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CHERN CLASSES WITH MODULUS

RYOMEI IWASA and WATARU KAI

Abstract. In this paper, we construct Chern classes from the relative

K-theory of modulus pairs to the relative motivic cohomology defined by

Binda–Saito. An application to relative motivic cohomology of henselian dvr is

given.
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Introduction

Algebraic cycles with modulus have been considered to broaden Bloch’s

theory of algebraic cycles [Bl86]. This concept has arisen from the work

by Bloch–Esnault [BE03], and now it is fully generalized by Binda–Saito

in [BS17]. The purpose of this paper is to relate Binda–Saito’s theory of

algebraic cycles to algebraic K-theory by establishing a theory of Chern

classes. To be precise, we prove the following.

Theorem 0.1. (Theorems 2.26, 3.6) Let X be an equidimensional

scheme of finite type over a field k and D an effective Cartier divisor on X

such that X \D is smooth over k. Then, for i, n> 0, there exist maps

Cn,i : Kn(X, D)→H2i−n
M,Nis(X|D, Z(i))

from the relative algebraic K-theory to the (Nisnevich) relative motivic coho-

mology as defined in [BS17, Definition 2.10]. These maps are functorial in
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CHERN CLASSES WITH MODULUS 85

(X, D) in the category of modulus pairs MSm (Definition 1.1) and coincide

with Bloch’s Chern classes [Bl86, Section 7] when D = ∅. Furthermore, Cn,i
are group homomorphisms for n > 0 and satisfy the Whitney sum formula

for n= 0.

Comparison maps between certain parts of relative algebraic K-theory

and (additive) higher Chow groups with modulus had been constructed

in some cases by authors such as Bloch–Esnault, Rülling, Park, Krishna–

Levine, Krishna–Park, Krishna, Rülling–Saito and Binda–Krishna [BE03,

Ru07, Pa09, KL08, KP15, Kr15, RS15, BK18] (to name a few), who reveal

profound aspects of those maps. But this is the first time a comparison map

has been given on the entire (non-negative) range and in such generality.

As an application, we give a partial result for the comparison of relative

algebraic K-theory and relative motivic cohomology for henselian dvr.

Theorem 0.2. (Theorem 4.3) Let X be the spectrum of a henselian dvr

over a field of characteristic zero and D the closed point of X seen as a

Cartier divisor. Then, for every n> 0, there is a natural isomorphism

{CH∗(X|mD, n)}m,Q
' {Kn(X, mD)⊕ ker(CH∗(X|mD, n)→ CH∗(X, n))}m,Q

in the category (pro-Ab)Q of pro-abelian groups up to isogeny.

§1. Global projective bundle formula

The aim of this section is to formulate and prove a projective bundle

formula for the cycle complex with modulus as formulated in Theorem 1.11.

It takes place in a very global set-up. As such, it requires a considerable

amount of effort to get all the compatibility right just to define the map.

Once defined, the proof that it is an isomorphism is then a local problem

and already essentially known.

1.1 Modulus pairs and cycle complex presheaves

We begin by the definition of the categories of modulus pairs.

Definition 1.1. Let k be an arbitrary base field. Denote by MSm the

category of pairs (X, D) of an equidimensional k-scheme of finite type and an

effective Cartier divisor on it, such that X◦ :=X \D is smooth. (Such pairs

are commonly called “modulus pairs”.) Morphisms f : (X ′, D′)→ (X, D)

are the morphisms of k-schemes X ′→X which restrict to morphisms

D′→D of subschemes.
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86 R. IWASA AND W. KAI

We give it a (pre)topology, which we call the Nisnevich topology, by

declaring that a family of morphisms {fi : (Xi, Di)→ (X, D)}i is a covering

if and only if the underlying family {fi :Xi→X}i is a Nisnevich cover and

Di = f∗i D holds for all i.

Remark 1.2. This is not the same as the category denoted by the

same symbol in [KSY17]. First, we ask the scheme-morphism X ′→X to

be defined on the entire X ′ rather than the open part X ′◦. Second, the

condition on divisors is also different: for example, the identity morphism on

X induces a morphism (X, ∅)→ (X, D) in our category and (X, D)→ (X, ∅)
in theirs. We nonetheless opted to use the concise symbol MSm.

We would like to have a variant MSm∗ of it on which cycle complexes with

modulus are functorial. Our specific choice below is not crucial in this work.

As another possible choice of MSm∗, one could probably take a version of

Levine’s L(Sm) [Lev98, page 9].

Definition 1.3. Fix a category Λ with only finitely many objects

and morphisms, and a functor F : Λ→MSm; λ 7→ (Xλ, Dλ). Let MSm∗ :=

MSm/F be the site fibered over F (Definition A.1 via Yoneda), with the

additional condition that the underlying morphism f :X →Xλ is étale and

that D = f∗Dλ.

Since the dependence on F does not play a major role in this article,

we do not make it explicit in the notation. Note that we have an obvious

forgetful functor MSm∗→MSm given by ((X, D), λ, f) 7→ (X, D).

Remark 1.4. The principal case to have in mind is when Λ is just a

point. Let (X, D) be the value of this point. Then our MSm∗ is nothing but

the small Nisnevich site (X, D)Nis. This case is enough for constructing the

Chern classes for each pair (X, D). To get the functoriality of the Chern

classes as in Theorem 0.1, we need to consider the category Λ = {∗ −→ ∗}
with a unique nonidentity morphism. Larger Λ’s may be useful when one

considers more involved compatibility.

We refer the reader to [BS17] for the definition of Binda–Saito’s cycle

complex with modulus zi(X|D, •).

Definition 1.5. Let i> 0 be a non-negative integer. For each

((X, D), λ, f) ∈MSm∗, denote by

zirel((X, D), λ, f ; •)⊂ zi(X|D, •)
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the subcomplex of cycles V ∈ zi(X|D, n) such that for every morphism

(g, ϕ) : ((X ′, D′), λ′, f ′)→ ((X, D), λ, f) in MSm∗,

its pull-back g∗V ∈ zi(X ′|D′, n) is well defined. This defines a presheaf zirel
of complexes on MSm∗, which we call the codimension i cycle complex

presheaf on MSm∗. We remark that by a moving lemma with modulus

(Theorem B.1), the inclusion zirel((X, D), λ, f ; •) ↪→ zi(X|D, •) is a quasi-

isomorphism locally in the Nisnevich topology on each X.

Next, we want to define a presheaf of complexes p∗z
r
rel which serves as “the

cycle complex of the projective bundle associated to the universal vector

bundle on BGLr”. Defining it requires some more notation which we now

introduce.

For a non-negative integer n> 0, set [n] = {0, . . . , n} and endow it with

the usual order. For a non-negative integer r > 0, let us recall (or adopt the

convention) that BGLr is the simplicial k-scheme BnGLr := (GLr)
n with

the structure morphism associated to each ordered map θ : [m]→ [n]:

(GLr)
n→ (GLr)

m; (α1, . . . , αn) 7→ (αθ(j−1)+1 · · · αθ(j))16j6m.

The simplicial scheme BGLr defines a simplicial presheaf on MSm∗ by

((X, D), λ, f) 7→BGLr(X).

Definition 1.6. Let MSm∗/BGLr be the site fibered over BGLr.

Recall that the simplicial k-scheme P(EGLr) has P(EnGLr) = Pr−1 ×
(GLr)

n as its nth component, and the structure morphism corresponding

to θ : [m]→ [n] is defined by

(z, α1, . . . , αn) 7→ (zα1 . . . αθ(0), αθ(0)+1 . . . αθ(1), . . . , αθ(m−1)+1 . . . αθ(m)),

where the expression zα for z ∈ Pr−1 and α ∈GLr denotes the right action

of matrices on row vectors. Write also [α] : Pr−1→ Pr−1 for this action, so

that [αβ] = [β][α] holds, and [αβ]∗ = [α]∗[β]∗ for pull-back operations.

Denote by p : P(EGLr)→BGLr the projection. It is a projective bundle

with fiber Pr−1 and defines a projective bundle (= a presheaf locally

isomorphic to the constant presheaf Pr−1) on the category MSm∗/BGLr,

which motivates the following definition.

Definition 1.7. For each i> 0, we define the presheaf p∗z
i
rel of com-

plexes on MSm∗/BGLr as follows: for each object ((X, D), λ, f ; n, α) ∈
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MSm∗/BGLr, denote by

p∗z
i
rel((X, D), λ, f ; n, α; •)⊂ zi(Pr−1 ×X|Pr−1 ×D, •)

the subcomplex of cycles V ∈ zi(Pr−1 ×X|Pr−1 ×D, m) such that for every

morphism (g, ϕ) : ((X ′, D′)λ′, f ′)→ ((X, D), λ, f) in MSm∗, its pull-back

(idPr−1 × g)∗V ∈ zi(Pr−1 ×X ′|Pr−1 ×D′, m) is well defined. (This does not

depend on the data (n, α).)

Given a morphism (g, ϕ, θ) : ((X ′, D′), λ′, f ′; n′, α′)→ ((X, D), λ, f ;

n, α) in MSm∗/BGLr, define the pull-back map

(g, ϕ, θ)∗ : p∗z
i
rel((X, D), λ, f ; n, α; •)→ p∗z

i
rel((X

′, D′), λ′, f ′; n′, α′; •)

to be the pull-back along the morphism (which depends on the data (n, α)):

Pr−1 ×X ′ ∼−→ Pr−1 ×X ′ id×g−−−→ Pr−1 ×X.
(z, x′) 7→ (zα1 · · · αθ(0), x

′)

Last, denote by p∗ : zirel→ p∗z
i
rel the map of presheaves on MSm∗/BGLr

given by the pull-back along the projections Pr−1 ×X →X.

The presence of p∗z
i
rel is the main reason why we work in MSm∗/BGLr

rather than MSm∗. This presheaf has the information of p∗z
i
P(E)|P(E)×XD for

all objects ((X, D), λ, f) ∈MSm∗ and vector bundles E→X in the following

sense.

Let us suppose Λ = {∗} for simplicity, so that MSm∗ ' (X, D)Nis. Given a

vector bundle E→X of rank r > 0, let p : P(E)→X be the associated pro-

jective bundle P(E) := Proj(SymOX E
∨). We can consider the cycle com-

plex ziP(E)|P(E)×XD : (U
ét−→ P(E)) 7→ zi(U |U ×X D, •) on (P(E)|P(E)×X

D)Nis and its push-forward p∗z
i
P(E)|P(E)×XD to (X, D)Nis on the one hand.

On the other hand, if we choose an open covering X =
⋃
j Xj and

trivialization φj : E|Xj
∼=OrXj , we get a morphism of simplicial schemes from

the Čech construction φ : Č({Xj}j)→BGLr hence a simplicial object in

(X, D)Nis/BGLr (here, we give Xj the divisor Dj :=D ×X Xj). Therefore

we can consider the restriction of p∗z
i
rel to Č({Xj}j)Nis.

One verifies that these two presheaves are canonically isomorphic on

Č({Xj}j)Nis.

Remark 1.8. The following nonmodulus version

p∗z
i : ((X, D), λ, f ; n, α) 7→ zi(Pr−1 ×X, •),
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with the same “presheaf” structure as p∗z
i
rel, plays a minor role later on. Note

that since we are not assuming the smoothness of X along D for objects of

MSm, it is difficult to make p∗z
i functorial in a sensible way. However, this

does not pose a real problem because p∗z
i is only used as a conceptual aid

in some constructions and can be avoided if one is willing to write down all

the raw data instead.

1.2 Line bundles and codimension 1 cycles

We know that codimension 1 cycles are closely related to line bundles.

The following version of this relationship is repeatedly used in this article.

Below, we adopt the convention �n := (P1 \ {∞})n = Spec(k[t1, . . . , tn])

rather than (P1 \ {1})n used in [BS17].

Let X• be a semi-simplicial scheme with flat face maps (so that cycles

and nonzero divisors can always be pulled back). Let L be a line bundle on

it, that is, the data of line bundles Ln on Xn for n> 0 and isomorphisms

d∗iLn−1
∼= Ln for face maps di :Xn→Xn−1, compatible with each other in

an obvious sense.

Suppose we are given a section σ ∈ Γ(X0, L0) which is everywhere a

nonzero divisor. We are going to define sections

F (σ)
n = F (σ)

n (t1, . . . , tn) ∈ Γ(Xn, Ln)⊗kk[t1, . . . , tn]

on Xn ×�n which are nonzero divisors everywhere.

Let us denote by v
[n]
k : [0]→ [n] the inclusion of the kth vertex. Note

that the groups Γ(Xm, Lm)⊗k k[t1, . . . , tn] are semi-cosimplicial in m and

cubical in n. In particular, we have sections (v
[n]
k )∗σ ∈ Γ(Xn, Ln). We define

F
(σ)
n by the formula

F (σ)
n (t1, . . . , tn) :=

n∑
k=0

(
(v

[n]
k )∗σ ⊗ tk

n∏
`=k+1

(1− t`)
)

where t0 = 1 by convention. Of course, it is the map corresponding to

the composite of a map �n→∆n from the n-cube to the (algebraic) n-

simplex, followed by the affine map ∆n→ Γ(Xn, Ln) sending the kth vertex

to (v
[n]
k )∗σ. 1

1In view of this, it is probably possible to carry out the construction in this paper on
the (obvious) simplicial version of the cycle complex with modulus or even on the cycle
complex as a simplicial abelian group.
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Recall that for 16 j 6 n and ε= 0, 1, the map ∂j,ε :�n−1→�n is

the embedding of the face {tj = ε}: (t1, . . . , tn−1) 7→ (t1, . . . , tj−1, ε, tj ,

. . . , tn−1). Degenerate elements of a cubical set mean elements obtained

by pull-back along degeneracy maps �n→�n−1. Also for 06 i6 n, denote

by di : [n− 1]→ [n] the ith face of [n]. It is routine to check the following

relations.

