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Free Product C*-algebras Associated with
Graphs, Free Differentials, and Laws of
Loops

Michael Hartglass

Abstract. We study a canonical C* -algebra, S(T, p), that arises from a weighted graph (T, y), spe-
cific cases of which were previously studied in the context of planar algebras. We discuss necessary
and sufficient conditions of the weighting that ensure simplicity and uniqueness of trace of 8 (T, p),
and study the structure of its positive cone. We then study the *-algebra, A, generated by the gener-
ators of (T, ), and use a free differential calculus and techniques of Charlesworth and Shlyakht-
enko as well as Mai, Speicher, and Weber to show that certain “loop” elements have no atoms in
their spectral measure. After modifying techniques of Shlyakhtenko and Skoufranis to show that
self adjoint elements x € M, (A) have algebraic Cauchy transform, we explore some applications
to eigenvalues of polynomials in Wishart matrices and to diagrammatic elements in von Neumann
algebras initially considered by Guionnet, Jones, and Shlyakhtenko.

1 Introduction

The study of graphs has been a prevailing force in the development of many areas of
operator algebras. Cuntz and Krieger [CK80] initiated the study of graph C*-algebras,
which are canonical C*-algebras that are formed from directed graphs. The principal
graph of a planar algebra or subfactor [Jon83, Pop95, Bis97] has played an important
role in the development and study of subfactor theory.

Given a standard invariant of a subfactor P,, Popa reconstructed a Jones tower (see
[Jon83] for a definition) of II; factors whose standard invariant is P [Pop95]. More
recently, Guionnet, Jones, and Shlyakhtenko (GJS) gave a diagrammatic construction
of a Jones” tower My ¢ M; ¢ M, c --- of II; factors whose standard invariant is
P. [GJS10]. In subsequent work, GJS constructed a (semi)finite factor by applying
Shlyakhtenko’s operator-valued generalization [Sh199] of Voiculescu’s free Gaussian
functor [VDN92] to obtain the isomorphism class of the M in the case where P, is
finite-depth [GJS11]. More specifically, if P, is finite-depth with finite principal graph
I, GJS constructed a finite von Neumann algebra M(T') by assigning to each edge e
of T, an £%°(V(T))-valued semicircular element X,. The factor My was realized as a
corner of M(T') that was shown to be an interpolated free group factor.

In later work [Harl3, BHP12], the author developed a canonical free-product von
Neumann algebra, M(T, ), that one can associate with an arbitrary undirected,
weighted, graph with weighting p: V(T') - R*. The key observation in [Harl3] is
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that if (T, 4) is a subgraph of (I’, u), then there is a canonical, possibly nonunital,
inclusion M(T, ) — M(I”, ), compressions of which are a standard embedding in
the sense of [Dyk93]. This observation showed that if a planar algebra P, is infinite
depth, then in the construction in [G]S10], My = L(F,) for all k.

In an effort to study the diagrammatic C*-algebras (Ao c A; c A, c ---) that arise
in the construction in [GJS10], the author and Penneys defined the C*-algebra ana-
logue of M(T, u), called S(T, u) [HP14a, HP14b]. Although this algebra was defined
for an arbitrary weighting u, most properties of 8(T, 4) were studied only in the case
of T being the principal graph of a planar algebra with y the associated weighting. In
this case, the authors proved that 8(T, y) is simple, has unique trace, and established
KK-equivalence between Co(V(T')) and $(T, ). Utilizing a Morita equivalence be-
tween Ay and 8(T, u), the same properties were deduced for the algebras Ay.

In Section 2 we will study 8(T, ) in the setting of an arbitrary connected undi-
rected graph I' and arbitrary weighting ¢ on V(T'). This C*-algebra is generated by
Co(V(T)) (spanned by the indicator functions {p, | @ € V(T')}) and Co(V(T))-va-
lued semicircular elements X, associated with each edge e. In the von Neumann
algebra case, M(T, u), the following theorem was proved in [Harl3].

Theorem ([Harl3]) Suppose T is a finite, connected, unoriented graph with at least
two edges. If a, 3 € V(T), then write a ~ 3 if o« and [ are joined by at least one edge,
and let n, g be the number of edges joining with a and 8 as endpoints. Finally, let V, be
the set of vertices, 3 satisfying u(B) > X q.p ta,ppt(). We have

Ty
M(F,M) = L(Ft) @ @ (C,
yeVs
wherery < py andtr(ry) = p(y) = Xa~, na,pp(a) (see Notation 2.10 for the meaning of
the direct sum notation). Moreovet, the parametet, t, can be computed using Dykema’s
“free dimension” formulas [Dyk93, DR13]. In particular, M(T, u) is a factor if and only
if V5 is non-empty.

We prove the C*-algebra analogue.

Theorem A Let T and V. be as in the statement of the previous theorem . Let V_
be the set of vertices, B satisfying u(B) = Yy.pnapp(a) and Vo = Vo u V. Let I
be the norm-closed ideal generated by some p, with a € V(I') \ Vs. Then I contains
{pﬁ [BeV(D)~ Vz} and does not intersect {py |ye Vz}. In addition, I is generated
by {X. | e € E(T)}. Furthermore, the following hold:

(i) I issimple, has unique tracial state, and has stable rank 1.

(ii) I is unital if and only if V_ is empty. If V_ is empty, then

$(Lu)=1e @ C
yeVs

withr, < py and tr(ry) = u(y) = Lany na,pit(a). If V= is not empty, then

S(Tu)=Jo & C
yevs
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where J is unital, the strong operator closures of I and J coincide in L*(8(T, u), Tr),
and J/1= @gey. C.

(i) Ko(I) 2 Z{[pg]| BeV ~Vs} and Ki(I) = {0} where the first group is the free
abelian group on the classes of projections [ pg]. Furthermore,

Ko(I)" = {x e Ko(I) | Tr(x) > 0} u {0}.
In particular, (T, u) is simple with unique tracial state if and only if Vs is empty.

A version of this theorem for infinite I' is given in Corollary 2.30.

Section 3 switches gears and studies elements of A, the *-algebra generated by
{pa|aeV(T)}u{X,|eecE(T)}. Wedevelop a free differential calculus along the
lines of Voiculescu [V0i93]. Using modifications of the methods in [CS15, MSW14],
we are able to prove the following theorem.

Theorem B Let Q € A be nonzero and satisfying

Qpu=Q and p(a)=min{u(f)|peV(I)}.

Ifa=a" e M(T,u), apy = a, and Qa = 0, then a = 0. In particular, if Q = Q*, then
the law of Q with respect to Tr has no atoms.

Section 3 also uses the techniques of [SS15] to prove the following theorem.

Theorem C  Let x € M, (A) be self-adjoint. Then the Cauchy transform of x is alge-
braic.

As aresult, further deductions can be made about the laws of self-adjoint elements
in M, (A). See Corollary 3.17 and Theorem 3.18.

Section 4 is devoted to applications of the previous sections to the limiting laws of
polynomials in Wishart matrices and to diagrammatic elements in the construction
in [GJS10]. Much like the observations about Gaussian unitary ensembles in [SS15],
it is shown that eigenvalues in self-adjoint polynomials of Wishhart matrices also ex-
perience a weak repulsion.

2 The Free Graph Algebra

2.1 Constructing the Algebra

We will start with countable, weighted, connected, undirected, locally finite graph,
I = (T, V,E, u) where V is the vertex set of T, E is the edge set,and u: V - R, is a
strictly positive function on the vertices of I. We will now form the directed version
of I as in [HP14a].

Definition 2.1 IfT is an undirected graph, we will form the directed version of T,
I = (T, V,E, ji,s,t) as the weighted directed graph with the following properties.

(i) V=Vandj=upu.
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(ii) E is constructed as follows: For each e ¢ E(T') having a # 8 as its two endpoints,
there are two edges € and €°? satisfying

s(e)=t(e?)=a and t(e) =s(e?) = B.
For each e € E(T) that is a loop at a vertex, y, there is one loop (which we will
denote as €) in E(T) at y.

Notice that there is an involution € ~ €°? on E provided that ¢ = €°? whenever
¢ is a loop. Let X(T') be the complex vector space with basis E, and Cg, (V) be the
finitely supported complex-valued functions on V. The algebra Cg, (V) is spanned
by the elements p, for « € T satisfying p, () = 04,

There is a natural Cg, (V') bimodule structure on X(T') that is given by

Pa€ = 85(),a€ and  €pg = Oy(c),qa€-
With these actions in mind, X(T) exhibits a Cgy,(V)-valued inner product (-|-)
which is given by
(€I|€> = 86,6'1)[(6)

with linearity in the second variable and conjugate-linearity in the first. Let C denote
Co(V). Using this inner product, X(I') completes to a € — € bimodule X(T') with
inner product (- |- }e. We will denote this Hilbert bimodule as X when the context is
clear.

