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1. Introduction. Let the group G =AB be the product of two subgroups A and B.
A normal subgroup K of G is said to be factorized if K = (A n K)(B n K) and A D B < K,
and this is well-known to be equivalent to the fact that K = AK D BK (see [1]). Easy
examples show that normal subgroups of a product of two groups need not, in general, be
factorized. Therefore the determination of certain special factorized subgroups is of
relevant interest in the investigation concerning the structure of a factorized group. In this
direction E. Pennington [5] proved that the Fitting subgroup of a finite product of two
nilpotent groups is factorized. This result was extended to infinite groups by B. Amberg
and the authors, who proved in [2] that if the soluble group G = AB with finite abelian
section rank is the product of two locally nilpotent subgroups A and B, then the
Hirsch-Plotkin radical (i.e. the maximum locally nilpotent normal subgroup) of G is
factorized. If G is a soluble SVgroup and the factors A and B are nilpotent, it was shown
in [3] that also the Fitting subgroup of G is factorized. However, Pennington's theorem
becomes false for finite soluble groups which are the product of two arbitrary subgroups.
For instance, the symmetric group of degree 4 is the product of a subgroup isomorphic
with the symmetric group of degree 3 and a cyclic subgroup of order 4, but its Fitting
subgroup is not factorized.

The aim of this paper is to prove that even in the case of a group factorized by two
arbitrary subgroups the Hirsch-Plotkin radical and the Fitting subgroup have some
factorization properties.

THEOREM A. Let the soluble-by-finite group G=AB with finite abelian section rank
be the product of two subgroups A and B, and let H be the Hirsch-Plotkin radical of G.
Then H = A0H fl B0H, where Ao and BQ are the Hirsch-Plotkin radicals of A and B,
respectively.

Here the requirement that G has finite abelian section rank cannot be removed, as
Ya. P. Sysak [10] gave an example of a triply factorized group G = AB = AK = BK,
where A, B and K are torsion-free abelian subgroups and K is normal in G, but G is not
locally nilpotent.

In the hypotheses of Theorem A, if the subgroups A and B are locally nilpotent, one
has in particular that the Hirsch-Plotkin radical of G is factorized. Similarly, the
factorization of the Fitting subgroup of a soluble y,-group factorized by two nilpotent
subgroups is a consequence of the following result.

THEOREM B. Let the soluble-by-finite yx-group G=AB be the product of two
subgroups A and B, and let F be the Fitting subgroup of G. Then F = A0F D B0F, where
Ao and Bo are the Fitting subgroups of A and B, respectively.

Most of our notation is standard and can for instance be found in [6]. In particular:
If G is a group, Z(G) is the hypercentre of G.
If G is a group, Jt(G) is the set of prime divisors of the orders of elements of G.
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A group G has finite abelian section rank if it has no infinite elementary abelian
/^-sections for every prime p.

A group G is an ifx-group is it has finite abelian section rank and the set of primes
n{G) is finite.

If Q is a group and M i s a Q-module, Hn(Q,M) and H"(Q,M) are the n-th
homology group and the n-th cohomology group of Q with coefficients in M,
respectively.

If N is a normal subgroup of a factorized group G = AB, the factorizer of N in G is
the subgroup * ( # ) = ,4/V D BN.

2. Proof of the Theorems. Our first lemma shows that Theorems A and B hold in
the finite case.

LEMMA 1. Let the finite group G = AB be the product of two subgroups A and B, and
let F be the Fitting subgroup of G. Then F = A0F D B0F, where Ao and Bo are the Fitting
subgroups of A and B, respectively.

Proof. Assume that the lemma is false, and let G = AB be a counterexample of
minimal order. If Â  and N2 are distinct minimal normal subgroups of G, and FjNj is the
Fitting subgrup of GlNt{i = 1,2), it follows that A0Fi D B0Ft = Ft, since the result holds for
the factor group G/A/,. Then

