(X± r/2)= 0, images of the physical separatrix in the phase space, by solely pure
mean convection. The reason being that neither one of the two points x̃ and x can
cross the separatrix by the sole advection of the mean flow given the definition of
separatrix as streamline (of the mean flow velocity) separating the bubble region with
closed streamlines from the outer field where the streamlines are open. In fact, the
normal convective fluxes shown in the last panels of figures 7, 9, 11 and 12 should be
interpreted as a consequence of the turbulent transport velocity (wf

‖ · n‖)1/2〈|δu|2〉n‖.
In other words, using standard nomenclature, separatrix crossing should be associated
with the so-called turbulent diffusion. This expression is traditional for single-point
statistics, such as for example diffusion of turbulent kinetic energy. Here, the term
is referred to a phenomenon of similar origin taking place in the advection of the
two-point second-order structure function.

5. An intuitive link with coherent structure dynamics
An intuitive illustration of the processes described so far is provided by associating

the phase space dynamics described by the GKE with effects directly visualised in
physical space. The phase space processes consist of advection of a given turbulent
scale ` by a suitably defined vector field and intensification or depletion of the
structure function intensity along the advection. The shear layer and its interaction
with the recirculation region have been identified as features of interest. In proposing a
meaningful association between phase space and physical space dynamics one should
first identify an observable in physical space that could be related to the structure
function. In the context of wall-bounded shear flows, scientists are familiar with
the notion of the so-called coherent structures and the effects that these intermittent
features have on the flow statistics. A well-known example are the quasi-streamwise
vortices and low/high speed streaks that populate the near-wall region of canonical
wall-bounded flows. These objects affect correlation functions, e.g. minimum of
spanwise correlations and average distance between streamwise vortices. Correlations
and second-order structure functions are very close relatives. It could be envisaged
that production and advection of structure function intensity are related to generation
and convection of some sort of coherent structures which can be identified in the
regions (mid-point positions) and scales (separation vectors) that were analysed by the
GKE. Relying on the widely accepted Q-criterion for coherent structure visualisation,
the picture that emerges is shown in figure 13. A forest of hairpin-like vortical
structures appear out of nowhere just behind the bump, at the level of the shear
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0–0.5 0.5 1.0 1.5

0–0.5 0.5 1.0 1.5

FIGURE 13. (Colour online) Isosurfaces of Q coloured by instantaneous streamwise
velocity for case Re = 2500. The threshold chosen is Q0 = 40 and Q varies between
Qmin=−900 and Qmax= 3600. The threshold normalised with the average friction velocity
ūτ and the average wall unit ȳτ is Q0 = 0.2(ūτ/ȳτ )2.

layer. Such structures are indeed expected there, given the observed maximum of net
production.

The vortical structures shown in the figure are coloured with the local streamwise
velocity intensity, red meaning strong downstream convection, blue meaning
upstream convection. It is apparent that the structures materialise at an x-station
that approximately corresponds, for this Reynolds number, to the end of the
bump at x = 5.8, matching the X0 corresponding to the maximum net production
of structure function intensity. As the structures in the top part of the layer are
convected downstream, they are tilted and their characteristic ry scale decreases
and are stretched, i.e. their rx characteristic scale increases. Part of the structures
get trapped in the recirculation bubble and are then convected upstream, remaining
close to the wall. Their intensity weakens and they eventually vanish as they move
upstream climbing up the bump. The structures form again at the top edge of the
recirculating bubble. Figure 14 provides a short sequence of successive snapshots
where certain specific structures have been isolated from the surroundings to provide
a better illustration. The downstream convection, streamwise stretching and clockwise
rotation is apparent. The bottom part of the plots displays blue coloured structures
that move upstream, shrink and disappear. The process of extracting a few selected
structures may introduce a possible bias. To remove this potential bias, two animations
are provided in the supplementary material in Movie1 and Movie2, available at
https://doi.org/10.1017/jfm.2018.114. The first animation concerns the whole forest of
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0–0.5 0.5 1.0 1.5

FIGURE 14. (Colour online) Isolated selection of isosurfaces of Q coloured by
instantaneous streamwise velocity in sequential snapshots for case Re = 2500. The
threshold chosen is the same as in figure 13.

hairpins shown in figure 13; the second one corresponds to the sequence extracted in
figure 14. By looking at the animations the reader may be convinced of the strong
link between the phase space interpretation and the coherent structure evolution.