We now form the full Fock space of T, F(T'), which is given by

F()=Co @ X®¢,
nx1
where ®¢ denotes the internal tensor product of C - € Hilbert bimodules. €, together
with elements of the form ¢; ® €; ® --- ® €, span a dense subset of F(I'). Note that
the elementary tensor €; ® €, ® --- ® €, is zero unless the edges form a path in T i.e.,
t(ex) = s(egyr) forl < k < m.
We have the usual creation operator £(¢) for £ € X which is defined by

e(§)pa=&-pa and L(E)(H®08)={®5® - ®,.
The creation operator £(£) is bounded and adjointable with adjoint £(£)* given by

€(8)"pa=0 and ()" (Le&H®®&)=(§&)es e ® L

We define the Pimsner-Topelitz algebra of T, T(T') [Pim97] to be the C*-algebra gen-
erated by C and {€(£)|& € X}.
We will now construct our finite algebra associated with I' with weighting .

Definition 2.2 LetT = (T, V, E, i) with T as in Definition 2.1.

(i) Ifec EisaloopinT, and e is the associated loop in E, we define X, = £(¢) +
2(e)™.

(ii) Ife € E has a # f3 as its endpoints, let € and €°? be the two associated edges as
in Definition 2.1, with s(¢) = t(¢°?) = a and t(¢) = s(e°?) = 8. Also set

ANAC))

ac=\| —=.

u(p)
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Then we define
X, = acl(e) +a.'e(e?)* +a'e(e?) + acl(e)*.

We define the free graph algebra associated with T, u, S(T, ), to be the subalgebra
of T(T') generated by C and the elements (X, )ex.

Remark 2.3 The elements X, are always self adjoint. Note that if e has a #  as
endpoints with « = s(¢) and § = #(¢), then

PaXepp = act(e) + a.'e(e’?)*  and ppXepa = a'e(e°?) + acl(e)*
We will set X, = py Xepp and Xeor = ppX,pa.

Asin [Sh199,HP14a] there is a conditional expectation E: S(T', u) — C that is given
by E(x) = PxP = ¥ 4ey (Pulxpa)e with P: F(T) — € the orthogonal projection. We
have the following theorem.

Theorem 2.4 ([HP14a])

(i)  The expectation E is faithful on 8(T, u). Moreover, if we let tr be the (semi)-finite
trace on C determined by tr(p,) = u(v), then Tr = tr oF is a (semi)-finite tracial
weight on 8(T, u).

(i) The elements (X, ).cp(r) are free with amalgamation over C with respect to E.

(iii) Ife hass(e) = a and t(e) = ff and X, is as in Remark 2.3 then the law of X} X,
in pp8(T, u)epp with respect to Tr(pg - pg) is a free Poisson with the following
distribution, where a = a:

(B T E O a2 reariaydx ifp(B) < u(a),

(u(B) - ()8 + (@) Gy s reariaydx ifp(B) 2 u(a),

Remark 2.5 Ifu(a) # p(B), then a?+a;*-2 > 0 so we conclude that the polar part
of X isin 8(T, u). Therefore, if y(ar) < p(B) then p, is equivalent to a subprojection
of pg in 8(T, ). It is important to note that the polar part of X, will not be in 8(T', u)
if u(a) = u(B). This observation is consistent with Corollary 2.9 below. Notice that

Tr(X Xe) = \/u(s(e))u(t(e)).

We will also need the following lemma, to be used in Section 3.3.

Lemma 2.6 Suppose thate,, ..., e, is aloop in in T of length at least 3. Then

1
Tr(Xe, -+ Xe,) = > Tr(Xe “Xe,,) - Tr(Xe

\/y(s(en))pt(t(en)) ;=€
jH{Ln-1}

b)) oy et o
+ 85,.71,67,1’ M(t(e,,)) T (XEI Xen-z) + 861,€n y(s(en)) T (XEZ X€n-1)

o Xen—l )

1
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Proof Noting that Tr = troE, we will first compute the C-valued inner product

(Pt(en)| Xe, -+~ Xe, Pi(e,))- To this end, we note that
Xel t Xe,,pt(e,,) = ae,,Xel t Xe,,,len-

Clearly for X, ---X,, €, to have a p;,) component, it must be the case that at
least one element in {e;, . ..,€,_1 } must be €,’. By expanding each Xe; = ae;t(ej) +

a;jlf(ej)*, we will count how many terms in ac, Xe, --- Xe,_, €, have a py(,) compo-

€n—1
nent.
Assuming that there is at least one j € {1,2,...,n — 1} satisfying €; = €,°, we see
that

(Pi(en)|ae, Xe, - Xe, €n)
= Z Z E(aenXel...Xej_l)<pt(€n)|aen€(ejp)*Tj+1"'Tn—1€n)

ej=en’ Tee{ae, €(ex).az e(”)"}
Ti Trs1 Tu-1€n ¢<Cpt(sn)

= > al E(Xe, -+ Xe, ) 0(en) " E(Xju1-++ Xpo1)en.
ej=e)t
Note that by the definition of the trace,

Tr(X 1"'Xn,1) P
E(Xj+1 "'Xn—l) = WI)S(%)’

Tr(X,, ”'Xe,-_l) -
E(Xe -+ Xep,) = Wps(el)-

Since s(€;1) = t(e, ), we have

2 TI'(Xel "'Xejil) ) TI'(Xj.H "'Xn—l) _

<p n|anX1”'Xn—1€>: a Pt(en
Hew)[Bente ¢ " €j=¢% o Tr(Pt(en)) Tr(ps(e,,)) ten)
j#{Ln-1}
Tr(Xe, - Xe,,) Tr(Xe, - Xe,,) ——
+ 6en_1,e‘,’."“§n Ql’t(en) + 06, agn th(en)-
Tr(pt(sn)) Tr(Ps(en))
Taking the trace of both sides gives the desired formula. ]

2.2 KK-groups

We will begin by computing the KK-groups of S(T, ¢). This computation was done
in [HP14a], but for completeness, we will present the argument here. If we let B be a
separable C*-algebra and Y a countably generated Hilbert B — B bimodule, then we
form the Fock space of Y,
F(Y)=Be &Y.
nz

We define the Pimsner-Toeplitz algebra of Y, T(Y) to be C*-algebra generated by the
operators B and €(¢) for £ € Y where

e)b=&-b and £(§)(G@--@8)={0§i@ @,
forallb e Band §,..., &, €Y. A result of Pimsner says the following.
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Theorem 2.7 ([Pim97]) Assume that B acts on 'Y by compact operators. Then the
inclusion B = T(Y) is a KK-equivalence.

In [Ger], one chooses a closed real subspace Yg of Y with the property that BYgB =
Y, and defines the algebra S(Ygr) to be the C*-algebra generated by B and {£(¢) +
2(&)*|& € Yr}. By observing that the homotopy in [Pim97] leaves the subspace
F(Y) @5 8(Yr) of F(Y) ®5 T(Y) invariant, the following theorem was proved.

Theorem 2.8 ([Ger]) Assume that B acts on 'y by compact operators. The inclusions
B <> 8(Yr) = T(Y) are KK-equivalences.

We will let Xg,, be the closure of the real subspace spanned by the elements a.e +
a;'e°P. We observe that 8(T, u) is generated by € and the elements £(&) + £(&)* for
& € X, - Using this realization, Theorem 2.8 gives the following corollary.

Corollary 2.9  Since T is locally finite, C acts on X by compact operators. Therefore,
the inclusions C = 8(T, u) = T(T') are KK-equivalences. As a consequence,

Ko(8(T, ) = Z{[pallac V} and Ki(8(T,u)) = {0}
where the first group is the free abelian group on the vertices of T

In particular, this shows that the KK-groups are independent of the weighting u,
but the positive cone K (8(T, #)) will depend on y; see Subsection 2.3.

2.3 Ideal Structure

In this section we fix a finite, connected graph, (T, u) with at least two undirected
edges. We will give an explicit description of the closed ideals of S(T, i). To begin,
we will define two sets V. (T, u) and V_(T, ) as follows:

V(L) = {ae v]p(a)> > napi(B)},
V(L) = {@e V| p(a) = z et (B)}

where we write § ~ « to indicate that § and « are the endpoints of at least one edge
of T', and we let n, g be the number of unoriented edges that have « and 8 as end-
points. When I and p are understood, we will write V5 instead of V5 (T, ), and V_
for V_(T, u). We will also write V5 to denote the set V5 = V_u V4.

We will show that there is an aesthetically pleasing description of the ideal structure
of 8(T, ) in terms of these vertex sets. To begin, we will state some results on the
simplicity and stable rank of certain reduced (amalgamated) free products.

Notation 2.10 (i) Let A; and A, be two unital C*-algebras with faithful tracial
states tr; and tr,, respectively. We will write A; * A, as the reduced free product with
respect to the tracial states tr; and tr,.

(ii) More generally, if A; and A, are two C*-algebras with faithful tracial states tr;
and tr, respectively and with trace preserving conditional expectations E;: A; - D
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onto a common subalgebra D, then A;*A, will denote the reduced amalgamated free
product with respect to the expectatiorlljs E; and E,.

(iii) Suppose A is a unital C* algebra with a finite faithful (not necessarily nor-
malized) trace tr. Furthermore, assume that A = B; @ --- @ B,, for unital C*-algebras
Bi,..., B, with identities py, ..., p,, respectively, satisfying tr(py) = px. When this
happens, we will write

J 41 Pn
A=B & ---®B,.
H1 Un

With this notation in hand, we will now state several free product results that will
be used in our analysis of S(T, y).