Lemma 1.9. We have equalities in Γ(Xn, Ln)⊗k k[t1, . . . , tn−1]:

d∗iF
(σ)
n−1 =

{
∂∗1,1F

(σ)
n if i= 0,

∂∗i,0F
(σ)
n if 16 i6 n.

Also, the functions ∂∗j,1F
(σ)
n are degenerate for 1< j 6 n.

Let z1(−, •) be Bloch’s codimension 1 cycle complex, which is a presheaf

on the category of schemes and flat morphisms. For a scheme X, let Z[X]

be the additive presheaf generated by the presheaf of sets represented by X.

Lemma 1.9 implies that the set of cycles {Γ(σ)
n }n := {div(F

(σ)
n )}n determines

a map of presheaves of complexes

Γ(σ) : Z[X•]→ z1(−, •)

on the small flat site over the semi-simplicial scheme X•.

Let σ′ ∈ Γ(X0, L0) be another nowhere zero divisor. We set

F (σ,σ′)
n := t1F

(σ′)
n (t2, . . . , tn+1) + (1− t1)F (σ)

n (t2, . . . , tn+1)

∈ Γ(Xn, Ln)⊗k k[t1, . . . , tn+1].(1)

The cycles Γ
(σ,σ′)
n := div(F

(σ,σ′)
n ) will serve as a homotopy of Γ(σ) and Γ(σ′).

1.2.1 Variant

Occasionally our line bundle L will be given as the difference L=

L+ ⊗ (L−)∨ of two line bundles, each equipped with a nowhere zero divisor

σ± ∈ Γ(X0, L
±
0 ) in degree 0. The construction of Γ(σ) makes sense for

the ratio σ = σ+/σ−. In this case F
(σ)
n is the ratio of an element in

Γ(Xn, L
+
n ⊗ (L−n )⊗n)⊗k k[t1, . . . , tn] and an element in Γ(Xn, (L

−
n )⊗n+1)

(for example, F
(σ)
0 = σ+/σ− is the ratio of an element in Γ(X0, L

+
0 ) and

one in Γ(X0, L
−
0 )).

Also if a second presentation L= L′+ ⊗ (L′−)∨ and nonzero divi-

sors σ′± ∈ Γ(X0, L
′±
0 ) are given, the construction of the homotopy
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F (σ,σ′) makes sense to give F
(σ,σ′)
n as the ratio of an element in

Γ(Xn, L⊗ (L−)⊗n+1 ⊗ (L′−)⊗n+1)⊗kk[t1, . . . , tn+1] and an element in

Γ(Xn, (L
−)⊗n+1 ⊗ (L′−)⊗n+1).

We will need the next complete intersection criterion. For the proof, the

reader is referred to Lemma B.3.

Lemma 1.10. Let L(1)±, . . . , L(i)± be 2i line bundles on X• equipped

with sections σ±a of L
(a)±
0 which are nonzero divisors (16 a6 i). Suppose

the sequence of i sections

(v
[n]
k1

)∗σ
±
1 , . . . , (v

[n]
ki

)∗σ
±
i

is a regular sequence for every n> 0 and every choice of 06 k1 6 · · ·6 ki 6
n and signs ±. Then the cup product

Γ(σ1) · . . . · Γ(σi) : Z[X•]→ zi(−, •)

is well defined.

Here, the cup product is defined by the concrete formulas in

Appendix B.2. It is said to be well defined if all the intersection products

appearing in the expression are well defined.

1.3 The projective bundle formula

Now we can state and prove the main result of this section:

Theorem 1.11. (Projective bundle formula) For every i> 0, we

have a canonical isomorphism in the Nisnevich-local derived category

D(MSm∗/BGLr):
r−1⊕
j=0

zi−jrel

p∗(−) · ξj−−−−−−→
∼

p∗z
i
rel.

First, we have to construct the maps. The following is a consequence of

the Friedlander–Lawson moving lemma [FL98, Theorem 3.1]. In the lemma

and onwards, the superscript (−)◦ will be used to indicate that some moving

procedure is involved.

Lemma 1.12. Let k be a field and e> 1 be an integer. Let Pm be the m-

dimensional projective space over k (m> 0). Then there is a codimension 1

cycle H◦ on Pm representing O(1) such that for every effective cycle Z ⊂ Pm
k̄

of positive dimension and of degree 6 e (over k̄), the intersection of Z and

H◦
k̄

in Pm
k̄

is proper.
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Let H(1)◦ := div(σ1)⊂ Pr−1 be any hyperplane (i.e., σ1 ∈ O(1)). Applying

Lemma with e= 1 gives a codimension 1 cycle H(2)◦ on Pr−1 which intersect

every linear translate of H(1)◦ properly. H(2)◦ is written as the difference

of the divisor of a section σ+
2 ∈ O(d+ 1) of some degree d > 0 and that

of σ−2 ∈ O(d). (Of course, any sections with d> 2 work for this first step

without appealing to Lemma.) Next, apply Lemma 1.12 with e= d+ 1

and find sections σ+
3 ∈ O(d′ + 1), σ−3 ∈ O(d′) of some large degrees so

that the cycle H(3)◦ := div(σ+
3 /σ

−
3 ) satisfies the condition that for every

(α1, α2) ∈GLr(k̄)2 the following set has codimension 3 in Pr−1
k̄

(the symbol

| − | denotes the support of a cycle):

[α1]∗|H(1)◦| ∩ [α2]∗|H(2)◦| ∩ |H(3)◦|.

This works because the intersection of the first two factors (with the reduced

structure) has been assured to have codimension 2 and has degree 6 1 ·
(d+ 1). Next apply Lemma 1.12 with e= (d+ 1)(d′ + 1) to get H(4)◦ =

div(σ+
4 /σ

−
4 ) and so on.

In the end, we get codimension 1 cycles H(a)◦ = div(σ+
a /σ

−
a ) on Pr−1

(16 a6 r − 1) with the property that for every (α1, . . . , αr−1) ∈GLr(k̄)r−1

the intersection

(2) [α1]∗|H(1)◦| ∩ · · · ∩ [αr−1]∗|H(r−1)◦| in Pr−1
k̄

is zero-dimensional. In other words, the sequence [α1]∗σ±1 , . . . , [αr−1]∗σ±r−1

is a regular sequence for every possible choice of signs ±. Applying the

procedure in Section 1.2 to these data, we get cycles which we denote by

Γ
(a)◦
n (16 a6 r − 1):

Γ(a)◦
n := Γ(σa)

n ∈ z1(P(EnGLr), n).

Now, let us note that giving a section ((X, D), λ, f)
α−→BnGLr of BGLr

in degree n is equivalent to giving a map ((X, D), λ, f)×∆n→BGLr of

simplicial presheaves on MSm∗ (here, ∆n is a simplicial set, not a scheme).

This motivates the following:

Definition 1.13. Let ∆ be the simplicial presheaf on MSm∗/BGLr
given by

((X, D), λ, f ; n, α) 7→∆n

on objects and (g, ϕ, θ) 7→ θ on morphisms.
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The projection ∆→∗ to the singleton is a sectionwise weak equivalence

of simplicial presheaves on MSm∗/BGLr because ∆n is contractible.

Definition 1.14. For every object X := ((X, D), λ, f ; n, α) ∈MSm∗/

BGLr, a simplex θ ∈∆n
m and an index a ∈ {1, . . . , r − 1}, denote by

Γ(a)◦
m (X, θ) ∈ (p∗z

1)(X, m) = z1(Pr−1 ×X, m)

the pull-back of Γ
(a)◦
m by the map {P(EGLr)(θ)× id�m} ◦ {idPr−1 × α×

id�m}:

Pr−1 ×X ×�m α−→ Pr−1 × (GLr)
n ×�m

= P(EnGLr)×�m −→
θ

P(EmGLr)×�m.

Using them, we define a map of complexes

Γ(a)◦ : Z⊗∆→ p∗z
1 on MSm∗/BGLr

as follows: On an object X as above and in degree m, we must give a

map of presheaves Z⊗∆n
m→ p∗z

1(X, m) = z1(Pr−1 ×X, m). We do this by

mapping θ ∈∆n
m to Γ

(a)◦
m (X, θ).

Of course, we could have pulled back the function F
(σ+
a /σ

−
a )

m to define a

function F
(a)◦
m (X, θ) (a ratio of nowhere zero divisors by direct inspection)

and set Γ
(a)◦
m (X, θ) as its divisor. Both give the same cycle.

The cup product below is well defined for every 16 j 6 r − 1:

Cj◦ := Γ(1)◦ · . . . · Γ(j)◦ : Z⊗∆→ p∗z
j

thanks to proper intersection (2) and Lemma 1.10 applied on each object

of MSm∗/BGLr. We tensor both sides with zi−jrel and apply the intersection

product in the Nisnevich-local derived category (Appendix B.1):

zi−jrel ⊗∆
id⊗Cj◦−−−−→ zi−jrel ⊗ p∗z

j p∗(−) · (−)−−−−−−−→ p∗z
i
rel.

Composed with the inverse of the quasi-isomorphism zi−jrel ⊗∆
∼−→ zi−jrel , it

gives us the maps which we call p∗(−) · ξj :

p∗(−) · ξj : zi−jrel → p∗z
i
rel in D(MSm∗/BGLr).
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Proof of Theorem 1.11. We now claim that the map
∑r−1

j=0

(
p∗(−) · ξj

)
is

an isomorphism in D(MSm∗/BGLr). For this purpose, we may work locally.

We consider an object X = ((X, D), λ, f ; n, α) and assume X is henselian.

Consider the weak equivalence zi−jrel (X, •) ↪→ zi−jrel (X, •)⊗∆n corresponding

to the inclusion of the 0th vertex ∗ ↪→∆n. One computes the composition

of it with p∗(−) · ξj as V 7→ (H(1)◦ · . . . ·H(j)◦)× V which is well defined

for all V . This gives maps CHi−j(X|D, m) → CHi(Pr−1 ×X|Pr−1 ×D, m)

on homology.

Projective bundle formula for the higher Chow groups with modulus

is known by Krishna, Levine and Park [KL08, Theorem 5.6], [KP14,

Theorem 4.6]. For pairs (X, D) with X henselian, their and our maps

CHi−j(X|D, m) → CHi(Pr−1 ×X|Pr−1 ×D, m) coincide, because both are

computed as the classical intersection product once we are reduced to the

proper intersection case. This completes the proof of Theorem 1.11.

§2. The universal Chern classes

A key ingredient of Chern classes in Bloch’s higher Chow groups is the

rth power

ξr ∈ CHr(P(EGLr))

of the class ξ := [O(1)] on the simplicial scheme P(EGLr). By local homo-

topy theory, it corresponds to a map ξr : Z→ p∗z
r in D(Sm∗/BGLr), where

Sm∗ is the nonmodulus version of MSm∗. In the first half of this section

(Sections 2.1–2.4), we construct a map

ξrrel : Z→ p∗z
r
rel in D(MSm∗/X rel

r ).

Here X rel
r ⊂BGLr is a subpresheaf called the relative Volodin space,

which is known to represent the relative K-theory upon Z-completion

(Sections 2.3, 2.6). This map is a lifting of the classical ξr in the following

sense. In the underlying datum F : Λ→MSm, let Λ∅ ⊂ Λ be the full

subcategory of objects λ such thatDλ = ∅. Then F restricts to F∅ : Λ∅→ Sm;

λ 7→Xλ, so we define Sm∗ := Sm/F∅. If one remembers (or interprets) how

to construct the classical ξr correctly, it turns out that our ξrrel lifts ξr via

the restriction map

HomD(MSm∗/X rel
r )(Z, p∗z

r
rel)→HomD(Sm∗/BGLr)(Z, p∗z

r).

In the latter half (Sections 2.5–2.6), we discuss the stabilization process

r→∞ and Z-completion to derive Chern class maps

Cn,i :Kn(X, D)→H−nNis((X, D), zirel).
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2.1 Hyperplanes

We often consider data (X, θ) of an object X = ((X, D), λ, f ; n, α) ∈
MSm∗/BGLr and an ordered map θ : [m]→ [n].

2.1.1 The standard hyperplanes

Let T1, . . . , Tr ∈ Γ(Pr−1,O(1)) be the homogeneous coordinates on Pr−1.

We apply Section 1.2 to the line bundle O(1) on P(EGLr) and sections Ta
for a ∈ {1, . . . , r} to get functions

F (a)∗
n := F (Ta)

n ∈ Γ(P(EnGLr),O(1))⊗k k[t1, . . . , tn]

and their divisors Γ
(a)∗
n := div(F

(a)∗
n ) ∈ z1(P(EnGLr), n). Here we use super-

scripts (−)∗ because they will be useful only over certain open subsets which

will be indicated by the same superscripts.