Finally, it is worth commenting on the effect of the Reynolds number on the
dynamics described so far. At Re= 10 000, the recirculation region becomes smaller,
see Mollicone et al. (2017). Figure 15 shows spanwise and wall-parallel views of
the instantaneous streamwise velocity in panel (a) and (b) respectively. Despite flow
structures becoming smaller and more attached to the wall, the gross features are
similar to those described for the smaller Reynolds number case. The maximum net
production is now found at the phase space position X0

= 5.1, Y0
= 0.45, r0

x = 0.17,
r0

y = 0, r0
z = 0.13.

Without repeating the whole analysis, figure 16 shows in-plane fluxes, advection
velocities and advective flux normal to the separatrix in the (X, Y)rx=0.17,ry=0,rz=0.13-
plane, to be compared with figure 12 at the smaller Reynolds number. The qualitative
features are analogous, once the shorter extension of the high intensity region of
the shear layer and the shorter and narrower recirculation regions are accounted for.
A corresponding visualisation of the hairpin forest at Re = 10 000 is provided in
figure 17, while an animation is provided in the supplementary material in Movie3.
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FIGURE 15. (Colour online) Instantaneous streamwise velocity contours for Re= 10 000.
(a) (y, z)-plane at x0

= 5.1; (b) (x, z)-plane at y0
= 0.45.
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FIGURE 16. (Colour online) Re= 10 000, (X, Y)-plane at r0
x = 0.17, r0

y = 0, r0
z = 0.13.

See caption of figure 12.

6. Final remarks
The separated turbulent flow behind the bump is characterised by a complex pattern

which can be visualised in terms of coherent vortical structures. The structures are
generated in the shear layer and follow two different routes: some structures are
stretched and convected downstream whilst others are trapped by the recirculation
bubble where, while advected upstream in the lower part of the bubble, they eventually
disappear to reform again when recirculating to the top part of the bubble. This
complex behaviour calls for a detailed and quantitative description in the joint space
of position and scale separation. The generalised Kolmogorov equation (GKE) has
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0 0.5 1.0 1.5–0.5

FIGURE 17. (Colour online) Isosurfaces of Q coloured by instantaneous streamwise
velocity for case Re = 10 000. The threshold chosen is Q0 = 240 and Q varies between
Qmin = −11 000 and Qmax = 14 000. The threshold normalised with the average friction
velocity ūτ and the average wall unit ȳτ is Q0 = 0.2(ūτ/ȳτ )2.

proven to be the appropriate tool to achieve this. The GKE shows how the energy
content at a given separation, as measured by the second-order structure function, is
advected in the five-dimensional phase space (X, Y, rx, ry, rz). Results show how the
maximum of net production Π6 − 2〈ε∗〉 occurs at specific scales in the shear layer.
The fluxes appearing in the GKE transfer the produced energy to different physical
regions of the flow at different scales. The fluxes which feed the recirculation bubble
create a direct energy cascade in the scale separation space, providing a quantitative
interpretation of the recirculating bubble as a dissipative feature of the separated flow.
On the other hand, the fluxes which feed the turbulent flow downstream locally create
an inverse energy cascade in the separation space, that is the fluxes move energy from
smaller to the larger scales. This view is corroborated by the alternative Lagrangian
interpretation of the GKE discussed in the present work. Indeed, the GKE can be
recast in the structure of a transport equation in the five-dimensional space by defining
a generalised transport velocity. The velocity transports the second-order structure
function to different positions in space and different separations and orientations.
This clearly shows how a given structure at a scale ` is translated, rotated, stretched
and/or compressed. In conclusion, the GKE and its Lagrangian view provide the
statistical signature of the coherent structures which form in the shear layer and are
subsequently advected and stretched downstream or dissipated inside the recirculating
bubble.
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Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2018.114.
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