Lemma 2.11 ([Dyk99]) Let A=A, * A, andlet p € Ay, q € A, be projections.

(i) Iftr(p+q) > tr(1), then p + q is invertible.

(i) Iftr(p+q) < tr(1), then {0} is an isolated point in the spectrum of p + q, and if
u is the law of p + q according to tr, then u{0} = tr(1) — tr(p + q).

(iii) Iftr(p + q) = tr(1), the support projection of p + q is I; however, p + q is not
invertible, and {0} is not isolated in the spectrum of p + q.

A positivity argument and induction lead to the following corollary.

Corollary 2.12 Assumen > 2, set A = Ay * Ay % --- % Ay, and let p; € A; bea
projection for each i.

(i) IFYi te(p;) >tr(l), then Y7, py is invertible.

(i) IfXi te(pi) < tr(l), then {0} is an isolated point in the spectrum of ) pn,
and if p is the law of Y1, p, according to tr, then u{0} = tr(1) - X7, tr(pn).

(iii) If 37 tr(pi) = tr(1), the support projection of Y.7_, pn is I; however, 31| p, is
not invertible, and {0} is not isolated in the spectrum of Y7 pn-

Definition 2.13
(i) If Aisa C*-algebra, then
Ko(A)" = {x € Ko(A) | x = [p] for some projection p € M, (A)}.

(ii) If Aisaunital C*-algebra, we say that A has stable rank one if the set of invertible
elements in A is norm-dense in A. If A is nonunital, A is said to have stable rank
one if its unitization does.

Theorem 2.14  Assume A, and A, are unital C*-algebras with faithful tracial states
tr; and try respectively. Suppose that A, contains a unitary u, and that A, contains
unitary elements v and w satisfying

try(u) = try(v) = try(w) = trp(vw™) = 0.

Let A= A1 * Az.

(i) [Avi82] A is simple with unique tracial state, tr.
(ii) [DHR97] A has stable rank one.
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(iii) [DR98] Let j;: A; — A be the canonical inclusions, and let ji: Ko(A;) — Ko(A)
be the induced map on Ko. If G is the subgroup of Ko(A) generated by j; (A1)
and j;(A,), then

GNnKy(A)" ={xeG|tr(x) >0} u{0}.

Definition 2.15 Let A be a unital, abelian C*-algebra with faithful state ¢. Identify
A 2 C(X) with X a compact Hausdorff space, and note that ¢(f) = [ f(x)du(x)
for some probability measure y on X. We say that (A, ¢) is diffuse if u has no atoms.
This is equivalent to A containing a Haar unitary, i.e., a unitary element u satisfying
¢(uF) = 0forallk e Z~ {0} [DHRY7].

Theorem 2.16 ([Dyk99])

(i) Suppose A = Ay + A, where A; contains a diffuse abelian C*-subalgebra and A, #
C. Then A is simple, has stable rank one, and has unique tracial state tr.
(ii) Suppose A = Ay % ---x A,, where each A; has the form

Ai=DeC,
Hi

where D contains a diffuse abelian subalgebra. Then A is simple and has unique
trace if and only if ¥.!_, u; > 1. A always has stable rank one, regardless of the
weighting.

Lemma 2.17 ([Dyk93,Dyk99, HP14b])
(i) Suppose that A, B, and C are tracial C*-algebras with

p
D=(A®B)*C,

and D is endowed with the canonical free product trace. Then
p
pDp=Axp((Ce®B)*C)p.

p+r 7
(ii) Suppose there are two unital, tracial, C*-algebras B & C and C that both con-

tain D = ((’E ® (gj as a unital C*-subalgebra with q = r + 1. Assume that the algebras
are equipped with conditional expectations E}, and E2 onto D, respectively as well as
traces tr; and tr, so that tr; = tr; OE]"J for i =1,2, and the restrictions of tr; and tr, to D
coincide. Form the reduced amalgamated free product

p+r 7

D=(B&C)xC.

Then

’

(p+)D(p+1) = (B.Eb) x ((p+n((CoCoT) x C,EB) (p+ 1), ED)

p r ;
where D' = C @ C, the conditional expectations E},, onto D' are the trace preserving
ones, and the free product is reduced.
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Lemma 2.18 ([Ivall]) Let C, and C, be unital C* algebras containing the unital C*
subalgebra D unitally. Suppose each C; is equipped with a trace tr; such that tr; and
tr, coincide on D and that there exist trace preserving conditional expectations E& of C;
onto D. Consider the reduced amalgamated free product with conditional expectation E

(C,E) = (cl,Eb);;(cz,Eé)-

Then C is simple and has unique trace tr = try oEp = trp oEp provided the following
conditions hold:
(i)  There exist unitaries u; € Cy and u,, ujy in C, such that Ep(u;) = 0 = Ep(u,) =
Ep(u}) = E(uju}).
(ii) Forevery ai,...,a, € D with zero trace, there exists a unitary u € C, with expec-
tation 0 such that Ep(ua;u™) = 0 for each i.
(iii) There are unitaries w,v € C, with expectation 0 such that Ep(wav) = 0 for all
aeD.
Furthermore, let G be the subgroup of Ko(C) that is generated by ji(Ko(C;)) and
73 (Ko (Cy)) with j;: C; — C the canonical inclusion. If the above three conditions hold,
then
Ko(C)*nG={xeG:tr(x)>0}u{0}.

Lemma 2.19 ([HP14b]) Suppose that B, and B, are unital separable C*-algebras both
unitally containing D = C* as a subalgebra. Assume that By and B, are equipped with
faithful traces tr; and try, respectively such that tr; and tr agree on D. Let E}, be the
trace preserving conditional expectation from B; to D for i € {1,2}. Form the reduced
amalgamated free product

(B, E) = (B1, Ep) # (B2, Ep).

Let p and q be the two minimal projections in D and assume tr;(p) = tr;(q). Suppose
B contains a unitary u; and B, contains unitaries u, and ub with v = pvp + qvq for
v € {uy, uy, uy }, which also satisfy

E(w) = 0=E(uz) = E(u3) = E(u311).

Then pBp and qBq both have stable rank 1.

The key to unlocking the ideal structure of S(T, i) is showing the existence of a
minimal ideal that “avoids” the sets V. (T, u) and V_(T, u). To begin, we fix a vertex,
ae VNV,

Lemma 2.20  Suppose ff ~ a.

(i) IfB ¢ Vs, then pg is in the ideal 1, generated by pa.

(ii) Ifp € Vs, then f is not in the ideal ]g that is generated by {ps | 6 € V.~ {B}}. If
y ~ B, then p, € I,.

Proof (i) Suppose that 8 ¢ Vo(T,u). Letey,..., e, denote the edges in T that
have f as an endpoint, and let €y,. .., €, be the corresponding oriented edges in I
having t(e;) = ff for all i, and s(e;) = a.
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Ifu(B) < u(a), then X7 X, (= X7 paXe,)isinvertiblein pg8(T, u) pg, so it follows
that pp € I,.

If u(B) > p(a), then we necessarily have n > 2. Using Theorem 2.4, the traces of
the support projections of the elements X7, X, add up to 3,4 1, s4(f3), which by
hypothesis exceeds u(f3). It follows from Theorem 2.16 that the C*-algebra generated
by the elements X7 X, is simple, which means that pg is in the ideal generated by
these elements. Noting that X X, = X p, X, this shows that pg € I,.

1

(ii) Supposethat e Vs andletey,...,e, ande,...,€, be as in the previous part.
Every element in I which is supported under pg must be a norm limit of elements of
the form

Z X:iyi’jXEj
ij

for y; j € (T, u).

If n = 1, then for any y € 8(T, u), X; yX,, is not invertible in pg8(T, u)pp. It
follows that pg ¢ Jg.

If n > 2, then the support projections p,, of X; X, are in 8(T, u) and are free
with respect to Tr(pg - pg). We have Y.7_ Tr(p.,) < Tr(pg). Furthermore, if x €
ppJppgs then x must be in the hereditary C*-algebra (X7, pe, )8(T, 4) (i) pe;)- By
Corollary 2.12, 7_; pe, is not invertible in pgS8(T, i) pg. This implies that pg ¢ J3. The
unital C*-subalgebra in pg8(T, 4) pg generated by the elements X X, is the reduced
free product

n Pe;
B=x(C"(X.X;,)®C).
*

By Lemma 2.17 and Theorem 2.16, p¢,Bp,, is simple for each i, and the element
Pe; X7 Xe, pe, is nonzero. This means that p, € I for all i. Note if y ~ 8, then y ¢ V%,
and p, is equivalent to one of the p,, (via the polar part of X,,). This implies that
Dy € Iy. u

Lemma 2.21 Let I, be the closed ideal in S(T, u) generated by p,. Then I contains
{pﬁ | B¢ Vo(T, /,t)} Therefore, I, does not depend on o, and we will denote it by I.
Furthermore, 8(T, u)/1 & @yev,, C. In addition, I is unital if and only if V_(T, u) is
empty.