Repeat the construction of Definition 1.14 on these data to define cycles

Γ
(a)∗
m (X, θ) ∈ z1(Pr−1 ×X, m). They determine a map of complexes

(3) Γ
(a)∗
MSm : Z⊗∆→ p∗z

1 on MSm∗/BGLr.

Remark 2.1. One may want to construct ξrrel as the cup product

Γ
(1)∗
MSm · . . . · Γ

(r)∗
MSm: Z⊗∆→ p∗z

r. But the cup product is not well defined

due to the failure of proper intersection. The easiest such example would

be, taking Λ = {∗}: r = 2, X = ((X, ∅); n= 1, α= (0 1
1 0) ∈ (X rel

2 )1), θ = id[1].

In this case the cycle that is supposed to represent the (X, θ)-component

of Γ
(1)∗
MSm · Γ

(2)∗
MSm always does not satisfy the face condition. This is why we

need the following constructions.

2.1.2 The generic hyperplanes

Let {xab}16a,b6r be the coordinates of GLr, so that its function field is

k(GLr) = k({xab}a,b). For each a ∈ {1, . . . , r}, let us consider the “generic

translation” of the coordinates: T ◦a :=
∑r

b=1 Tbxba ∈ Γ(Pr−1
k(GLr)

,O(1)). As in

Section 1.3, we are using the superscript (−)◦ to indicate the involvement

of moving procedure. Applying the construction in Section 1.2 and Defini-

tion 1.14 on T ◦a , we define cycles:

Γ
(a)◦
m,k(GLr)

(X, θ) ∈ z1((Pr−1 ×X)k(GLr), m).

These objects are different from those denoted by similar symbols in

Definition 1.14, but since the older ones are not going to be used again

in this section, there is no risk of confusion.
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2.1.3 Homotopy of the hyperplanes

The homotopy in equation (1) gives us cycles

Γ
(a)◦∗
n,k(GLr)

:= Γ(T ◦a ,Ta)
n ∈ z1(P(EnGLr)k(GLr), n+ 1)

and by pull-back as in Definition 1.14, we define

Γ
(a)◦∗
m,k(GLr)

(X, θ) ∈ z1(Pr−1 ×Xk(GLr), m+ 1).

Definition 2.2. For a field extension L/k, denote by p∗z
i
L (the non-

modulus cycle complex with scalar extension) the association of complexes

X 7→ p∗z(X⊗kL) for objects of MSm∗/BGLr. There is an obvious scalar

extension map p∗z
i→ p∗z

i
L.

As in Remark 1.8, this is not a presheaf on MSm∗/BGLr unless one

restricts to some nice subcategory. The set of cycles {Γ(a)◦
m,k(GLr)

(X, θ)}m,X,θ
determines a map of complexes

Γ
(a)◦
MSm,k(GLr)

: Z⊗∆→ p∗z
1
k(GLr)

.

2.2 The open covering and the complex Z
Definition 2.3. Let S ⊂ [n] be a subset consisting of m+ 1 elements.

We denote the unique injection [m] ↪→ [n] into S also by the same letter.

Let us denote by Γ(a)∗(S) the pull-back of Γ
(a)∗
m by the map

P(EGLr)(S)× id�m : P(EnGLr)×�m→ P(EmGLr)×�m.

Of course, it is the divisor of the function F (a)∗(S) similarly defined.

Definition 2.4. Let BnGL∗r be the following open subset of BnGLr:

BnGL∗r :=BnGLr \ p
( ⋃

06k16···6kr6n
Γ(1)∗(v

[n]
k1

) ∩ · · · ∩ Γ(r)∗(v
[n]
kr

)

)
where p : P(EnGLr) = Pr−1 ×BnGLr→BnGLr is the second projection.

It follows that a point α= (α1, . . . , αn) ∈BnGLr(k(α)) is in BnGL∗r if

and only if for every choice of 06 k1 6 · · ·6 kr 6 n, the intersection in Pr−1
k(α)

[α1α2 · · · αk1 ]∗{T1 = 0} ∩ · · · ∩ [α1α2 · · · αkr ]∗{Tr = 0}

is empty. Note that whenever α1, . . . , αn are all upper triangular, the

sequence (α1, . . . , αn) belongs to BnGL∗r . The simplicial structure of BGLr
restricts to the schemes {BnGL∗r}n.

https://doi.org/10.1017/nmj.2018.52 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.52


CHERN CLASSES WITH MODULUS 97

Definition 2.5. For a datum (X, θ) of an object X ∈MSm∗/BGLr
and a map θ : [m]→ [n], define an open subset X∗α,θ of X by X∗α,θ :=

(BGLr(θ) ◦ α)−1(BnGL∗r).

Definition 2.6. Define the simplicial subpresheaves ∆∗ and ∆◦ of ∆

on MSm∗/BGLr by (where X = ((X, D), λ, f ; n, α)):

∆∗(X)m = {θ ∈∆n
m |X∗α,θ =X}, ∆◦(X) =

{
∆n if D = ∅,
∅ if D 6= ∅.

Also, set ∆◦∗ := ∆◦ ∩∆∗.

Let us say that a morphism of the form (f, id, id) : X′→ X in MSm∗/BGLr
is an open immersion if the underlying morphism f :X ′→X is an open

immersion and if D′ =X ′ ×X D. Then ∆◦ and ∆∗ are open subpresheaves

of ∆. The map ∆◦ t∆∗→∆ is not a surjection of Zariski sheaves, but

becomes so on the smaller category MSm∗/X rel
r introduced in Section 2.3.

Consequently, the complex Z below becomes quasi-isomorphic to Z on that

category.

Definition 2.7. Define the complex Z on MSm∗/BGLr by:

Z := cone
(
Z⊗∆◦∗ −−−−−−→

(incl.,incl.)
(Z⊗∆◦)⊕ (Z⊗∆∗)

)
.

The maps Γ
(a)◦
MSm,k(GLr)

on Z⊗∆◦, Γ
(a)∗
MSm on Z⊗∆∗ and the homotopy

{Γ(a)◦∗
m,k(GLr)

}
m

on Z⊗∆◦∗ determine a map of complexes

(4) Γ
(a)
MSm : Z → p∗z

1
k(GLr)

.

The next lemma follows from the definition of BGL∗r and the algebraic

independence of {xab}a,b.

Lemma 2.8.

(i) The intersection of
⋂r
a=1 Γ

(a)◦
0,k(GLr)

(X, v
[n]
θ(ka)) and (Pr−1 ×X◦)k(GLr) is

empty for every choice of 06 k1 6 · · ·6 kr 6 n.

(ii) The intersection of
⋂r
a=1 Γ

(a)∗
0 (X, v

[n]
θ(ka)) and Pr−1 ×X∗α,θ is empty for

every choice of 06 k1 6 · · ·6 kr 6 n.
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(iii) The intersection of (Pr−1 ×X◦∗α,θ)k(GLr) and:

( b⋂
a=1

Γ
(a)◦
0,k(GLr)

(X, v
[n]
θ(ka))

)
∩
( r⋂
a=b+1

Γ
(a)∗
0 (X, v

[n]
θ(ka))k(GLr)

)

is empty for every choice of 06 k1 6 · · ·6 kr 6 n and 06 b6 r.

By Lemma 2.8, we can apply Lemmas 1.10 and B.4 to conclude that the

cup product

(5) Γ
(1)
MSm · . . . · Γ

(r)
MSm : Z → p∗z

r
k(GLr)

is well defined. We now introduce a modulus version p∗z
i
rel,k(GLr)

⊂ p∗zik(GLr)

of the target. We shall show that the map (5) factors through it when

restricted to the category MSm∗/X rel
r introduced in Section 2.3.

Definition 2.9. For a field extension L/k, define the presheaf of

complexes p∗z
i
rel,L (cycle complex with modulus with scalar extension) on

MSm∗/BGLr by the rule

X = ((X, D), λ, f) 7→

{
p∗z

i
rel(XL) if D = ∅,

p∗z
i
rel(X) if D 6= ∅,

with the same presheaf structure as p∗z
i
rel. There is a scalar extension map

p∗z
i
rel→ p∗z

i
rel,L.

This definition may appear strange at first glance. It is motivated by

the fact that Bloch’s specialization map (Section 2.4) is available (and

necessary) only when D = ∅.

2.3 The relative Volodin space

Now we introduce the relative Volodin space presheaf. Its significance lies

in its relation to the relative K-theory; see Theorem 2.24.

Definition 2.10. Let (X, D) ∈MSm. Denote by I = ID ⊂OX the ideal

sheaf defining D. Let r > 0 be a non-negative integer and σ a partial order on

the set {1, . . . , r}. Then the subgroup T σ(X, D)⊂GLr(X) is defined to be

the set of matrices (xab)16a,b6r such that xab ≡ δab mod ID (Kronecker’s δ)

unless a
σ
< b. For example, if σ is the usual total order on {1, 2, 3}, then
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elements of T σ(X, D) look like:1 + I OX OX
I 1 + I OX
I I 1 + I

.
If another order σ′ extends σ (i.e., if a

σ
< b implies a

σ′

< b), we have

T σ(X, D)⊂ T σ′(X, D). The Volodin space X r(X, D) is the simplicial subset

of BGLr(X) defined by

X r(X, D) =
⋃
σ

BT σ(X, D)⊂BGLr(X).

We set X (X, D) = lim−→r
X r(X, D)⊂BGL(X). Define a Nisnevich sheaf X rel

r

on MSm by (X, D) 7→X r(X, D).

We also denote by X rel
r the presheaf induced by the forgetful functor

MSm∗→MSm. In particular, we have the site MSm∗/X rel
r fibered over it.

The inclusion X rel
r ↪→BGLr induces a functor MSm∗/X rel

r →MSm∗/BGLr.

Every presheaf and map of presheaves on the latter restrict to the former.

It follows for example that the projective bundle formula in Section 1 holds

on MSm∗/X rel
r in the same form.

Lemma 2.11. The map of simplicial presheaves ∆◦ t∆∗→∆ on

MSm∗/Xrel
r is surjective in the Zariski topology.

Proof. It suffices to prove the following: For each (X, D) ∈MSm∗, α=

(α1, . . . , αn) ∈BnGLr(X) and θ ∈∆n
m, we have X = (X \D) ∪X∗α,θ.

Let σ be a (total) order on {1, . . . , r} such that α ∈BT σ(X, D). The

matrices α1, . . . , αn are all upper triangular modulo ID up to permutation

by σ. It follows from the remark subsequent to Definition 2.4 that every

x ∈D belongs to X∗α,θ. This proves the lemma.

By Lemma 2.11, the complex Z is Zariski locally quasi-isomorphic to Z⊗
∆' Z by the map (Z⊗∆◦)⊕ (Z⊗∆∗) −−−−−−−−→

incl.t(−incl.)
Z⊗∆ when restricted

to MSm∗/X rel
r .

The rest of this subsection is devoted to the proof of the following:

Theorem 2.12. The map (5) restricted to MSm∗/Xrel
r factors through

the subcomplex p∗z
r
rel,k(GLr)

.
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Note that the assertion only concerns the part Γ
(1)∗
MSm · . . . · Γ

(r)∗
MSm : Z⊗

∆∗→ p∗z
r. The following criterion for the modulus condition will be useful.

Definition 2.13. [BS17, Section 4] Let A be a commutative ring with

unit and I be an ideal. A polynomial

f =
∑

λ1,...,λn

aλ1,...,λnt
λ1 · · · tλn ∈A[t1, . . . , tn]

is said to be admissible if aλ1,...,λn ∈ Imaxi{λi} and if a0,...,0 maps into (A/I)∗.

Lemma 2.14. [BS17, Lemma 4.3] Let X be an affine scheme equipped

with an effective Cartier divisor D. Let V be an integral closed subscheme

of X ×�n. If the defining ideal for V contains an admissible polynomial with

respect to the defining ideal of D, then V satisfies the modulus condition.

When X is a k-scheme of finite type equipped with an ideal sheaf I,

let us say that an ideal sheaf J on X ×�n is admissible if there exists an

affine open covering {Uα}α of X such that J restricted to each Uα ×�n
contains an admissible polynomial with respect to I(Uα). Note that if J is

admissible and f :X ′→X is a morphism from another scheme, the ideal

sheaf (f × id�n)∗J on X ′ ×�n is admissible with respect to f∗I, because

elements in a power Iλ pull back into the power (f∗I)λ.

Notation 2.15. Let {xibc}
i∈{1,...,n}
b,c∈{1,...,r} be the coordinates for BnGLr =

(GLr)
n. For an ordering σ on {1, . . . , r}, let Iσ be the ideal of OBnGLr

generated by xibc − δbc with i ∈ {1, . . . , n} and b, c ∈ {1, . . . , r} such that

b
σ
6< c, where δbc is Kronecker’s delta.

Under this notation, a section α ∈ (X rel
r )n(X, D) is the same as a

morphism of schemes X →BnGLr which maps the subscheme D into the

closed subscheme V (Iσ) for some σ. For subsets S, T ⊂ [n], let us write S 6 T
to mean s6 t for all s ∈ S and t ∈ T . Also, recall the symbol F (a)∗(S) from

Definition 2.3.

Proof of Theorem 2.12. The cycles defining the map Γ
(1)∗
MSm · . . . · Γ

(r)∗
MSm

are pull-backs of the universal cycles on Pr−1 ×BnGL∗r ×�n by individual

maps Pr−1 ×X ×�n→ Pr−1 ×BnGL∗r ×�n. In view of Lemma 2.14 and

this observation, Theorem 2.12 follows from the following lemma.

Lemma 2.16. Let n> 0 and r > 1 be integers and σ an order on

{1, . . . , r}. Let S1 6 · · ·6 Sr be nonempty subsets of [n]. Then the ideal
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sheaf on Pr−1 ×BnGLr ×�n associated to the homogeneous ideal generated

by:

F (a)∗(Sa) 16 a6 r

is admissible with respect to the ideal sheaf OPr−1⊗kIσ on Pr−1 ×BnGLr.

Lemma 2.16 follows from a more precise claim below. Note that we may

obviously assume that σ is a total order and, by symmetry, that σ is the

usual order σ = {1< · · ·< r}. Let us write I := Iσ for this σ.

For S ⊂ {1, . . . , n}, let us denote by [ti | i ∈ S]⊂ k[t1, . . . , tn] the 2|S|-

dimensional k-vector space spanned by monomials
∏
i∈S t

εi
i where εi ∈

{0, 1}. To ease the notation, we shall use the phrase:

“a polynomial of the form Tc · I · [ti | i ∈ S]” (c ∈ {1, . . . , r})

to mean a sum of polynomials of the form Tc · x · f with x ∈ I ⊂ k[xiab] and

f ∈ [ti | i ∈ S]. For a nonempty subset S of [n], we write S′ for the set S \ {the

minimum element of S}.

Claim 2.17. For any a ∈ {1, . . . , r}, the ideal of the polynomial ring

k[T1, . . . , Tr][x
i
bc |

16i6n
b,c∈{1,...,r}][t1, . . . , tn]

generated by {F (b)∗(Sb)}a6b6r contains a polynomial of the form

(6a) Ta +
r∑
c=1

(
Tc · I ·

[
ti | i ∈ S′a ∪ S′a+1 ∪ · · · ∪ S′r

])
.

Claim 2.17 implies Lemma 2.16 because formula (6a) divided by Ta gives

an admissible polynomial over the affine open set {Ta 6= 0}.
Proof of Claim. We proceed by descending induction on the index a

starting with a= r. Let us write down the definition of F (a)∗(S), where

a ∈ {1, . . . , r} and S ⊂ [n] is a nonempty subset with s+ 1 elements:

F (a)∗(S) =

s∑
i=1

(
(S∗(v

[s]
i )∗Ta) · tS(i)

s∏
j=i+1

(1− tS(j))

)

+ (S∗(v
[s]
0 )∗Ta) ·

s∏
j=1

(1− tS(j)).
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Since we are in the group T (X, D) of upper triangular matrices modulo I,

for any map v : [0]→ [n] (such as S ◦ v[s]
i ) the function v∗Ta has the form(a−1∑

b=1

Tb · I
)

+ Ta · (1 + I) +

( r∑
b=a+1

Tb · O
)
,

where O :=OBnGLr . By these two formulas and the identity tS(s) +

tS(s−1)(1− tS(s)) + · · ·+ (1− tS(1)) · · · (1− tS(s)) = 1, we get:

F (a)∗(S) = Ta +
a∑
b=1

(Tb · I · [ti | i ∈ S′a]) +
r∑

b=a+1

(Tb · O · [ti | i ∈ S′a]).

This already proves the assertion for a= r.

Now suppose a < r. By descending induction, we know that the ideal

in question contains polynomials of the form (6b) for b= a+ 1, . . . , r. In

particular, we get:

r∑
b=a+1

(Tb · O · [ti | i ∈ S′a])≡
r∑
c=1

(Tc · I · [ti | i ∈ S′a ∪ S′a+1 ∪ · · · ∪ S′r])

modulo the ideal in question. Here we used the fact that the product of

an element in [ti | i ∈ S] and one in [ti | i ∈ T ] with S ∩ T = ∅ belongs to

[ti | i ∈ S ∪ T ]. The last two formulas give a formula of the form (6a). This

completes the proof of Claim 2.17, hence also of Theorem 2.12.

Hence we have obtained a map

(7) Γ
(1)
MSm · . . . · Γ

(r)
MSm : Z → p∗z

r
rel,k(GLr)

in D(MSm∗/X rel
r ).

2.4 Specialization map, and end of construction of ξrrel
Bloch defined a specialization map zi(XL, •)→ zi(X, •) in the derived

category when L/k is a purely transcendental extension of finite degree

equipped with a transcendence basis and X is an equidimensional k-scheme

[Bl86, pages 291, 292]. Likewise, we can define a specialization map

spL/k : p∗z
i
rel,L→ p∗z

i
rel

in D(MSm∗/X rel
r ) by using his map when D = ∅ and setting it to be the

identity when D 6= ∅, roughly speaking. See Appendix B.4 for a careful

definition.
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This applies in particular to the field L= k(GLr). Since the specialization

map depends on the transcendental basis and the order thereof, we fix a total

order on the set N× N once and for all, and use the induced order on the

variables {xab}(a,b)∈{1,...,r}2 .

Definition-Lemma 2.18. We define the map ξrrel in D(MSm∗/Xrel
r ) by:

(8) ξrrel : Z ∼←−Z (7)−−→ p∗z
r
rel,k(GLr)

sp−→ p∗z
r
rel.

It does not depend on the choice of the ordering.

Proof. Suppose that two consecutive variables in a given order are

interchanged. Via the corresponding automorphism on k(GLr) and hence

on p∗z
r
rel,k(GLr)

, the problem is equivalent to the situation where the spe-

cialization map stays the same but the map Z → p∗z
r
rel,k(GLr)

is constructed

with the two variables interchanged. But this difference is within homotopy

by the homotopy at the end of Section 1.2.

Remark 2.19. We will need to know that some cycles we have defined

so far have certain alternative constructions when the base is restricted.

(i) After the restriction of the base X rel
r ×X rel

s ↪→X rel
r+s, the map ξr+srel

(on the level of presheaf map Z → p∗z
r+s
rel,k(GLr+s)

) can be defined

using the alternative T ◦a as follows: T ◦a :=
∑r

b=1 Tbxba if 16 a6 r,
and T ◦a :=

∑r+s
b=r Tbxba if r + 16 a6 r + s. This works because the

proper intersection condition needed is now weaker (i.e., an analog of

Lemma 2.8 is true with this T ◦a on X rel
r ×X rel

s ). In this case, it is defined

over the subfield k(GLr ×GLs) of k(GLr+s) (the inclusion comes from

the projection Mr+s→Mr ×Ms of the spaces of matrices).

(ii) In Section 1.11, we defined maps (for j 6 r − 1)

p∗(−) · ξj : zi−jrel → p∗z
i
rel in D(MSm∗/BGLr)

using cycles given by the Friedlander–Lawson moving lemma. On the

smaller category MSm∗/X rel
r , it can be constructed in the style of this

Section 2. Namely we use the maps Γ
(a)
MSm in formula (4)

Cj
MSm∗/X rel

r
:= Γ

(1)
MSm · . . . · Γ

(j)
MSm : Z → p∗z

j
k(GLr)

(actually, any choice of j members out of {1, . . . , r} will do, in place of

1, . . . , j), and use the specialization map. When j = r, this is the same
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as the construction of ξrrel, so it is well defined also for j = r. Again,

when we restrict the base from X rel
r+s to X rel

r ×X rel
s as in (i), we can

use the simpler choice of T ◦a (which are built in Γ
(a)
MSm).

2.5 Chern classes on the relative Volodin space

Let r > 0. In Theorem 1.11, we have proved an isomorphism

p∗(−) · ξj :
r−1⊕
j=0

zr−jrel
'−→ p∗z

r
rel

in D(MSm∗/BGLr), and thus in D(MSm∗/X rel
r ). In Definition-Lemma 2.18,

we have constructed a map

ξrrel : Z→ p∗z
r
rel

in D(MSm∗/X rel
r ). It follows that there are unique morphisms ci : Z→ zirel in

D(MSm∗/X rel
r ) for 16 i6 r which satisfy the equality of maps Z⇒ p∗z

r
rel:

(9) ξrrel + (p∗c1) · ξr−1 + · · ·+ p∗cr = 0.

It is convenient to define ci := 0 for i > r. By Theorem A.5 applied to C =

MSm∗, we have an isomorphism

HomHo(sPSh(MSm∗))(X
rel
r , K(zirel, 0))∼= HomD(MSm∗/X rel

r )(Z, z
i
rel).

Denote again by ci the corresponding map ci : X rel
r →K(zirel, 0) in the

Nisnevich-local homotopy category of simplicial presheaves Ho(sPSh

(MSm∗)).

Definition 2.20. The above-defined maps:

ci : Z→ zirel or ci : X rel
r → zirel

are called the Chern classes (of rank r).

Note that for every r, i> 1 the composite in Ho(sPSh(MSm∗)):

∗= (the identity matrix) ↪→X rel
r

ci−→K(zirel, 0)

equals the constant map to the base point because the map ξrrel is represented

by the empty cycle when restricted to MSm∗/{id}. By this fact and a

somewhat standard result below, it follows that ci come from unique maps

X rel
r →K(zirel, 0) in Ho(sPSh∗(MSm∗)), the homotopy category of pointed

simplicial presheaves.
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Lemma 2.21. cf. [AS13, Proposition 5.2] Let (X, x) be a pointed object

in sPSh(MSm∗) and (K, eK) be a group object in the same category. Then

the square of sets below is cartesian:

HomHo(sPSh∗(MSm∗))((X, x), (K, eK)) //

��

pt

��
HomHo(sPSh(MSm∗))(X, K) // HomHo(sPSh(MSm∗))(x, K)

where the left vertical arrow is the “forget the base point” map and the right

vertical arrow maps the point to the constant map at eK .

Next, associated with the embedding ι : GLr ↪→GLr+1; α 7→
(
α 0
0 1

)
, we

have embeddings X rel
r ↪→X rel

r+1 and Pr−1 ↪→ Pr; (T1 : · · · : Tr) 7→ (T1 : · · · :
Tr : 0). The following is a special case of Proposition 3.4.

Lemma 2.22. The following diagram in Ho(sPSh∗(MSm∗)):

Xrel
r ι

//

ci

66
Xrel
r+1 ci

// K(zirel, 0)

commutes for i> 1.

2.6 Chern classes on the relative K-theory

We let K be a functorial model of Thomason–Trobaugh’s K-theory

[TT90, 3.1], that is, it is a presheaf of spectra K such that for every

quasicompact quasiseparated scheme X, K(X) is the K-theory spectrum

of the Waldhausen category of perfect complexes on X.

Definition 2.23.

(i) We define a presheaf Krel of spectra on MSm by

Krel((X, D)) = K(X, D) = hofib(K(X)→K(D)).

(ii) We define a presheaf Zrel on MSm by

Zrel((X, D)) =

{
Z if D = ∅,
0 if D 6= ∅.
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We use Bousfield–Kan’s Z-completion in [BK72] as a functorial model of

Quillen’s plus construction. The Z-completion is an endofunctor Z∞ : S → S
of the category of spaces (= simplicial sets) with a natural transformation

IdS → Z∞. We will apply Z∞ sectionwise to simplicial presheaves.

The following is a relative and functorial version of Quillen’s “+ =Q”

theorem.

Theorem 2.24. There exists an isomorphism

Ω∞Krel ' Zrel × Z∞Xrel

in Ho(sPSh∗(MSm)).2 Under this isomorphism, the multiplication of Ω∞Krel

coming from loop composition is compatible with the one of Zrel × Z∞Xrel

coming from the group law of Z and the diagonal sum of matrices.

Proof. As in [Lo98, 11.3.6], for any ring A with an ideal I, there exists

an isomorphism

Ω∞K(A, I)'K0(A, I)× Z∞X (A, I).

The construction of the isomorphism can be functorial for the connected

components (cf. [Gi81, Proposition 2.15] for the case I = 0), and thus the

desired isomorphism follows. We can verify easily that each step of the

construction of the isomorphism is compatible with the multiplications.

Theorem 2.25. For r > 2l + 2, the canonical map

Z∞Xrel
r → Z∞Xrel

is a Zariski-local l-equivalence of simplicial presheaves on MSm, that is, a

Zariski-local weak equivalence after taking the lth Postnikov filtration.

Proof. By Suslin’s stability as formulated in [Be14, Section 5], for any

local ring A with an ideal I, the canonical map X r(A, I)→X (A, I) induces

homology isomorphisms in degree less or equal to (r − 1)/2. Then it follows

from [BK72, Chapter I 6.2] that the morphism

πlZ∞X r(A, I)→ πlZ∞X (A, I)

is an isomorphism for l 6 (r − 2)/2. This proves the theorem.