Proof Since T is connected, we can iterate Lemma 2.20 to conclude that I, contains
{ps | B¢ V>(T,u)} and has trivial intersection with {ps | B € V2 (T, ) }. This means
that I is generated as an ideal by {Xe leeE }, since at least one vertexin V \ V5 is an
endpoint of € for each € € E. If y € V3, then every element in p,8(T, u)p, is a norm
limit of elements of the form cp, + p,xp, where x is a polynomial in the X,’s. The
arguments in Case (ii) show that p,, is not a norm limit of expressions of the form
PyXpy. This implies that S(T, u)/I = @,ev, C.

Finally we verify the statement on the unitality of I. Let y € V5 and lete], ..., €/, be
all of the edges satisfying t(e;) = y. If V- is empty and p is the support projection of
X¢ Xe,» then since ¥277; Tr(pe: ) < Tr(py), {0} is open in the spectrum of ; p; from
Corollary 2.12, which implies that the support projection, g, of 3’;_; pe: is in I. The
element Y4y, py + X,cv, gy is the unit for I.
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If V_ is not empty, m > 2, and y € V_, then since }; Tr(pe,) = Tr(p,), py is in
the strong closure (in L2(8(T, u), Tr)) of the C*-algebra generated by 3°; p, [Harl3],
so it follows that p,, is the support projection of }; Tr(p, ). Therefore I is not unital.
Finally, if m = 1and y € V_, then since the law of X}, Xs in p, (8(T, u), Tr) p, has no
atoms, it follows that p,, is in the strong closure of I 50 I is not unital. |

Corollary 2.22  If V_ is empty, then

$(Lu)=Ie @ C

yeVs

withry, < py and Tr(ry) = p(y) = X gy na,ptt(B)- If V- is not empty, then

sy =Je ® C,
yevs
where J is unital, the strong operator closures of I and J coincide in L*(8(T, u), Tr), and
j/I = @ﬁEV: C.

We will now show that I is minimal.

Lemma 2.23  Let I be as in Lemma 2.21. Then I is simple, has unique trace, and has
stable rank 1.

Proof The arguments here mirror arguments used in [HP14b, Section 4].

Case 1: We first assume that there is a vertex o of minimal weight such that T’ = [ U5,
where I3 and I, are two connected subgraphs of T, each of which has a nonempty
edge set, share no edges in common, and intersects only at the vertex «. We have
PaS(T, ) pa = paS(T1, 4) pa * PaS(Ta, ) pa- Let €1 and €, be oriented edges with
t(e;) = wande; € E(T;). The elements X o X, generate diffuse abelian C*-subalgebras
of paS(T, u) py with respect to Tr(py - po ) from Theorem 2.4 and the assumption on
a. It follows from Theorem 2.16 that p,S(T, 4) p, is simple, has unique trace, and has
stable rank 1 from Theorem 2.14 or Theorem 2.16. Since p, is full in I from Lemma
2.21, this implies that I is simple, has unique trace, and has stable rank 1.

Case 2: We assume that « is connected only to one other vertex f3, and by only one
edge e;. Let ¢ € E have s(e;) = a and t(e;) = B. Notice that the assumption on «
implies that there is at least one other undirected edge e, with f3 as an endpoint, and
u(B) > u(a) since equality implies that we are in Case 1. Assume that ¢(e;) = 8. Let
T be the graph that is obtained by removing the edge e, from I'. Let g, be the support
projection of X X, and note that g, < pg and q, is equivalent to p,. If B is the
C*-algebra generated qg and 8(T, ), it follows from Lemma 2.17 that

9aS(T, ) qa = 9 C* (X Xe)qa * quBqa-

The C*-algebra q,C* (X} X.)q, is diffuse and abelian. The algebra g,Bq, contains
the element g, X;, X, g4, which generates a diffuse von-Neumann algebra, since the
support projection of X;, X, has trace at least as large as y(a). It follows that g, Bq,
has a unitary of trace zero. Therefore, from Theorem 2.14, ,S(T, 4)q, is simple, has
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unique trace, and has stable rank 1. Since p,, is full in I from Lemma 2.21, this implies
that I is simple, has unique trace, and has stable rank 1.

Case 3: We assume that there are two distinct vertices, & and 3, an edge ¢; joining «
and f, and a path from « to 8 that avoids e;. We can also assume that « is of minimal
weight, and a ¢ Va. Lete; € E(T) be the edge associated with e; that satisfies t(e;) = 8
and s(e;) = &, and set g, to be the support projection of X; X, and note that g, < pg.
Also note that g, € 8(T, u), since if X; X, has connected spectrum, then g, = pg.

SetB = (Pa+qa)S(T, 4)(Pa+tqa). LetT’ be the subgraph of T obtained by deleting
the edge e, and let I'"” be the subgraph of I' whose vertices are « and 8 and whose
edge setis {e;}. Set D = C*({pa, pp}) and D" = C*({pa> gq } ). From Lemma 2.17, it
follows that

B = (pa+qa)8(I", ) (Pa + 9a) o (Pa+qa)B'(Pa + qa),

where the conditional expectations are the trace preserving ones, and
, Pa qa Pp—qa ,
B'=(CoCeo C ) *(pua+pp)S(I', 4)(pa +qp)-

We now show that B satisfies the conditions in Lemma 2.18.
Theorem 2.4 determines the structure of (py + g4 )S(I”, ) (P + g ). Explicitly,

if u(a) < u(f), then
(Pa +qa)S(T", 1) (Pa + qu) = M2(C) ® C[0,1]
with trace Tra, (C) ® [ -d) with dA Lebesgue measure. In this isomorphism, we have

1 0 0 0
pa»—>(0 0) and qa»—>(0 1),
If y(a) = p(p), then
(Pa+q)8(I", ) (P + ga) =
{f:[0,1] = M,(C) | f is continuous and f(0) is diagonal}

with the above trace and identifications for p, and q,. In either case, the unitary

_ [cos(2mt) —sin(2mt)
“ \sin(27t)  cos(2mt)
liesin (po + qa)S(T", ) (Pa + qu ). The traceless elements of D’ are spanned by

(1 0
““lo a)

and it is easy to check that UxU* has zero expectation, so Lemma 2.18(ii) is satisfied.
Note that one has
E(u) = E(u*) = E(u®) = E(u(u*)*) = 0.

Choose edges e, and e; of I’ whose oriented versions satisfy t(e;) = a and t(e3) =
B. There is a Haar unitary v; in po8(I”, 4)p, in the continuous functional calculus
of X7 X,,. As in the previous case, q, X7, X¢,qa generates a diffuse von Neumann
algebra, so it follows that there is a unitary, v,, of trace zero in q,S8(I”, )q,. This
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implies that v; + v, is an expectationless unitary in (py + 44 ) B’ (Ps + g« ) S0 Lemma
2.18(i) is satisfied.
Finally, under the matrix algebra identification of (ps + g4 )S(T”, 4) (Pa + qa ) set

2imt
e 0
V= ( 0 eZint) .

It is easy to see that V is expectationless, and that E(VyV) = 0 for all y € D'. This
implies that Lemma 2.18(iii) is satisfied. This implies B is simple and has unique trace.
Since p, is full in I from Lemma 2.21, this implies that I is simple, has unique trace,
and has stable rank 1.

The verification of this case shows that the conditions in Lemma 2.19 are satisfied,
s0 paBp, has stable rank 1. This implies that I has stable rank 1 as well. ]

There are several immediate corollaries
Corollary 2.24  8(T, u) is simple if and only if Vs is empty.

Corollary 2.25  For each f3 € Vs, the ideal Jg generated by {p, : y # B} is maximal
and of co-dimension 1. Furthermore, every ideal in S(T, u) is an intersection of the
ideals ] g, and

I= ﬁQ/Z Is-
Corollary 2.26  S(T, u) has stable rank 1.
Proof S8(T,u)/I s finite-dimensional. The result follows from [Rie83]. ]
We now turn our attention to the K-groups and positive cone of I.
Lemma 2.27  The K-groups of I are as follows:
Ko(I) =Z{[ppl | fe V\Vo} and Ki(I) = {0},

where Z.{[pg] | B € V \ V5 } is the free abelian group on the vertices of T that are not
in Vs.

Proof Consider the six term exact sequence

Ko(I) —— = Ko(S(T, 1)) — = Ko (S(T, /1)

] |

KI(S(FHM)/I)TKI(S(F’."‘))<LI—KI(1)

where (! are the induced maps from the canonical inclusion 1: I — 8(T, u), % are the
induced maps from the canonical quotient map 7:8(T, ) — S(T, ¢)/I, and 0; are
the connecting maps. Recall that

S(Iu)/Iz @ C,
BeVs
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and the induced map C* {pg | B € V2 } = 8(T, ) /I is an isomorphism. Therefore, 77"
is surjective, which implies that 9, is the zero map, which implies that /. is injective.
Since K;(8(T, #)) = {0} it follows that K;(I) = {0}.

The image of /2 is Z{pﬁ |BeV~ Vz}- Since (T, u)/I is finite-dimensional,
Ky (8(T, u)/T) = {0}, which implies :? is injective, hence

Ko(I) =Z{[pg] | Be V~ V5}. n
Lemma 2.28 Ko(I)" = {x € Ko(I) | Tr(x) >0} u{0}.

Proof The proof of Lemma 2.23 shows that in the three cases where a hereditary
subalgebra of I was expressed as a(n) (amalgamated) free product of A and B, the
subgroup, G c Ko (I), generated by :°(A) and :2(B), has the desired structure of the
positive cone. We simply need to show that G = Ko (I). This will be done by analyzing
the three free product cases. We will now assume that & has minimal weight among
all the vertices in T'.

Case 1: If T = T} U I as in the proof of Lemma 2.23, then from the description of T, if
B+ aand e V(T)\ Vo(T), then e V(T;)\ V»(I;) for exactly one i € {1,2}. From
the proof of Lemma 2.21, it follows that pg is in the ideal generated by p, in 8(T;). It
follows that Ko (I) is generated by Ko(p«S(Tj)pa) for j € {1,2}.

Case 2: Assume that T satisfies the conditions in Case 2 in Lemma 2.23. All notation
here comes from Case 2 in the proof of Lemma 2.23. Let €3, . . ., €, be all of the edges
distinct from ¢, that have target 3. Let p., be the support projection of X7 X, for
ie{l,...,n}. If i > 1, we see that p., Bp, contains the algebra

qa . p‘; Pp~Pe;
Pei((C@C)*(C (Xe,vXEi)@ (C ))pei:

ga Pe;  PpPe;
C*(X:,»Xé'i) >EpEi(((CGB(C) * ((C ® (C ))’pEi

which is simple, since C*(X, X, ) is diffuse. This implies that p,, is in the ideal gen-
erated by p,, in B.

If e VNV, then Y7, pe, > kpp for some k > 0 (Corollary 2.12). Therefore,
pp is in the ideal generated by pe, Bpe, in B since each p,; is in this ideal and ideals
are hereditary. Using the iterative argument in Lemmas 2.20 and 2.21, we see that if
y eV N\ Vsandy # a, then y is also in the ideal in B p,, Bp,,. It follows from this that
Ko (I) is generated by Ko(pe, C* (X} X, ) pe,) and Ko(pe, Bpe, ).

If B € Vi, then tr(p,,) < u(P) so it follows that p, is equivalent to py,),
hence py(,) is in the ideal in B generated by p., Bpe,. The inductive argument from
Lemma 2.21 will conclude that Ko(I) is generated by Ko(p., C* (X Xe,)pe,) and

KO(P€1BPG1))'

Case 3: By considering €5, .. ., €, as in the previous case, the exact same proof shows
that Ko (I) is generated by

KO((Pa+qa)C*(X;Xel)(Pa+qrx)) and KO((Pa+qa)B,(Pa+qa))' u

Since I has stable rank one, we obtain the following corollary.
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Corollary 2.29  Suppose p and q are projections in M, (1) satisfying Tr,(p) <
Tr,(g), where Tr,, is the canonical trace on M, (I) induced from the trace on I. Then
thereis av € M, (I) satisfying v*v = p and vv* < q.

2.4 Extension to Infinite Graphs

Assume that T is a countably infinite connected graph with a countable edge set. We
can write I as in increasing union of finite subgraphs T',. Since simplicity, K-groups,
stable rank 1, and unique trace are preserved under inductive limits, we have the fol-
lowing corollary from our work in the previous section.

Corollary 2.30  Let I be the ideal in S(T, u) generated by {XE |ee E(f‘)} Then the
following statements hold.

(i) I issimple, contains the set {p[; |[Be VNV } and does not intersect
{pylyevs}.

Since T infinite and connected implies that V \ Vs is infinite, I is not unital.
(i) S(T,p)/I= Dyev, C.
(i) Ko(I) =Z{[pg]|B eV~ Va} Ki(I) = {0}, and
Ko(I)" = {x € Ko(I) | Tr(x) >0} u {0}.
(iv) Iand S(T, u) have stable rank 1.
(v) I has a unique (up to scaling) lower semicontinuous tracial weight. This weight

is finite if and only if the support projection of I in M(T, u), the von Neumann
algebra generated by 8(T, u), has finite trace.

3 Free Differentials, Atomless Loops, and Algebraicity

For this section, we assume that T is finite with a fixed weighting, g on V(T'). We let
A = C{(Xe) cep(ty> (Pp)pev(r)). We aim to prove the following theorems, which are
in the spirit of [SS15, MSW14, CS15].

Theorem 3.1 Suppose o € V and Q € A are such that y(a) = min{u(B) | B € V(T)}
and Qpy = Q. Ifa = a* = pyapy € W*(8(T, u), Tr) and Qa = 0, then either Q = 0

ora=0.

Theorem 3.2 Letx € M, (A) be self-adjoint. Then the law of x with respect to Tr @ tr,,
has algebraic Cauchy transform.

Theorem 3.1 has the following corollary.

Corollary 3.3 Suppose Q = QF € A, py is as in the statement of Theorem 3.1,

and Q = Qpa(= paQpa)- If Q is not a scalar multiple of p,, then the law of Q in
(paS(T, u) pa, Tr) has no atoms.

Notice that any such Q described in Corollary 3.3 must be a linear combination of
elements of the form X, --- X,,, where ¢; --- €, is aloop in I based at a.
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To develop the machinery to prove Theorem 3.1, we will develop a free differential
calculus along the lines of [V0i93, CDS14].

3.1 Commutation with Finite Rank Operators

Let 3 = L*(8(T, ), Tr). We desire to place a more natural Euclidean structure on
J{. First, some notation is in order.

Notation 3.4 Let II denote the set of all pathsin I, and 0 = €; - -¢,, € IL. Let |o| = n
denote the length of 0. We set:

. O'OP :ezp...ei)P

2(0) =(e1) - L(en).

DY e SRy FTReS)
7 u(t(o)) u(t(en))

.« Xo=XqoXe,.

* Yo =20pr apa; e(p)e(r?)*
e T=¢€8®: - ®¢, (viewed as an element of F(T)).

Proposition 3.5 (Change of basis)  Suppose o is a path in T of length n.

@) Yy eS(T,p)

(i) Y, = X, + Q where Q is a linear combination of the X, with |o’| < n.
(ili) Xy = Y, + P where P is a linear combination of the Y, with |o'| < n.
(iv) LetTe F(T) be defined byT= Y ycr Pa- Set

)
Yo \Ju(sm)Y"'

Then Y, is the unique element x in S(T, ) satisfying x -1=G.

Proof We will prove this by induction on |o|, the length of ¢. If |6| = 1, then ¢ = ¢
for some € € E and it is apparent that Y, = X_.
Given, o with |o| > 1, write o = e7 for € € E, and write 7 = ¢'7’. We see that

XY = (aee(e) + ae"Pg(eop)*) Z ana;jf(ﬁ)e(Tgp)*

T=T1T>

= Y enanl(en)E(rP) + Bene Y agaghywt(z)e((1h))"

T=T1T2 v'=1]1}
+ Aeop a;lf(e"p)*ﬁ(r"p)*
= YD‘ + 66"?,5’ YT’
By induction, this proves (i) and (ii). (iii) follows directly from (ii).
For (iv), it is clear from the definition of Y, that Y, -1 = @. Furthermore, by the

definition of the conditional expectation, E (Theorem 2.4), we have E(x) = (I]xI).
Since E is faithful, Y, is the unique element, x, in 8(T, u) satisfying x - 1= 3. [
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Note that the Hilbert module X = X(T) ®¢ £*(V(T), u) is a Hilbert space with
inner product given by

(@]32)x = Tr((G1]2)) = o102 (1))

for 01,07 € II.

Lemma 3.6  There is a S(T, y)-linear unitary U:H — XK given on finite sums by
U( Z a,-?a) = Z a,-?i
i=1 i=1

Proof It is apparent from the definition of the inner products on 3 and X that U
is an isometry with dense range, hence U extends to be a unitary operator from J
onto XK. Suppose 7 € II, with 7 = ¢’7’ for ¢’ € E. The formula XY, = Yy + Or con Yr
appeared in the proof of Proposition 3.5. It follows from this formula that X, Y, =
A Yeq + Or condeon Yor. Since XeG = ac€t + Or condeon 7, U is S(T, u)-linear. [ |

We will canonically identify J{ with K and refer to this Hilbert space as (. We
will assume JH has inner product (-|-)g¢, which is linear in the right variable. Let
J: H — 3 be the modular conjugation, (i.e., the isometric extension of J(X) = x* for
x € 8(T, u)). Iif we set M = M(T, u) (the von-Neumann algebra generated by S(T, p)
acting on H), then JM] = M’, the commutant of M.

Note that I is spanned by {p, | « € V(I')} and elementary tensors of the form
€1 ® -+ ® €, where e; ---€, is a path in I'. Therefore, we view J{ as being spanned by
paths in T of finite length, with paths length 0 paths simply being vertices. According
to the Euclidean structure above, we have

er-eenla = o) and J(ere,) = | FEED) op o
lev-+-enllac = Viu(t(en)) and J(er---en) \‘W(El)) el

For &, n € H, consider the rank-one operator |£)(#| which is defined by
1E)(nl(0) = &nlO)ac.