2In fact, the isomorphism exists in the Zariski-local homotopy category of simplicial
presheaves over any reasonable category of pairs of schemes.
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In Definition 2.20, we have constructed maps

ci : X rel
r →K(zirel, 0)

for 16 i6 r in Ho(sPSh∗(MSm∗)). Let l > 0. For r� l, we have the following

sequence of morphisms in Ho(sPSh∗(MSm∗)):

Ω∞Krel ∼

2.24
τ6lCi

��

Zrel × Z∞X rel

projection
��

Z∞X rel

canonical
��

K(τ6lz
i
rel, 0)

PlZ∞X rel PlK(zirel, 0)

'
��

o

PlZ∞X rel
r

'2.25

OO

Plci // PlZ∞K(zirel, 0)

where Pl is the lth Postnikov filtration and τ6l is the lth canonical filtration.

According to Lemma 2.22, the composite τ6lCi is independent of the choice

of r. Also, the diagram

Ω∞Krel
τ6l+1Ci

//

τ6lCi ''

K(τ6l+1z
i
rel, 0)

��

K(τ6lz
i
rel, 0)

commutes, where the vertical map is the obvious one.

Theorem 2.26. Let i > 0. There exists a morphism

Ci : Ω∞Krel→ “ lim
l

”K(τ6lz
i
rel, 0)

in pro-Ho(sPSh∗(MSm∗)). For n> 0, its (−n)th hypercohomology on a

modulus pair (X, D) yields a map

Cn,i : Kn(X, D)→H−nNis((X, D), zirel),

which is functorial in (X, D) ∈MSm and is a group homomorphism for

n > 0. This map coincides with Bloch’s Chern class [Bl86, Section 7] when

D = ∅.
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Proof. We define Ci = “ liml”τ6lCi. Since the Nisnevich cohomological

dimension of X is finite, by taking the (−n)th hypercohomology of Ci, we

obtain

Cn,i : Kn(X, D)
'−→ H−nNis((X, D),Krel)

→ H−nNis((X, D), τ6lz
i
rel)'H−nNis((X, D), zirel).

The first map is an isomorphism by Thomason–Trobaugh’s Nisnevich

descent. Recall that MSm∗ could be the category over any finite diagram

in MSm, which ensures the functoriality. The map Cn,i is a group homo-

morphism for n > 0 since it is defined by taking the nth homotopy groups.

Compatibility with Bloch’s Chern class is immediate from the construction.

§3. Whitney sum formula

We show the Whitney sum formula for C0,∗ by doing some more cycle

computation. It involves the operation called algebraic join.

3.1 Algebraic join

Let X be a scheme. Consider the projective spaces over X: Pr−1
X =

Proj
(
OX [T1, . . . , Tr]

)
, Ps−1

X = Proj
(
OX [Tr+1, . . . , Tr+s]

)
and

(10) Pr+s−1
X = Proj

(
OX [T1, . . . , Tr+s]

)
.

The schemes Pr−1
X and Ps−1

X are naturally closed subschemes of Pr+s−1
X .

We consider the rational maps q1 : Pr+s−1
X 99K Pr−1

X and q2 : Pr+s−1
X 99K Ps−1

X

defined by (T1, . . . , Tr+s) 7→ (T1, . . . , Tr) and 7→ (Tr+1, . . . , Tr+s).

Denote by π1 : P1→ Pr+s−1
X the blow-up along the ill-defined locus Ps−1

X of

q1. Then q1 induces a morphism q′1 : P1→ Pr−1
X which is a Ps-bundle. Denote

by q∗1 the operation on cycles defined as flat pull-back q′∗1 followed by proper

push-forward π1∗. Similarly, if π2 : P2→ Ps−1
X is the blow-up along Pr−1

X , the

rational map q2 induces a morphism q′2 : P2→ Ps−1
X which is a Pr-bundle.

Denote by q∗2 the flat pull-back q′∗2 followed by push-forward π2∗.

Observe the obvious fact that the cycle in Pr−1
X given by a set of

homogeneous equations {fα(T1, . . . , Tr)}α is mapped by q∗1 to the cycle

in Pr+s−1
X defined by the same equations.

Lemma 3.1. Let α be an element in zi(Pr−1
X , m) and β be an element

in zj(Pr−1
X , n). Suppose that the intersection product α · β ∈ zi+j(Pr−1

X , m+

n) is defined. Then the same holds for cycles q∗1α ∈ zi(P
r+s−1
X , m) and
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q∗1β ∈ zj(P
r+s−1
X , n) and we have an equality in zi+j(Pr+s−1

X , m+ n):

q∗1(α · β) = (q∗1α) · (q∗1β).

The same is true for the operation q∗2.

Proof. Preservation of intersection product certainly holds for flat pull-

back. It holds for proper push-forward by birational maps π when the two

cycles α′, β′ under consideration satisfy:

• The intersection product (π∗α
′) · (π∗β′) is again defined, and

• no component of α′, β′, α′ · β′ or (π∗α
′) · (π∗β′) is contained in the

exceptional locus of π.

This condition is satisfied in our case.

Definition 3.2. Let α ∈ zi(Pr−1
X , m) and β ∈ zj(Ps−1

X , n) be cycles.

Consider the cycles q∗1α ∈ zi(P
r+s−1
X , m) and q∗2β ∈ zj(P

r+s−1
X , n). When the

intersection (q∗1α) · (q∗2β) ∈ zi+j(Pr+s−1
X , m+ n) is well defined, we denote it

by α#β.

The operation (α, β) 7→ α#β is called algebraic join. It has been system-

atically used by authors like Friedlander, Lawson, Michelsohn and Walker.

The authors of the present article learned this technique mainly in [FL98].

3.2 The equalities

Let r, s be non-negative integers. We keep the coordinate convention

(10) when considering projective bundles P(EGLr) and P(EGLs). On the

category MSm∗/X rel
r ×X rel

s we consider presheaves:

• p1∗z
i
rel, which is induced from p∗z

i
rel on MSm∗/X rel

r by the first projection

X rel
r ×X rel

s →X rel
r ;

• p2∗z
i
rel, induced by the second projection X rel

r ×X rel
s →X rel

s ;

• p∗zirel, induced by the inclusion X rel
r ×X rel

s ↪→X rel
r+s;

• their nonmodulus counterparts p1∗z
i, p2∗z

i and p∗z
i.

Let us distinguish the pull-back maps by writing p∗1 : zirel→ p1∗z
i
rel, p

∗
2 : zirel→

p2∗z
i
rel and p∗ : zirel→ p∗z

i
rel. Similarly, we can consider three different ver-

sions of Z’s, denoted by Z1, Z2 and Z. There are obvious maps Z →Z1

and Z →Z2.

We may consider the partially defined join operator # : p1∗z
i
rel ⊗

p2∗z
j
rel 99K p∗z

i+j
rel and its nonmodulus version. The modulus version is a
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well-defined map in D(MSm∗/X rel
r ×X rel

s ) (Section B.1.2). Given two maps

α : Z → p1∗z
i and β : Z → p2∗z

j , we consider their cup product followed by

algebraic join to get a map α#β : Z → p∗z
i+j whenever it is well defined.

In Remark 2.19 (ii), we defined maps Ci
MSm∗/X rel

r
of presheaves on

MSm∗/X rel
r . Via Z →Z1, it induces a map

Ci
MSm∗/X rel

r
: Z → p1∗z

i
k(GLr)

on MSm∗/X rel
r ×X rel

s

which we denote by the same symbol. Similarly for Cj
MSm∗/X rel

s
. Recall that

they depend on the choice of i indices out of {1, . . . , r} and j out of {r +

1, . . . , r + s} although it is not explicit in the notation.

Also, thanks to Remark 2.19 (i)(ii), we have yet other maps

Ck
MSm∗/X rel

r+s
: Z → p∗z

k
rel,k(GLr×GLs)

for integers 16 k 6 r + s.

Proposition 3.3. For any 06 i6 r and 06 j 6 s, the two maps

Ci
MSm∗/Xrel

r
#Cj

MSm∗/Xrel
s

and Ci+j
MSm∗/Xrel

r+s
: Z ⇒ p∗z

i+j
k(GLr×GLs)

are equal as maps of presheaves on MSm∗/Xrel
r ×Xrel

s under appropriate

choices of indices (specified in the proof). In particular we have ξrrel#ξ
s
rel =

ξr+srel as maps Z⇒ p∗z
r+s
rel in D(MSm∗/Xrel

r ×Xrel
s ).

Proof. It suffices to prove the corresponding equality of cycles on the

simplicial scheme P(EGLr+s)|BGLr×BGLs . By the definition of algebraic join

of maps, the problem is to prove the equality of maps:

q∗1(Γ
(1)
BGLr

· . . . · Γ(i)
BGLr

) · q∗2(Γ
(r+1)
BGLs

· . . . · Γ(r+j)
BGLs

)

= Γ
(1)
BGLr+s

· . . . · Γ(i)
BGLr+s

· Γ(r+1)
BGLr+s

· Γ(r+j)
BGLr+s

from the cone of

Z[B•GL∗r ×B•GL∗s]→ Z[B•(GLr ×GLs)]⊕ Z[B•GL∗r ×B•GL∗s]

to zr+s(Pr+s−1
k(GLr×GLs)

×−, •). By Lemma 3.1, it is reduced to the equalities

of cycles q∗1Γ
(a)∗
BGLr

(S) = Γ
(a)∗
BGLr+s

(S) on P(EnGLr+s)|BGL∗r×BGL∗s
for all 16

a6 r and nonempty subsets S ⊂ [n], and its variants involving ◦, ◦∗ and

q∗2. In view of the fact observed before Lemma 3.1, this last equality clearly

holds. This completes the proof of the proposition.
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Now, consider the following diagram in D(MSm∗/X rel
r ×X rel

s ) (see Sec-

tions B.1.1, B.1.2 for the tensor products
:D
⊗):

(11)(
Z⊕

r⊕
i=1

zirel

) :D
⊗
(
Z⊕

s⊕
j=1

zjrel

)
intersection

��

σ(r)⊗σ(s)
// p1∗z

r
rel

:D
⊗ p2∗z

s
rel

#

��

Z⊕
r+s⊕
k=1

zkrel
σ(r+s)

// p∗z
r+s
rel

where the vertical map “intersection” sends an element (α0, (αi)i)⊗
(β0, (βj)j) to the tuple of cycles (

∑
k=i+j αi · βj)06k6r+s. The horizontal

maps σ are defined by σ(r) : (α0, (αi)
r
i=1) 7→ α0ξ

r
rel +

∑r
i=1 p

∗(αi) · ξr−i.
Applying Lemma 3.1, Proposition 3.3 and the commutativity of intersection

product in the derived category, one checks that the diagram (11) commutes.

The rank r Chern classes ci are characterized by the property that the

composite map Z (1,c1,...,cr)−−−−−−→ Z⊕
⊕r

i=1 z
i
rel

σ−→ p∗z
r
rel is zero. Of course the

same holds for the rank s case. It follows by the commutativity of (11) that

the composite Z
(
∑
i+j=k ci · cj)k>0

−−−−−−−−−−−−→ Z⊕
⊕r+s

k=1 z
k
rel

σ−→ p∗z
r+s
rel is zero. From the

characterization of Chern classes we get:

Proposition 3.4. We have an equality ck =
∑

i+j=k ci · cj (where

c0 := 1) of maps Z⇒ zkrel in D(MSm∗/Xrel
r ×Xrel

s ) for 16 k 6 r + s.

Equivalently, it is an equality of maps X rel
r ×X rel

s ⇒K(zkrel, 0) in the

homotopy category of pointed simplicial presheaves Ho(sPSh∗(MSm∗)).

Corollary 3.5. The diagram in Ho(sPSh∗(MSm∗))

Xrel
r ×Xrel

s

(1,c1,...,cr)×(1,c1,...,cs)
//

��

K
(
Z⊕

r⊕
i=1

zirel, 0
)
×K

(
Z⊕

s⊕
i=1

zirel, 0
)

��

Xrel
r+s

(1,c1,...,cr+s)
// K
(
Z⊕

r+s⊕
i=1

zirel, 0
)
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is commutative, where the left vertical map is defined by the diagonal sum

of matrices and the right one is defined by the intersection product.

3.3 Whitney sum formula on the relative K-theory

We set z̃∗rel := Z⊕ (
⊕

i>1z
i
rel). We define the total Chern class map

(12) Ctot : Ω∞Krel ∼= Zrel × Z∞X rel→ Z× “ lim
l

”K(τ6lz̃
∗
rel, 0)

by the product of the canonical map Zrel→ Z and (1, C1, C2, . . .). We

have seen that the diagonal sum of X rel and the group law of Zrel is

compatible with the loop composition of Ω∞Krel (Theorem 2.24). It follows

from Corollary 3.5 that the diagram in pro-Ho(sPSh∗(MSm∗))

Ω∞Krel × Ω∞Krel
Ctot×Ctot //

��

Z× Z× “ lim
l

”K(τ6lz̃
∗
rel ⊗ τ6lz̃∗rel, 0)

sum×prod

��
Ω∞Krel

Ctot // Z× “ lim
l

”K(τ6lz̃
∗
rel, 0)

is commutative. By taking the 0th hypercohomology of Ctot on a modulus

pair (X, D), we obtain a map

(13) K0(X, D)→ Z× {1} ×
⊕
i>1

H0
Nis((X, D), zirel).