We have the following lemma.

- _ 1 VT =0
L;mtlna 3.7 [ee),JXJ] = -5 H(s(e))3_y(t(e))|s(e))(t(e)|, and [€(€),J X J] = 0 if
efe.

Proof It is straightforward to see that £(e)JX.J(e1---€,) = JXcJ€(€)(e1---€,) if
n > 1and that €(¢)JX.J(@) = 0 = J X J€(e) (@) if a # t(e). Finally, we see that

[6(e), JX.J)(2(€)) = [€(€)TXcT — JXcJe(€)](£(€)) = £(€)[acore®] — JX.J (€)

= acor€e® — X (aZpeP)

H(1() )
o))

= aeopeeop — (a€0p€€()p + agopsf(—e\)) = _(
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and
~ 1 TN T - - u(t(e)) B
<'/!4(S(e))3'#(t(e))| (N1 Vu(s(e))? - u(t(e)) ©
(t(e)) ¥/t
“ugen) O
The result follows. u

We will now prove a commutation lemma that is central to our theorem. The idea
of this proof was communicated to the author by Dima Shlyakhtenko, who has a sim-
ilar proof for when each X, is a (scalar-valued) semicircular element.

Lemma 3.8 Foreache ¢ E, let R, € B(H) be a finite-rank operator with
Re:Jps(eyJH —> Tpi(e)JH
(ie, ker(R.) o (Jps(eyJH)* and range(R.) € Jpy(eyJH) . Suppose further that
> [Re, JXcJ] = 0.

ecE

Then R, = 0 for all ¢ € E.

Proof Leta, b e M. Since JMJ = M’, we have

0= a[Re,JXcJ]b = Y [aRcb,JX.]].

ecE ecE

Fixing some ¢’ ¢ E, and letting Try¢ be the trace on the finite rank operators, we have,
with the aid of Lemma 3.7:

0="Trse( Y e(e")[aReb, JX.J])

- ZTrg{(f(e')aRsb]XJ - ¢(e')]X.JaRcb)
- ZTrg{( aRb[JXJe(€') - e(e")]XeJ])
1
= Troc(aRe bls(€’ !
TR ey e RHENHED
1
= €N|aR. bs(e
O E R
1

= ax— 6, Re/bs e, ‘
\"/#(5(6’))3~x4(t(e'))3< t(e")[Rerbs(€') )ac

As this holds for all a, b € M, this implies R = 0 since Rer: Jpg(er)JH = JpyeryJH.
|
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3.2 A Free Differential Calculus for A

Before defining our free difference quotients, we claim that the elements X, are al-
gebraically free with amalgamation over Co(V). From Theorem 2.4, the elements
(X¢)eek are *-free with amalgamation over Cy (V). Also, the spectral measure X, X,op
has a nonzero diffuse part. These two facts imply that the elements X, are algebraically
free with amalgamation over Co(V).

For each edge € € E, we define d.: A - A®./ to be the derivation that is the unique
extension of

0e(Xer) = (66,6’)P5(e) ® Pr(e)-
Also see [CDS14]. Notice that this means that if¢; - - - €, is a path in T, then
0e(Xe, -+ Xe,) = Z X, X

€1

® X

€1 e

Xe,s

€j=€

with the understanding that if ¢; = ¢, then the term p() ® X, -+ X, appears, and
ife, = ¢, then the term X, -+ X, | ® py(c,) appears. Although the following lemma
will not be needed in what follows, it demonstrates that the differential operators o
have a finite free Fisher information type property [Voi93].

Lemma 3.9 (i) ForanyP e A, we have

(Tr®Tr)(0:P) =/ u(s(e))u(t(€)) Tr(Xeor P),

ie., \/u(s(e))u(t(e))Xeor is a conjugate variable for 0,.
(i) Ifwedefine o € Aut(A ® A) by linear extension of 6(a®b) = b ® a, then for any
PeA,

(3:(P)) " = 0 (Beor (P*)).

(iii) Oc has a densely defined adjoint, 97, which is given on individual tensors by
9:(Q®R) =/u(s(e))u(1(€))QXcR - (id®Tr) (deer (Q))R
- Q(Tr®id)(0er (R)).
Therefore, the operators o are closable as operators from H — JH ® H.

Proof (i) SupposeP = X, ---X,. From Lemma 2.6, we have

Vu(s(e))u(t(e)) Tr(Xeer P)
=V u(s(e))p(t(e)) Tr(Xe, -+~ Xe, Xeor )
= Z Tr(XE1 "'XEj—l) 'Tr(X€j+1 "'Xen)
o
+0e,,ept(5(€7)) Tr(Xe, - Xe, ) + Oy ept (£(eF)) Tr(Xe, . - . Xe,)

= Z Tr(Xe, - Xy ) - Tr(Xep, - Xe, )
€j=€

jfln
+ 0, e ph(t(€)) Tr(Xe, ... Xe, ) + Oepeph(s(€)) Tr(Xe, ... Xe, )
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Note that
0e(Xe, -+ Xe,) = Z Xy Xepy ® Xepyy - X,
6}'26
j#{L,n}

+ 55",5X€l cee Xe,,,l ® Pre) + 5e1,ePs(e) ® Xez ce Xeﬂ.

Taking Tr ® Tr verifies the equation for monomials. The rest follows by linearity.
(ii) If P is a monomial, this immediately follows from the definition of 0 and 9. The
rest follows by linearity.
(iii) Set X; = +/u(s(e))u(t(€)) X, and Xeor = \/u(s(€)) u(t(€))Xeor. For P, Q, R €

A, we have
(Q ®R| Be(P)>}C®}C =TreTr((Q* ® R*)d.(P))
=Tr®Tr(Q*d.(P)R")

=TroTr((Q*PR*) - 0:(Q*)PR* — Q" Pd.(R"))
= Tr(Xeor Q*PR*) = Tr((Tr®id) (3:(Q*))PR*) = Tr(Q*P(id ® Tr) (3. (R*)))
= Tr(R* Xew Q*P) - Tr(R*(Tr ®id) (9:(Q"))P) - Tr((id ® Tr) (3¢ (R*) ) Q* P)
= Tr((QXeR)"P) ~ Tr([(Tr®id) (0 (de (Q)) ") "R]*P)
~Tr([QUd ®Tr) (o(9er (R)) ") ]°P)
~ T((QXeR)"P) - Tr([(id ®'Tr) (9 (Q) )R] P)
- Tr([Q(Tr@id)(deer (R))]"P)
- (QXeR - (a8 T) (90 (Q))R - Q(Tr @id) (3 (R)) | B) .
|
Note that M®M has a canonical M —M bimodule structure given by a(x;®x,)b =
ax; ® x,b. Moreover, we can realize M ®,, M as a subalgebra of the finite rank

operators on J{ by x ® y > [X)(y*|. These two actions are compatible, i.e., under the
identification of M ®,1; M with finite rank operators on H, we have

a(x ® y)b > |ax)(b" y*| = alZ)(y*|b

where the last product is the product in B(H).

We will occasionally realize the M — M bimodule action on M ® M asan M ® M
action on M ® M via the linear extension of (a ® b)#(x ® y) = ax ® yb. We now
prove the key inductive lemma which is along the lines of [MSW14].

Theorem 3.10  Suppose Q € A and there are a, 3 € V with p,Q = Q = Qps.
Suppose further that there are a and b in M with aQ = 0 = Qb. Then for each ¢ € E,
ad:(Q)b=0.

Proof The assumptions in the problem imply that

a(Q®pp—pa® Q)b =0.
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The identity
Q®pp-pa®Q=Y 0(Q#(Xc®1-11® X,)
GEE

can be observed by noting that if Q is a monomial X, --- X, with s(¢;) = a and
t(en) = B, then

> 0:(Q)#(Xe ®1) = Q®pﬁ+ZXel~~ o ® Xe,,, -+ Xe, and

)

2 %(Q#(1®X,) = pa®Q+2X€l. o ®Xe,, o Xe,

ecE
We therefore have

Y (a®b)#0:(Q)#(Xe ®1-1® X,) = 0, which implies
ecE
> [a0:(Q)b, JXewr]] =
ecE
where in the last equation ad, (Q)b is viewed as a finite rank operator on J{. Note that
under this identification, ad.(Q)b: JPs(eor)JH — Jpi(eoryJH, s0 applying Lemma 3.8
(for €°P) to ad.(Q)b gives ad.(Q)b = 0 as desired. [ |

We now prove Theorem 3.1. The proof will be an amalgamated version of the proof
of the corresponding theorem in [MSW14].

Proof of Theorem 3.1 Suppose p, is in the statement of Theorem 3.1 with Q € A
nonzero and Qp, = Q. Suppose further that Qa = 0 for a = a” and pyap, = a.
Define the degree of Q to be the length of the longest monomial in the X.’s with
nonzero coeflicient in the expansion of Q into monomials. If Q is a linear combination
of the elements { pylye V}, then Q is said to have degree 0. We will prove the result
by induction on the degree of Q. The result is trivial for Q of degree 0, so we will now
assume that the degree of P is at least 1.