We regard the target as a group by(
n, 1 +

∑
i>1

αi

)
·
(
m, 1 +

∑
j>1

βj

)
=

(
n+m, (1 +

∑
i>1

αi)(1 +
∑
j>1

βj)

)
.

It follows from the above commutative diagram that:

Theorem 3.6. The map (13) is a group homomorphism. In other words,

we have

C0,i(α+ β) =
∑

j+k=i, j,k>0

C0,j(α)C0,k(β)

for α, β ∈K0(X, D) with the convention C0,0 = 1.
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§4. Chern character and application

4.1 Chern character

We set

A0 = Hom(Ω∞Krel, Z) and Ai = Hom(Ω∞Krel, “ lim
l

”K(τ6lz
i
rel, 0)),

where the Hom group is taken in the category pro-Ho(sPSh∗(MSm∗)). Under

this convention, the total Chern class (12) is in the set A0 × {1} ×
∏
i>1 A

i.

We define a map

ch :A0 × {1} ×
⊕
i>1

Ai→A∗Q :=
∏
i>0

Ai ⊗Q

as in [SGA6, Exposé 0, Appendix 1.26], that is,

ch
((
n, 1 +

∑
i>1

xi
))

= n+ η
(

log
(

1 +
∑
i>1

xi
))
,

where η is an endomorphism of A∗Q defined by η(xi) = (−1)i−1xi/(i− 1)!.

The image of Ctot by ch gives a map

(14) ch : Ω∞Krel→ “ lim
l

”K(τ6l(z̃
∗
rel)Q, 0)

in pro-Ho(sPSh∗(MSm∗)). According to Theorems 2.26 and 3.6, we obtain

the following result.

Theorem 4.1. Let (X, D) ∈MSm and n> 0. The (−n)th hypercoho-

mology of (14) yields a group homomorphism

chn : Kn(X, D)→H−nNis((X, D), (z̃∗rel)Q),

which is functorial in (X, D) and coincides with Bloch’s Chern character

when D = ∅.

For an additive category A, let AQ be the category up to isogeny, which

has the same objects as A and HomAQ(M, N) = HomA(M, N)⊗Q. We

denote the image of M ∈ A in AQ by MQ.

For a presheaf F on MSm, we define a pro-system of presheaves F̂ by

F̂ ((X, D)) = {F (X, mD)}m>1.
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The above argument can be modified to obtain a map

(15) ĉh : (Ω∞K̂rel)Q→ “ lim
l

”K(τ6l ˆ̃z
∗
rel, 0)Q

in pro-Ho(pro-sPSh∗(MSm∗))Q. Here is a variant of Theorem 4.1.

Theorem 4.2. Let (X, D) ∈MSm and n> 0. The (−n)th hypercoho-

mology of (15) yields a morphism

chn : {Kn(X, mD)}m,Q→{H−nNis((X, mD), z̃∗rel)}m,Q

in the category of pro-abelian groups (pro-Ab)Q up to isogeny. This is

functorial in (X, D) and coincides with Bloch’s Chern character when

D = ∅.

4.2 Relative motivic cohomology of henselian dvr

Let k be a field of characteristic zero. Let A be a henselian dvr over k

and π its uniformizer. Set X = SpecA and D = SpecA/π. In this section, we

prove the following.

Theorem 4.3. For every n> 0, there is a natural isomorphism

{CH∗(X|mD, n)}m,Q
' {Kn(X, mD)⊕ ker(CH∗(X|mD, n)→ CH∗(X, n))}m,Q

in the category (pro-Ab)Q of pro-abelian groups up to isogeny.

We expect that {ker(CHi(X|mD, n)→ CHi(X, n))}m,Q vanishes.

Lemma 4.4. The canonical map

Kn(A)→{Kn(A/πm)}m

is a pro-epimorphism.

Proof. By Artin’s approximation theorem [Ar69], we may replace A by

its completion Â' F [[t]], that is, enough to show that

Kn(F [[t]])→{Kn(F [t]/tm)}m

is a pro-epimorphism.

Since Kn(F [[t]])→Kn(F ) is a split surjection, it suffices to show that

Kn(F [[t]], (t))→{Kn(F [t]/tm, (t))}m
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is a pro-epimorphism. By Goodwillie’s theorem [Go86] and the HC version

of pro HKR theorem [Mo15, Theorem 3.23], we have pro-isomorphisms

{Kn(F [t]/tm, (t))}m ' {HCn−1(F [t]/tm, (t))}m

'
{ n−1⊕

p=0

H2p−(n−1)(Ω6pF [t]/tm,(t))

}
m

,

where Ωj
A,I := ker(Ωj

A→ Ωj
A/I). By the Poincaré lemma [Wei94, Corollary

9.9.3], we have

Hj(Ω•F [t]/tm,(t)) = 0

for every m, j > 0. Hence, it follows that

{Kn(F [t]/tm, (t))}m ' {Ω
n−1
F [t]/tm,(t)/dΩn−2

F [t]/tm,(t)}m.

Consider the commutative diagram

0 // Hn−1(Ω•F [t]/tm) //

'
��

Ωn−1
F [t]/tm/dΩn−2

F [t]/tm
//

����

dΩn−1
F [t]/tm

//

����

0

0 // Hn−1(Ω•F ) // Ωn−1
F /dΩn−2

F
// dΩn−1

F
// 0

where the rows are exact and the vertical maps are split surjections. Again

by the Poincaré lemma, the left vertical map is an isomorphism, and thus

we have an isomorphism

Ωn−1
F [t]/tm,(t)/dΩn−2

F [t]/tm,(t) ' dΩn−1
F [t]/tm/dΩn−1

F
'←−
d
tF [t]/tm ⊗F Ωn−1

F .

Given an element f ⊗ d log y1 ∧ · · · ∧ d log yn−1 ∈ tF [t]/tm ⊗F Ωn−1
F , the

element {exp(f), y1, . . . , yn−1} ∈KM
n (F [[t]]) lifts it via

KM
n (F [[t]])

d log
//Ωn
F [t]/tm tF [t]/tm ⊗F Ωn−1

F .? _
doo

Therefore, the composite

Kn(F [[t]], t)→{Kn(F [t]/tm, (t))}m ' {tF [t]/tm⊗FΩn−1
F }

is isomorphic to a levelwise epimorphism, and thus the first map is a pro-

epimorphism. This proves the lemma.
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Proof of Theorem 4.3. The Chern character ĉhn in Theorem 4.2 fits into
the commutative diagram

0 // {Kn(A, (π)m)}m,Q //

ĉhn
��

Kn(A)Q
β
//

chn'
��

{Kn(A/πm)}m,Q // 0

{CH∗(X|mD, n)}m,Q
α // CH∗(X, n)Q

in (pro-An)Q. By Lemma 4.4, the upper sequence is exact. By Bloch’s com-

parison theorem in [Bl86], the middle vertical map chn is an isomorphism.

Hence, it follows that the left vertical map ĉhn is a pro-monomorphism.

We shall show that the composite

Θ := β ◦ ch−1 ◦ α : {CH∗(X|mD, n)}m,Q→{Kn(A/πm)}m,Q
is the zero map.

Binda–Saito [BS17] has constructed the cycle map

CHi(X|mD, n)→H2i−n(Ω>iX|mD),

where Ωj
X|mD = Ωj

A(log D)⊗Aπm. Note that we have a pro-isomorphism

{Ωj
X|mD}m ' {Ω

j
A ⊗Aπm}m. Hence, we have a commutative diagram

{CHi(X|mD, n)}m //

��

CHi(X, n)

��

{H2i−n(Ω>iA ⊗Aπm)}m // H2i−n(Ω>iA ) // {H2i−n(Ω>iA/πm)}m

and the bottom composite is zero. Here, the second vertical map is the usual

cycle map to the de Rham cohomology, and the composite

Kn(A)
ch //CH∗(X, n)Q //H2∗−n(Ω>∗A ) HNn(A)

'oo

coincides with Goodwillie’s Chern character by [Wei93]. Therefore, the

composite

{CH∗(X|mD, n)}m,Q
Θ // {Kn(A/πm)}m,Q

c

��
{HNn(A/πm)}m,Q

' // {H2∗−n(Ω>∗A/πm)}m,Q
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equals zero, where c is Goodwillie’s Chern character and the last isomor-

phism is by the pro HKR theorem again. (The pro HKR theorem may

not yield a pro-isomorphism for HN in general, but now the relative part

HNn(A/πm, (π)) is equal to HCn−1(A/πm, (π)) for which we can apply the

pro HKR theorem, and we obtain the above pro-isomorphism by the five

lemma.)

Consider the commutative diagram

{CH∗(X|mD, n)}m,Q
Θ // {Kn(A/πm)}m,Q

γ
//

c
��

Kn(F )m,Q

c1
��

{H2∗−n(Ω>∗A/πm)}m,Q // H2∗−n(Ω>∗F )m,Q

where c and c1 are Goodwillie’s Chern characters and γ is the canonical
map. We have seen that c ◦Θ = 0, and it is clear that γ ◦Θ = 0. We claim
that the kernels of c and c1 are isomorphic, which implies that Θ = 0. Indeed,
the above square fits into the diagram

{H2∗−(n−1)(Ω>∗
A/πm)} //

����

{Kinf
n (A/πm)} //

'
��

{Kn(A/πm)}
c //

��

{H2∗−n(Ω>∗
A/πm)}

����

H2∗−(n−1)(Ω>∗
F ) // Kinf

n (F ) // Kn(F )
c1 // H2∗−n(Ω>∗

F )

with exact rows. Here, the first vertical map is surjective and the second

vertical map is an isomorphism by Goodwillie’s theorem [Go86]. Hence,

ker c' ker c1 follows.

Consequently, we obtain a morphism

φ : {CH∗(X|mD, n)}m,Q→{Kn(A, (π)m)}m,Q.

It is clear that φ ◦ ĉhn = id and that α ◦ ĉhn ◦ φ= α. This completes the

proof of Theorem 4.3.
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Appendix A. A lemma on local homotopy theory

The goal in this section is to prove Theorem A.5. We fix a small

site C. We denote by PSh(C) (resp. sPSh(C)) the category of presheaves

(resp. simplicial presheaves) on C. We endow sPSh(C) with the local injective

model structure, cf. [Jar15, Theorem 5.8]. Let us begin with a general

construction:

Definition A.1. Let F : Λ→ PSh(C) be a functor with Λ being an

arbitrary small category. We define the site C/F fibered over F as follows:

The objects are all pairs (X, λ, α) with X ∈ C, λ ∈ Λ and α ∈ F (λ)(X). The

morphisms from (X, λ, α) to (Y, µ, β) are all commutative diagrams in the

category of presheaves on C

X
α //

��

F (λ)

F (θ)

��
Y

β
// F (µ)

for some morphism θ in Λ. The covering families of (X, λ, α) are

{Ui} //

""

X

α

��
F (λ)

where {Ui}→X is a covering of C.

In this section, we only use the case Λ = ∗ or Λ = ∆op. In the latter case,

a functor F : ∆op→ PSh(C) is just a simplicial presheaf. In principle, we

denote by F a simplicial presheaf.
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A.1 Sites fibered over presheaves

Let X be a presheaf on C. The forgetful functor q : C/X →C induces an

adjunction

(A1) q∗ : sPSh(C/X)� sPSh(C) : q∗.

Concretely, for G ∈ sPSh(C/X) and U ∈ C, the functor q∗ is given by

q∗(G)(U) =
⊔

φ : U→X
G(φ).

Then, as in the proof of [Jar15, Lemma 5.23], we see that q∗ preserves

cofibrations and local weak equivalences. Therefore:

Lemma A.2. The adjunction (A1) is a Quillen adjunction with respect

to the local injective model structures.

A.2 Sites fibered over simplicial presheaves

Let F be a simplicial presheaf on C. The canonical functor jn : C/Fn→
C/F induces an adjunction

(A2) j∗n : sPSh(C/Fn)� sPSh(C/F ) : jn∗.

For G ∈ sPSh(C/Fn) and (X
α−→ Fm) ∈ C/F , we have

j∗n(G)(X
α−→ Fm) =

⊔
θ : [n]→[m]

G(X
θ∗α−−→ Fn).

It follows that j∗n preserves cofibrations and local weak equivalences. Hence:

Lemma A.3. For every n> 0, the adjunction (A2) is a Quillen adjunc-

tion with respect to the local injective model structures.

Remark A.4. The adjunctions (A1) and (A2) are also Quillen adjunc-

tions with respect to the local projective model structures. Since projective

fibrations are defined levelwise, it is clear that the forgetful functors q∗ and

jn∗ preserve projective fibrations and trivial projective fibrations.

For simplicial presheaves G, H on C, let hom(G, H) be the function

complex, that is, the simplicial set given by

hom(G, H)n := HomsPSh(C)(G×∆n, H).
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Let j : C/F →C be the forgetful functor, which induces

j∗ : sPSh(C)→ sPSh(C/F ).

Here is the main result in this section, which is a generalization of [Jar15,

Proposition 5.29].

Theorem A.5. Let Z be an injective fibrant object in sPSh(C) and W

an injective fibrant replacement of j∗Z in sPSh(C/F ). Then we have a weak

equivalence

hom(F, Z)' hom(∗, W ).