By expanding Q = } gy ppQ, we see that Qa = O ifand only if pyQa = 0 for all 3,
so we assume that Q = pgQ for some f3 € V.. Let g be the projection onto the kernel
of Q. Since Qpy = Q, Tr(q) > ¥,y (a} #(y). Assume that a # 0. Then since a is
supported under p,, we have Tr(q) > ¥,cv.(a} #(y)- Let q be the projection onto
the kernel of Q* and note that Tr(q) = Tr(q). Therefore, using minimality of y(«),

(@) + Tr(pp) > (Y w)) +u(B)2( % }y(y))w(a)ﬂr(l).
yeV{a} yeV{a

It follows that gpg: # 0 for all y € V. In particular, gpg # 0.
Note that gQ = 0. By Theorem 3.10, gd.(Q)a = 0. This implies that

= (Tr®id)(q0:(Q)a) = (Treid)(99:.(Q))a = 0

for all e. Choose ¢ so that X, is the leftmost term in at least one monomial in the
sum representing Q. We have Tr(gpg) # 0, so it follows that (Tr®id)(g'0.(Q)) € A
is nonzero, has right support under p,, and has degree strictly less than that of Q.
Since a # 0, this contradicts the assumption that for any nonzero Q of strictly smaller
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degree than Q with right support under p,, Qa = 0 implies a = 0. Therefore, a had
to already be zero in the previous paragraph. ]

3.3 Algebraicity

We will now turn toward proving Theorem 3.2. The majority of the discussion below
comes from and is inspired by [SS15]. To begin, we need to set up some notation.

Definition 3.11 (i) If R is a ring, we define the ring of formal power series in
the variables zi, . . ., z, (denoted as R[[ z, . . . , 2, ]]) to be the set of formal sums of the
form

k k
P= > Pz 2

ki,...ky>0
where Py, .k, € R. Addition of two power series is defined term-wise. Multiplication
is defined by
n kj
(PQ)kyyokn = 2, 2 Pevroonty Quii—tro okt
j=1¢;=0
We will let R[z1, . . ., z, ] denote the polynomials in the variables zy, . . ., z,. Note that

PeR[z, -,z,] ifand onlyif Py, . x, = 0 for all but finitely many (k;, ..., ky).
(i) If R is an integral domain, we say that P € R[[z1,...,z,]] is algebraic if there
exist Qp, Q1,...,Qn € R[z1,...,2,] not all zero satisfying

> Q;P =o0.
=0
The algebraic elements in R[[z;,...,2,]] form a ring. This ring will be denoted as

Ragllz1s---»2n])-

Given Neumann algebra, N, a faithful positive linear functional ¢ on N, and a self-
adjoint a € N, there exists a unique positive measure p,, supported on the spectrum
of a, which satisfies

o) = [ x"dua(x).
Recall that the Cauchy Transform of a measure, y, is defined as

du(t)
G,(z)= | ——=.
W@ = |
If y is compactly supported, it is straightforward to see that G, (z) has a Laurent ex-
pansion about z = 0, and that lim,_,., G,(z) = 0. Therefore, the Laurent series for
Gu(z) isan element of C[[ 1 ]], so it makes sense to ask if G ,, is algebraic for any a € A.

In order to answer this question, we will need a notion of rational power series.

Definition 3.12 (i) Let R be a unital subring of the unital ring, S. We say that R
is rationally closed if whenever A is an # x n matrix with entries in R and invertible in
M, (S), then A™" € M, (R). The rational closure of R is the smallest rationally closed
subring of S containing R.
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(i) A power series P € R[[z,...,2,]] is rational if P is in the rational closure of
R[z1,...,2,], viewed as a subring of R[[z1, . ..,z,]]. The set of rational power series
will be denoted as Ryx[[z1, - - ., 2n ]

The following lemma from [SS15] will be helpful.

Lemma 3.13 ([SS15]) Suppose that N is a von Neumann algebra with faithful trace

7. Given x1,X2,..., Xy € N, and Yoo x,2", we define
TrN( > xnz") = > 1(x)z" ¢ C[[2]].
n=0 n=0

Suppose that A is a subalgebra of N and that

Try ( Arat [[Z]] ) € (Calg [[Z]]’
then for every self-adjoint matrix A € M,,(A), G, is algebraic.

As above, we assume that T is a finite graph, and we fix a weighting y on V(T).
Let M = M(T,u) and A = C(C, (Xe).5). In order to verify the hypotheses in

Lemma 3.13 we need to make use of power series in non-commuting variables.

Definition 3.14 (i) Let Rbearingandlet X = {x,...,x,} be afinite set, often
called an alphabet. A word in X is a finite string x;, .. ., x;,. The set of all words in X
will be denoted as W(X), and the empty word will be denoted 1.

(ii) The non-commutative power series ring, R{ X)) consists of formal sums of the
form

P= > Pyw
weW(X)
for P,, € R. Addition of elements in R{ X)) is done coordinate wise. Multiplication of
elements P and Q in R{ X)) is defined as follows:
(PQ)W = Z pP,Q,

u,veW(X)
w=uv

The non-commutative polynomials in X, denoted by R(X), is the subring of R{X)
consisting of elements of the form
P= > Pyw
weW(X)

where P,, = 0 for all but finitely many w € W(X).
(iii) If Z = {z1,...,2n } is an alphabet disjoint from X, a proper algebraic system
over R is a set of equations

Zi = Pi(X1 ooy Xn> 215+ -5 Zim )

where p; € R(X U Z) has no constant term, nor any term of the form az; for « € R
and j € {1,...,m}. A solution to a proper algebraic system is (P, ..., P,) € R{X)™
with (P;); = 0, satisfying

Pi:pi(xly'--sxnapb--'ypm)

for each each i € {1,...,m}.
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(iv) We say that P € R{X)) is algebraic if P — P;1is a component of a solution of
a proper algebraic system. The set of the algebraic elements in R{ X)) will be denoted
by Raig(X). Raig(X) is a subring of R{X).

(v) We say that P € R{X)) is rational if P is in the rational closure of R(X) in
R{(X)). The set of rational elements in R{ X)) will be denoted as Rqj¢{ X))

Fixanalphabet%z{e|eeE}U{(x|(xe V'} and let
X={Xc|ecE}u{pa|aeV}

so that A = C(X). If w = €...€,, then set w(X) = X, ---X,. For a € V, set
P% e C{Z) to be the following element:

P*= %" Pgw, where

wew(2)
P =0,
Py =0yqu(a) ifyeV,
PX=0 if paw(X)pa =0,
PZ=0 if [w| > 2 and w contains y € V,

P =Tr(w(X)) if paw(X)pa=w(X)#0andw =¢€...€,.

Let L(«) denote the loops in T that are based at a. A key point in our analysis is the
following lemma.

Lemma 3.15 P% - y(a)a is algebraic for each a € V.

Proof We note that

P —u(a)a = Z Tr(Xe, -+ Xe, )€1+ €n.

€1...€n€L(a)

Using Lemma 2.6, this series can be rewritten as:

Z 1

fe,=a AM(S(S”))‘M((X)
er-€x1€L(a)

€ks1€n—1€L(s(€n-1))

X [Tr(Xs;H,l e Xen_l )€k+l e en—l] €n

[Tr(X61 T Xek,l )51 - 'ek—l] 6(:,1)

D SR I Lo e S ST P

€1...€p—2€6L(a) Au(s(eﬂ))
p(s(en))

+ Z 7€0P[Tr(Xez"'Xsn_1)€2"'€n—l:|€n
€2€n—1€L(s(€n)) A"l(“) "

+Vu(@)u(s(e))e en
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This means that (P* — u(a)a)4ey is a solution to the proper algebraic system

S ORI RT \‘ Bl cone
pra t(e)=a u(p)

s(e)=B

€Pzge +

1
VeBu@ "

where « ranges through all of V. ]

Corollary 3.16 P% is algebraic foralla € V.

We will now let P € Ay[[2]], and we set P' = ¥ ., P* and note that P' «
Caig{X)). There is a homomorphism 7: C(.Z") — A that is uniquely determined by
n(e) = X, for all € € E and m(a) = p, for all @ € V. This map extends to a map
(also denoted 7) from C{.2")[[z]] = A[[2]]. We can find P € C(Z")a[[2]] such that
n(P) = P.

In [Sau03] there is a canonical way to realize C(.2 );at[[2]] € C(2)rat{-Z"}), where
C(z) is the quotient field of C[z]. Note that we can realize P* € C(z)a1g(.2"). If we
consider the Hadamard product

PoP' =% P,-P,-w,

weX

then P ® P' € C(2)ag( X)) by [Sch62].
Observe that if we write P = Y7 [Pm,ﬁ((Xe)eeE) + P, v ((Pa)aev)]z™ for poly-
nomials p, zand p,,v, then

B3 [ (O ) + Ponv(@aer) + G () s (@)aev) ] 27,

m=0

where g ((Xe) ep> (Pa)aev) = 0. If we let coeff(p, w) be the coefficient of w in the
expansion of p into monomials, we see that

PoP' =) y(oc)( i [coeff(pm,v, ) +coeff(qm,oc)]zm)rx

acV m=0

+ Z Z Tr(Xe‘l"'Xsn)

aeVe...epcl(a)

[

x ( > [coeff(p,, zr€1--€n) + coeff(qm,el---e,,)]zm)el...en.

m=0
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If one inserts 1 for each € and « then we get

> ﬂ(“)( i [coeff (pm,v, ) + coeff (g, oc)]z'")

acV m=0

+ >y Tr(Xe - Xe,)
aeVey ... el(a)

oo

x ( [coeﬁ'(pmj,elmen)+coeff(qm,el-~~en)]zm)
= 3 TPy (XDct) + P (P ) + (X (P )"
= 32 (0 (X ap) + P (pdact))2"
= Tl‘yv[(P)

We see that Try (P) is algebraic from [Sau03]. This discussion proves Theorem 3.2.

Due to Corollary 3.3, if Q € A is self-adjoint with p,Qp, = Q and Q not a scalar
multiple of py, then the law, pg of Q in p,S(T, ) po has no atoms. Since the Cauchy
transform of Q is algebraic, it follows that y is absolutely continuous with respect to
Lebesgue measure and that the support of y is a finite union of closed intervals. Fi-
nally, since Ko (8(T, u)) is generated by the classes [ pg], we have the following corol-
lary.

Corollary 3.17 Let Q € A be self-adjoint with p,Qp, = Q and Q not a scalar
multiple of py. If u(a) = min {u(B) | p € V}, then the law of Q in (paS(T, tt) pa> Tr)
is absolutely continuous with respect to Lebesgue measure. Moreover, the spectrum of Q
in paS(T, u) py is a finite union of disjoint closed intervals, each of which has measure

in (0, p(@) ] N Z[{u(B) | Be V}]

Since the Cauchy transform G, is algebraic for any self-adjoint P € M, (A), we
can deduce results stating that the law of any positive P € M, (A) cannot have a
significant portion of mass near 0 (provided pp has no atom at 0). The approach is
exactly the same as [SS15, Theorem 5.17]. Given a finite measure, y on R, the spectral
density function F,, is defined by F,,(t) = u((-o0,t]).

Theorem 3.18 Let P € M,,(A) be positive, and let o € V satisfy
() =min{u(B)|BeV}.

Then the following hold:

. el

(1) (Slggl+ s ;(Fﬂp(t)_F‘up(O))<oo’
1P

(ii) Jim, fa log(#)dup(t) > —oo.

In particular, if P € A, and poPpy = P, and u} is a the law of P in paS(T, 4) py, then

fO”PH log(£)dub(t) > —oo.
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4 Applications

4.1 An Application to Wishart Matrices

Recall that a Wishart matrix A is an M x N random matrix with independent complex
Gaussian entries a;;. Moreover, the entries have the following covariances

E(a,’kaI) = 8ik6jl and E(a,-jakl) =0.

1
VMN
Notation 4.1 For each integer, n, fix positive integers M;(n),..., Mx(n) with
M;(n) = nfor all n and M;(n) > n for each i € {1,...,k}. Assume further that
limy oo Mi(n)/Mi(n) = y;. Let {A,, |1<i,j <k} be a family of M;(n) x M;(n)
Wishart matrices and assume further that the entries of A,,; are independent from
the entries of A,,,, provided that i # k or j # I.

We are ready to state an application of our work to this family of Wishart matrices.

Theorem 4.2  Let Q be a noncommutative, nonconstant polynomial in the variables

(Xij)i<i,jen U (X?j)lsi)jgn. Assume that Q makes sense as a random matrix, Q,, when

Ay, and A, are inserted for X;j and X7, respectively. Assume further that Q, = Q,

and is of size n x n.

(i)  There is a unique compactly supported probability measure uq so that if tr,, is the
(normalized) trace on the n x n complex matrices, then for each m € N,

tr, ®E(Q}') — /RxmdyQ(x) asn — oo,

(ii) The measure pq has no atoms. Moreover, the support of uq is a finite union of
intervals where each interval has measure in theset Z[{y; | 1< i < k}]n(0,1]. In
particular, the eigenvalues of Q do not cluster around any point.

Let (Y, u) be a probability space, set M(n) = XX _, M,,(n), and let
By = My(n)(C) @ L7 (Y, )

be the algebra of M(n) x M(n) complex random matrices. If Tr,, is the (non-normal-
ized) trace on the algebra of M(n) x M(n) matrices (satisfying Tr(Ip;(n)) = M(n)),
then we define ¢,: B, - C by

¢n(A) =

We will view elements in B, as k x k block matrices where the ij block is of size
M;(n) x M;(n). If we are given the Wishart matrices A,; as above, then we let Xnij €
B, be the matrix whose ij block is Apy; and whose other blocks are all zero. Notice
that if P is as in the statement of Theorem 4.2 so that P((Ay,; )i<i,j,<k> (A}, <i,jisk)
is an n x n random matrix, then

P((An,))1<ij <k (X:ij)lsi,j,sk) € B,
has its 1,1 block equal to P((An; )i<i,j<k» (A}, )1<i,j,<k) and all other blocks zero.

%(Trn ®F)(A).
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To be able to prove Theorem 4.2, we let (T, V, E, u) be the complete graph on k
vertices with two unoriented edges, e;; and ej; having the distinct vertices i and j as
endpoints. Let y: V - R, given by u(n) = y,, and let I' be the directed version of T.
The following theorem was proved in [G]S10].

Theorem 4.3 ([GJS10,BGO05]) The elements Avn,.j converge in *-distribution, under
¢, to the elements X.,;. More specifically, if Q is any non-commutative polynomial in
the variables (Xij)1<i, j<k and (Xi*j)lsi,jgk, then

nlLl’Igo ¢n( Q( (Kn,-,»)m,j,sk’ (Xzij)lsi,j,sk) ) =
Trs(r,u) ( Q( (Xe; 1<ij<ks (Xe;?jv)1gi,j,gk) ) .

Using this theorem, we can prove Theorem 4.2

Proof of Theorem 4.2 In the algebra B,, let P, , be the matrix whose 1,1 block is
the identity and all other blocks are zero and Q is in the statement of Theorem 4.2. In
Bn:ian = Q(( n,])1<z]<k (A )1<1]<k> then Pl nanln ans and the 1:1b10Ck
of this random matrix is Q,, = Q(( niy isi,j<ko (Ay, icisj<k)- By Theorem 4.3,

(@) = [ *"duq(x)

with pq compactly supported. Since the law of Q((X¢;; )1<i,j,<k> (Xe op)1<, j,<k)) has
no atoms in p;8(T, p)ps, it follows that pg has no atoms. Moreover, the absolute
continuity of 4 and the rest of Theorem 4.2(ii) follows from Corollary 3.17. [ |

4.2 An Application to Planar Algebras

Let P, be a (sub)factor planar algebra. For the definition and basic properties of
(sub)factor planar algebras, see [Petl0, BHP12]. We briefly recall the construction of
[GJS10]. Let Gro(Ps) = D50 Pn. We endow Gro (P, ) with the following multiplica-

tion ‘ ‘
xAy={ y
for x € P,,and y € P,,. Gro(P,) is endowed with the Voiculescu trace
TL
n]
tr(x) = . b

where JC represents the sum of all Temperley-Lieb diagrams with all strings having
endpoints at the bottom of the box. We have the following facts about Gry(P).

Theorem 4.4 (i) tris positive definite on Gro(P., ), and the action of x € Gro(P.)

on Gro(P.) by left multiplication extends to an action on L*(P., tr) by bounded oper-
ators [GJS10].
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(ii) Let M be the von-Neumann algebra generated by the action of Gro(P.) on
L*(Gro(Ps),tr). Then M is a II, factor [GJSI0]. If P, is finite depth, then M =
L(IFy12(5-1)1) where I is the global index of Ps and & is the loop parameter [G]SI1].
If P, is infinite-depth, then M = L(F, ) [Harl3].

(iii) Let B be the C*-algebra generated by the action of Gro(Ps) on L*(Gry(Ps), tr).
If T is the principal graph of P, then Ko(B) = Z {[a] | « € V(T')}, moreover B is iso-
morphic to p.S(T, u)p. with » the unique depth-zero vertex of T and y the induced
weighting from P, [HP14b]. If A is the +-algebra generated by

{pa, X |aeV(T), ande e E(f)},
then this isomorphism carries Gro(Ps) onto p.Ap..

Our work on the laws of elements in A immediately implies the following corollary.

Corollary 4.5 Ifx = x* € Gro(P.) is not a scalar, then the Cauchy transform of
x with respect to tr is algebraic, the law of x with respect to tr has no atoms, and the
spectrum of x is a finite union of closed intervals, each of which having measure in (0,1]N

Z{u(a) |aeV(D)}

Proof Since * is of minimal weight in V' (T), this is immediate from Theorem 4.4(iii)
as well as Corollary 3.17. [ |
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