In particular, for any presheaf A of complexes of abelian groups on C, we

have an isomorphism

H∗(F, A) := HomHo(C)(F, K(A, ∗))'H∗(C/F, j∗A).

A.3 Preliminaries to the proof

A.3.1 Homotopy limits

Let I be a small category. Recall that the homotopy limit of a functor

X : I → sSet (sSet = the category of simplicial sets) is defined by

holimi∈I X(i) := hom(B(I ↓ −), X),

where I ↓ − is the functor I → Cat assigning the comma category I ↓ i to

each i ∈ I. Note that the final map B(I ↓ −)→∗ in sSetI is a sectionwise

weak equivalence. Hence, in case X is an injective fibrant, we have a weak

equivalence

(A3) holimi∈I X(i)' hom(∗, X) = lim
i∈I

X(i).

Lemma A.6. Let Z be a sectionwise fibrant object in sPSh(C/F ). Then

there exists a natural weak equivalence

holimX∈C/F Z(X)' holimm∈∆ holimX∈C/Fm Z(X).

Proof. We construct a morphism

(A4) Ψ : hocolimm∈∆op

(
j∗mB

(
(C/Fm)op ↓ −

)) '−→B
(
(C/F )op ↓ −

)
in sPSh(C/F ), and show that it is a sectionwise weak equivalence between

projective cofibrant objects in sPSh(C/F ). Let X
α−→ Fn be an object in C/F .
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Then we have

j∗m
(
B
(
(C/Fm)op ↓ −

))
(X, α) =

⊔
θ : [m]→[n]

B
(
(C/Fm)op ↓ (X, θα)

)
.

Hence, the sections at (X
α−→ Fn) of the left hand side of (A4) are equal to

the coequalizer of⊔
[l]

σ−→[m]
θ−→[n]

B
(
(C/Fm)op ↓ (X, θα)

)
×B(∆ ↓ l)

⇒
⊔

θ : [m]→[n]

B
(
(C/Fm)op ↓ (X, θα)

)
×B(∆ ↓m).(A5)

For each θ : [m]→ [n], we define a functor(
(C/Fm)op ↓ (X, θα)

)
× (∆ ↓m)→

(
(C/F )op ↓ (X, α)

)
by sending

X
α //

��

Fn
θ // Fm

σ // Fl

Y
β

// Fm

to X
α //

��

Fn

σθ
��

Y
σβ
// Fl

These functors induce a morphism of simplicial sets⊔
θ : [m]→[n]

B
(
(C/Fm)op ↓ (X, θα)

)
×B(∆ ↓m)→B

(
(C/F )op ↓ (X, α)

)
,

which is functorial in (X, α) and kills the difference of (A5). Hence, it induces

the desired morphism Ψ.

The coequalizer of (A5) is also equal to

hocolimθ : [m]→[n] B
(
(C/Fm)op ↓ (X, θα)

)
,

where θ runs through ∆ ↓ n, and it is contractible. It follows that the source

and the target of Ψ are sectionwise contractible, and thus Ψ is a sectionwise

weak equivalence.

According to [Hir03, Corollary 14.8.8], diagrams of the form B(E ↓ −
)

are

projective cofibrant. Since the adjunction (A2) is a Quillen adjunction with
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respect to the projective model structure (Remark A.4), j∗mB((C/Fm)op ↓ −)

is projective cofibrant. Hence, both sides of (A4) are projective cofibrant.

It follows that

holimC/F j∗Z = hom
(
B
(
(C/F )op ↓ −

)
, Z
)

' hom

(
hocolimm∈∆op

(
j∗mB

(
(C/Fm)op ↓ −

))
, Z

)
' holimm∈∆ hom

(
j∗mB

(
(C/Fm)op ↓ −

)
, Z
)

' holimm∈∆ hom
(
B
(
(C/Fm)op ↓ −

)
, jm∗Z

)
= holimm∈∆ holimC/Fm jm∗Z.

The first isomorphism follows from [Hir03, 18.4.5], the second one follows

from [Hir03, 18.1.10] and the third one is the adjunction (A2) of j∗m
and jm∗.

A.3.2 Cosimplicial spaces

We call a cosimplicial object in sSet a cosimplicial space, and denote the

category of cosimplicial spaces by csSet. Let A be a cosimplicial space and

S a simplicial presheaf on a site C. We define a simplicial presheaf A⊗ S to

be the coequalizer of ⊔
θ : [m]→[n]

Am × Sn⇒
⊔
[n]

An × Sn.

Let X be another simplicial presheaf on C. We define a cosimplicial space

Hom(S, X) by Hom(S, X)nm := Hom(Sn, Xm).

Lemma A.7. There is a Quillen adjunction

(A6) −⊗ S : csSet� sPSh(C) : Hom(S,−)

with respect to the Bousfield–Kan model structure on csSet [BK72, X,

Section 5] and the injective model structure on sPSh(C).

Proof. It is clear that (A6) is an adjunction. We show that Hom(S,−)

preserves fibrations and trivial fibrations.

Let DSn be the coequalizer of⊔
i<j

Sn−2⇒
⊔
i

Sn−1,
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which is a subpresheaf of Sn. Then, for a simplicial presheaf X,

hom(DSn, X) is the (n− 1)th matching space [BK72, X, Section 4.5] of

Hom(S, X). Let X → Y be an injective fibration (resp. injective trivial

fibration) of simplicial presheaves. Since DSn→ Sn is a cofibration, the

induced map

hom(Sn, Y ) // hom(Sn, X)×hom(DSn,X) hom(DSn, Y )

Hom(S, Y )n Hom(S, X)n ×Mn−1Hom(S,X) M
n−1Hom(S, Y )

is a fibration (resp. trivial fibration). This proves the lemma.

A.4 Proof of Theorem A.5

Now, we are given an injective fibrant object Z in sPSh(C) and an injective

fibrant replacement W of j∗Z in sPSh(C/F ).

First, we show that j∗Z→W is a sectionwise weak equivalence. By

Lemma A.3, jn∗ : sPSh(C/F )→ sPSh(C/Fn) preserves injective fibrations.

Put qn := j ◦ jn : C/Fn→C. By Lemma A.2, qn∗ : sPSh(C)→ sPSh(C/Fn)

also preserves injective fibrations. Hence, qn∗Z→ jn∗W is a local weak

equivalence between fibrant objects, and thus a sectionwise weak equivalence

for every n.

We have seen that j∗Z→W is a sectionwise weak equivalence between

sectionwise fibrant objects. Hence, by [BK72, XI, 5.6], we have a weak

equivalence

holimX∈C/F Z(X)' holimX∈C/F W (X).

Since W is an injective fibrant object on C/F (locally, and thus for the

indiscrete topology), it follows from (A3) that the right hand side of the

above is weak equivalent to hom(∗, W ). Hence, it remains to show that

there is a weak equivalence

(A7) holimX∈C/F Z(X)' hom(F, Z).

Since F is isomorphic to ∆⊗ F , it follows from the adjunction (A6) that

we have an isomorphism

hom(F, Z)' hom(∆,Hom(F, Z)).

Now, Hom(F, Z) is the cosimplicial space whose degree n part is

limX∈C/Fn Z(X). Moreover, by Lemma A.7, Hom(F, Z) is a fibrant cosim-

plicial space. Therefore, by [BK72, XI, 4.4],

(A8) hom(F, Z)' holim∆ lim
X∈C/Fn

Z(X).
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Since qn∗Z is injective fibrant by Lemma A.2, it follows from (A3) that the

canonical map

lim
X∈C/Fn

Z(X)
'−→ holimX∈C/Fn Z(X)

is a weak equivalence between fibrant objects. Therefore,

(A9) holim∆ lim
X∈C/Fn

Z(X)' holim∆ holimX∈C/Fn Z(X).

By Lemma A.6 and (A8, A9), we obtain the desired formula (A7).

Appendix B. Preliminaries on algebraic cycles

B.1 Moving lemma with modulus

Let (X, D) ∈MSm. By a family of constructible subsets C = {Cd}d∈Z of

X \D we mean a nondecreasing family Cd ⊂ Cd+1 such that dim(Cd)6 d
and Cdim(X) =X. Let ziC(X|D, •)⊂ zi(X|D, •) be the subcomplex of cycles

V ∈ zi(X|D, n) such that for every d ∈ Z and map of cubes �m→�n,

the following inequality of dimensions holds: dim
(
|V | ×X×�n (Cd ×�m)

)
6

(d+m)− i. Of course, it suffices to consider face maps �m ↪→�n. When C
is the trivial family Ctriv characterized by Cdim(X)−1 = ∅, it is the same as

zi(X|D, •). Given an equidimensional k-scheme Y of finite type, we consider

the presheaf ziC(−× Y |D × Y, •) on XNis defined by(
U

f−→X
)
7→ zi{f−1(Cd−dim(Y ))×Y }d(U × Y |DU × Y, •).

The case Y = Spec(k) is of primary importance, but we need the Y = Pr−1

case as well when we consider projective bundles.

Theorem B.1. [Kai15, Theorem 2] In the notation as above, the inclu-

sion ziC(−× Y |D × Y, •) ↪→ zi(−× Y |D × Y, •) is a quasi-isomorphism

on XNis.

Cycle-theoretic operations often require proper intersection conditions for

their well-definedness. If we can find a family C such that the operation is

always defined on ziC(−× Y |D × Y, •), Theorem B.1 allows us to conclude

that the operation is well defined in the derived category D(XNis). For exam-

ple, for a functor F : Λ→MSm as in Section 1.1 and an equidimensional

k-scheme Y , the method in [Lev98, page 94] (say) applied to the morphisms

in Λ gives a canonical family C(λ) on Xλ such that the association

((X, D), λ, f) 7→ ziC(λ)(X × Y |D × Y, •)

https://doi.org/10.1017/nmj.2018.52 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.52


CHERN CLASSES WITH MODULUS 125

is a presheaf on MSm∗. This and a similar argument give the presheaves zirel
and p∗z

i
rel in Section 1.1.

B.1.1 Further example: intersection product

Given a cycle W ∈ zj((X \D)× Y, n), the cycles V ∈ zi(X|D, m) such

that the intersection product (V × Y ) ·W ∈ zi+j(X × Y |D × Y, m+ n) is

well defined form a subcomplex of the form ziC(X|D, •). By Theorem B.1, it

is isomorphic to zi(−|D, •) in D(XNis). If W vanishes by the differential in

zj((X \D)× Y, •), we get a map of complexes (−× Y ) ·W : zi(−|D, •)→
zi+j(−× Y |D × Y, •) in D(XNis).

Or, letting W vary in zj((− \D)× Y, •), we get a subcomplex

zi(−|D, •)
:D
⊗ zj((− \D)× Y, •) of the usual tensor ⊗ where the intersection

product is well defined. By the fact that a columnwise quasi-isomorphism of

bicomplexes (suitably bounded) induces a quasi-isomorphism on the total

complexes, we get a diagram in D(XNis):

zi(−|D, •)
:D
⊗ zj((− \D)× Y, •) (−×Y ) · (−)−−−−−−−→ zi+j(−× Y |D × Y, •).
↓'

zi(−|D, •)⊗ zj((− \D)× Y, •)

This is used when we construct maps p∗(−) · ξj in Section 1.3. Also, since

zj(X|D, •)⊂ zj(X \D, •), we get intersection product zirel ⊗ z
j
rel→ zi+jrel in

D(MSm∗).

B.1.2 Yet another example: algebraic join

In the situation of Section 3.1, for each W ∈ zj(Ps−1
X\D, n), the cycles V ∈

zi(Pr−1
X |Pr−1

D , m) such that the join V#W ∈ zi+j(Pr+s−1
X |Pr+s−1

D , m+ n) is

well defined form a subcomplex of the form ziC(P
r−1
X |Pr−1

D , •) for some C
on X. One can find such a C by applying [Lev98, page 94] to the fiber

dimensions of the projections W|F →X with F ⊂�n being faces. By varying

W as in the previous paragraph, we get a map # : zi(Pr−1
(−) |P

r−1
D , •)

:D
⊗

zj(Ps−1
(−\D), •)→ zi(Pr+s−1

(−) |Pr+s−1
D , •) in D(XNis). Carrying out this argu-

ment on MSm∗/X rel
r ×X rel

r (or more generally on MSm∗/BGLr ×BGLs),

we get the following diagram:

p1∗z
i
rel ⊗ p2∗z

j '←− p1∗z
i
rel

:D
⊗ p2∗z

j #−→ p∗z
i+j
rel

which gives the algebraic join in D(MSm∗/BGLr ×BGLs).
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B.2 Computing cup product

Here we give a formula which gives us explicit representatives for the cup

product. This is used in Sections 1 and 2, where algebraic cycles are involved.

In Section B.3, we prove results saying that the proper intersection of the

lowest-degree representatives (in some sense) implies the proper intersection

of all representatives, whereby we get well-defined intersection products of

cohomology classes.

Consider a site C. Let us agree that the cup product of two cohomology

classes φ ∈H i(C, F ) and ψ ∈Hj(C, G) (where F, G are objects in the derived

category of complexes of abelian sheaves) is defined as the derived tensor of

the two maps Z→ F [i], Z→G[j] representing them:

φ · ψ := [Z = Z⊗L Z φ⊗Lψ−−−−→ F ⊗L G[i+ j]] ∈H i+j(C, F ⊗L G).

If we are given a map into another object F ⊗L G→ E, then we get its

image in H i+j(C, E) which is often denoted by φ · ψ again.

If we are given a quasi-isomorphism ε : Z → Z and a morphism D : Z →
Z ⊗L Z such that (ε⊗L ε) ◦D = ε as maps Z ⇒ Z⊗L Z = Z, then the cup

product of classes represented by maps φ : Z → F [i] and ψ : Z →G[j] can

be computed as the composition Z D−→Z ⊗L Z φ⊗Lψ−−−−→ F ⊗L G[i+ j].

B.2.1 The case of a site fibered over a simplicial presheaf

Let X be a simplicial presheaf on C. We are interested in the site

C/X . Denote by ∆ the simplicial presheaf defined by (X, n, α) 7→∆n. The

projection ∆→ pt induces a quasi-isomorphism Z⊗∆→ Z.

For integers 06 k 6 l 6 n, we denote by [k, l]⊂ [n] the subset {k, k +

1 . . . , l}. By abuse of notation, let the same symbol also denote the inclusion

map [l − k] ↪→ [n] onto it. The complex Z⊗∆ has the coalgebra structure

(the Alexander–Whitney map) D : Z⊗∆→ (Z⊗∆)⊗ (Z⊗∆) by which

θ ∈∆n
m is mapped to the sum:∑
p,q>0
p+q=m

(θ ◦ [0, p])⊗ (θ ◦ [p, p+ q]) ∈
⊕
p,q>0
p+q=m

(Z⊗∆n
p )⊗ (Z⊗∆n

q ).

Now suppose that C is a category of schemes equipped with the Zariski

topology (or finer), and that ∆ is covered by two open simplicial sub-

presheaves ∆◦ and ∆∗. Set ∆◦∗ := ∆◦ ∩∆∗. In this case we have a weak
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equivalence

Z := cone

(
Z⊗∆◦∗ −−−−−−→

(incl.,incl.)
(Z⊗∆◦)⊕ (Z⊗∆∗)

)
∼−−−−−−−−→

incl.⊕(−incl.)
Z⊗∆.

The complex Z has a coalgebra structure D : Z →Z ⊗Z. Writing it down

is equivalent to writing down the formula for the cup product, so we do the

latter. Let φ : Z → F and ψ : Z →G be maps of complexes. For each object

(X, n, α) ∈ C/X and degree m, the map φ gives the data:

θ ∈∆◦m(X, α) 7→ φ◦(X, α, θ) ∈ F (X, α)m

θ ∈∆∗m(X, α) 7→ φ∗(X, α, θ) ∈ F (X, α)m

θ ∈∆◦∗m (X, α) 7→ φ◦∗(X, α, θ) ∈ F (X, α)m+1

(and similarly ψ◦(X, α, θ), ψ∗(X, α, θ) and ψ◦∗(X, α, θ)). Then their cup
product in H0(C, F ⊗G) is represented by the data:

(φ · ψ)◦(X, α, θ) =
∑

p+q=m

φ◦(X, α, θ ◦ [0, p])⊗ ψ◦(X, α, θ ◦ [p, p+ q])

(φ · ψ)∗(X, α, θ) =
∑

p+q=m

φ∗(X, α, θ ◦ [0, p])⊗ ψ∗(X, α, θ ◦ [p, p+ q])

(φ · ψ)◦∗(X, α, θ) =
∑

p+q=m

{
(−1)pφ◦(X, α, θ ◦ [0, p])⊗ ψ◦∗(X, α, θ ◦[p, p+ q])

+ φ◦∗(X, α, θ ◦ [0, p])⊗ ψ∗(X, α, θ ◦ [p, p+ q])
}
.

B.3 Proper intersection lemmas

The statement of the next lemma may appear to be a little involved,

but its proof is easy. (The interested reader can try the n= 0 case first.)

Below, we deduce some of its consequences which are useful in checking the

well-definedness of cup products.

Lemma B.2. Let X be an algebraic scheme and V a closed subscheme

of X ×�n. Let G, H be functions on X ×�n which and whose restrictions

to V are nowhere zero divisors. Assume further that V , div(G), div(H),

V ∩ div(G) and V ∩ div(H) satisfy the face condition in X ×�n. Then

the function H + tn+1(G−H) on X ×�n+1 and its restriction to V ×
�1 are nowhere zero divisors, and the intersection (V ×�1) ∩ div(H +

tn+1(G−H)) satisfies the face condition.
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B.3.1 Semi-simplicial schemes

In Sections 1 and 2 we are interested in the following situation. Let X• be

a semi-simplicial scheme with flat face maps and i> 1 an integer. Let L(a)

be a line bundle on X• given for each a ∈ {1, . . . , i} equipped with a section

σ(a) ∈ Γ(X0, L
(a)
0 ) which is everywhere a nonzero divisor. Section 1.2 gives

meromorphic functions F
(a)
n := F

(σ(a))
n on Xn ×�n and cycles

Γ(a)
n := div(F (L(a),σ(a))

n ) ∈ z1(Xn, n).

Given a subset S ⊂ [n] with s+ 1 elements, we denote again by S the

inclusion [s] ↪→ [n] onto S. Write F (a)(S) and Γ(a)(S) for the pull-backs of

F
(a)
s and Γ

(a)
s by the map X(S)× id�s : Xn ×�s→Xs ×�s. If we denote

by dk : [s− 1] ↪→ [s] the face maps (06 k 6 s), the functions F (a)(S) admit

an inductive definition (on the size of S):

(B1) F (a)(S) = ts · (S ◦ v[s]
s )∗σ

(a) + (1− ts)(F (a)(S ◦ ds)(t1, . . . , ts−1)).

Lemma 1.10 in the main body of the article is a consequence of the

following.

Lemma B.3. Keep the notation above and let m> 0 be an integer.

Suppose that the Cartier divisors Γ(a)(v
[m]
ka

) (a= 1, . . . , i) on Xm form a

local complete intersection for every choice of indices 06 k1 6 · · ·6 ki 6m.

Then for every choice of nonempty subsets S1 6 · · ·6 Si of [m], the Cartier

divisors on Xm ×�m:

pr∗SaΓ(a)(Sa) a= 1, . . . , i

form a complete intersection, and the intersection satisfies the face condi-

tion. Consequently, their intersection product belongs to zi(Xm, m).

Proof. If all #Sa − 1 are zero, the assertion is the same as the

assumption. The general case follows from the inductive formula (B1) and

Lemma B.2. This completes the proof.

B.3.2 Variant

In Section 2, we are interested in a little more involved situation where

each Xn admits an open cover Xn =X◦n ∪X∗n and the collections of schemes

(X◦n)n, (X∗n)n form semi-simplicial subschemes. Write X◦∗n :=X◦n ∩X∗n.
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Suppose that we are given sections σ(a)◦ ∈ Γ(X◦0 , L0) and σ(a)∗ ∈ Γ(X∗0 , L0)

(16 a6 i) which are everywhere nonzero divisors. Invariants associated

with σ(a)◦ are indicated by superscripts (−)(a)◦, and σ(a)∗ by (−)(a)∗.

The homotopy in equation (1) gives

F (a)◦∗
n := F (σ(a)◦,σ(a)∗)

n and Γ(a)◦∗
n := Γ(σ(a)◦,σ(a)∗)

n .

For a subset S ⊂ [m] with s+ 1 elements, let F (a)◦∗(S) be the pull-back of

F
(a)◦∗
s by the map X(S)× id�s+1 : Xm ×�s+1→Xs ×�s+1.

The proof of the following lemma is similar to the previous one. One

applies it to the simplicial schemes X ×∆n with open covering in degree

m: X ×∆n
m =

⊔
θ∈∆n

m
((X \D) ∪ (X∗α,θ)) to verify the well-definedness of the

cup product in formula (5), Section 2.2.

In the lemma, for a subset S ⊂ [n] we denote by prS the projection �n→
�s to the S(1), . . . , S(s)th components. For nonempty subsets S, T of [n],

we write S 6 T to mean the relation: (the maximum element of S) 6 (the

minimum element of T ). Denote by S + 1 the subset {k + 1 | k ∈ S} of

[n+ 1].

Lemma B.4. Keep the notation above and let b ∈ {1, . . . , i}. Assume

that the Cartier divisors Γ(a)◦(v
[m]
ka

) (a= 1, . . . , i) on X◦m form a local

complete intersection for every choice of indices 06 k1 6 · · ·6 ki 6m, and

the same holds for divisors Γ(a)∗(v
[m]
ka

) on X∗m. Assume moreover that the i

Cartier divisors on X◦∗m :

Γ(a)◦(v
[m]
ka

) (16 a6 b− 1), Γ(b)♣(v
[m]
kb

), Γ(a)∗(v
[m]
ka

) (b+ 16 a6 i)

form a local complete intersection for every choice of 06 k1 6 · · ·6 ki 6m
and ♣ ∈ {◦, ∗}. Then for every choice of nonempty subsets S1 6 · · ·6 Si of

[m] and k ∈ [m] with Sb 6 {k}6 Sb+1, the Cartier divisors on X◦∗m ×�m+1:

pr∗SaΓ(a)◦(Sa) 16 a6 b− 1; pr∗Sb∪{k+1}Γ
(b)◦∗(Sb);

pr∗Sa+1Γ(a)∗(Sa) b+ 16 a6 i

form a local complete intersection, and the intersection satisfies the

face condition. Consequently, their intersection product belongs to

zi(X◦∗m , m+1).
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B.4 Bloch’s specialization map [Bl86, page 292]

Here we give a precise argument to define the specialization map spL/k
in Section 2.4. Let L= k(x) be an extension with transcendence degree 1

equipped with a basis x. Then the presheaf p∗z
i
rel,k(x) on MSm∗/BGLr is

contained in the following presheaf p∗Z
i
rel,k(x):

X = ((X, D), λ, f ; n, α) 7→


p∗z

i
rel(X⊗k k(x)) if D = ∅,

p∗z
i
rel(X⊗k k[x](x))

p∗z
i−1
rel (X)

if D 6= ∅,

where we embed p∗z
i−1
rel (X) into p∗z

i
rel(X⊗kk[x](x)) by {x= 0}. We have an

obvious scalar extension map resk(x)/k: p∗z
i
rel→ p∗Z

i
rel,k(x). We also consider

the presheaf p∗z
i
rel,k[x](x)

defined by X 7→ p∗z
i
rel(X⊗kk[x](x)).

Now consider the sequence

0→ p∗z
i
rel
{x=0}−−−−→ p∗z

i+1
rel,k[x](x)

→ p∗Z
i+1
rel,k(x)→ 0.

For X with D 6= ∅, this sequence is degreewise exact for a tautological reason.

If D = ∅, it is acyclic as a double complex by the localization theorem [Bl94,

Theorem 0.1] (only known to be true when D = ∅!).
The cycle Γx = {1 + t(x− 1) = 0} in Spec(k(x)[t]) represents x ∈ k(x)∗ =

CH1(Spec(k(x)), 1). Denote its closure in Spec(k[x](x)[t]) by Γ̄x. The map

Γ̄x · (−) : p∗z
i
rel,k(x)→ p∗Z

i+1
rel,k(x)[−1] defined by

V 7→

{
Γx · V if D = ∅,
Γ̄x · Vk[x](x) if D 6= ∅,

is a well-defined map of complexes. We define the specialization map

spk(x)/k : p∗z
i
rel,k(x)→ p∗z

i
rel in D(MSm∗/BGLr) by the zig–zag:

p∗z
i
rel,k(x)

Γx · (−)−−−−−→ p∗Z
i+1
rel,k(x)[−1]

↓
p∗z

i
rel

∼−−−−→
{x=0}

cone
(
p∗z

i+1
rel,k[x](x)

→ p∗Z
i+1
rel,k(x)

)
[−1].

Of course, its composition with resk(x)/k gives the identity map on p∗z
i
rel.

We leave it to the reader to verify this.
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Remark B.5. The specialization map depends on the choice of the

transcendental basis. For example, the specialization map

CH1(Spec(k(x)), 1) = k(x)∗ −→ CH1(Spec(k), 1) = k∗

with respect to the basis ax (a ∈ k∗) maps 1/x to a.

For a purely transcendental finitely generated extension k(x1, . . . , xr)/k

with a chosen basis, we define the specialization map by composition

spk(x1,...,xr)/k := spk(x1)/k ◦ · · · ◦ spk(x1,...,xr)/k(x1,...,xr−1).

Beware that this map depends on the order on the transcendental basis. For

example, the map spk(x)/k ◦ spk(x,y)/k(x):

CH1(Spec(k(x, y)), 1) = k(x, y)∗ −→ CH1(Spec(k), 1) = k∗

maps ax+ by (a, b ∈ k∗) to a, while spk(y)/k ◦ spk(x,y)/k(y) maps it to b.
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Brikhäuser, 1990, 247–435.

[Wei93] C. Weibel, Le caractère de Chern en homologie cyclique périodique, C. R. Acad.

Sci. Paris Sér. I Math. 317(9) (1993), 867–871.

[Wei94] C. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math.

38, Cambridge University Press, Cambridge, 1994.

[SGA6] P. Berthelot, A. Grothendieck and L. Illusie, Théorie des intersections et
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