A0F D B0F < F, n F2 = F,

and F = A0F D B0F. This contradiction shows that G has a unique minimal normal
subgroup N, and hence F is a p-group for some prime p. Put FQ = A0Fr\B0F. Since
F^F0^A0F, the subgroup Fo is subnormal in AF, and similarly it is subnormal in BF.
Then it follows from Satz 1 of [11] that Fo is subnormal also in the factorized group
G = (AF)(BF). Therefore Fo is not nilpotent, and there exists a prime q i=p dividing the
order of Fo. The Sylow ^-subgroup Qt of Ao is clearly also a Sylow ^-subgroup of A0F,
and hence Q = Qx D Fo is a Sylow g-subgroup of Fo. Moreover Q lies in Ao, and so is
subnormal in A. Let Q2 be the Sylow ^-subgroup of Bo. Then Q2 is a Sylow ^-subgroup
of B0F, and thus there exists x eG such that

As BJ is the Fitting subgroup of Bx, we obtain that Q is subnormal in Bx, and Satz 1 of
[11] yields that Q is subnormal in G =ABX. Since F is a p-group, it follows that Q = \,
and this contradiction proves the lemma.

LEMMA 2. Let the group G -AB =AK = BK be the product of two subgroups A and
B and a radicable abelian normal p-subgroup K satisfying the minimal condition. If Ao and
Bo are nilpotent normal subgroups of A and B, respectively, then the subgroup A0K D B0K
is nilpotent.

Proof. Assume that the lemma is false, and choose a counterexample

G=AB=AK=BK

such that K has minimal Priifer rank. Clearly the subgroups A0K and B0K are normal in
G, and hence also K0 = A0KDB0K is a normal subgroup of G. Moreover KJK<

https://doi.org/10.1017/S0017089500008715 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008715


THE HIRSCH-PLOTKIN RADICAL 195

A0K/K is obviously nilpotent. Suppose that Ko is finite-by-nilpotent. Then there exists a
positive integer r such that the index \K0: Zr(K0)\ is finite (see [6] Part 1, Theorem 4.25),
so that K ^ Zr(/C0) and Ko is nilpotent. This contradiction shows that Ko is not
finite-by-nilpotent. Let L be an infinite G-invariant subgroup of K with minimal Priifer
rank. Then L is radicable and all its proper G-invariant subgroups are finite. By the
minimality of the rank of K the result holds for the factor group GIL, and hence KJL is
nilpotent. It follows that [L, Ko] =£ 1, and so [L, Ko] = L, since [L, Ko] is radicable and L
has no infinite proper G-invariant subgroups. This means that H0(K0/L, L) = 0, and
Theorem C of [8] yields that H2(G/L, L) has finite exponent. Therefore there exists a
subgroup J of G such that G = LJ and L n / is finite. As L n J is normal in G and Ko is
not finite-by-nilpotent, also the factor group GI(LDJ) is a counterexample, and hence
we may suppose that L n / = 1. Thus K = L x (7 n K) and J n K — K/L is a radicable
normal subgroup of G. If J C\ K =£ 1, the result holds for the factor group G/(J f) K), and
so K0/(J PI /C) is nilpotent. It follows that Ko is nilpotent, and this contradiction proves
that JDK = l. Therefore K = L, and K has no infinite proper G-invariant subgroups.
Assume that A D K is infinite. As y4 D /C is normal in G = .<4^, we obtain that A n K = K
and K:S/4. Then A0K is nilpotent, so that also Ko is nilpotent. This contradiction shows
that A PI K is finite, and similarly B D K is finite. Thus the normal subgroup
N = (A C\ K)(B H K) of G is also finite, and as above the factor group GIN is a
counterexample. Hence we may suppose that AC\K = BC\K = \. \i Ax and B, are the
Fitting subgroups of A and B, respectively, it follows that AXK = BXK is a normal
subgroup of G containing ^0- Since H0(K0/K, K) = 0, application of Theorem C of [8]
yields that Hl(AxK/K, K) has finite exponent. But K is a radicable abelian p-group of
finite rank, and hence there exists a finite characteristic subgroup E of K such that the
complements of K/E in AtK/E are conjugate (see [7]). The factor group G/E is also a
counterexample, so that we may suppose that the complements of K in AXK are
conjugate. As Ax and B, are both complements of K in AxK, there exists x e G such that
A \ = Bi. Write x = ab, where aeA and beB. Then

so that /4, = B, is normal in G, and /^A" is nilpotent. This last contradiction completes
the proof of the lemma.

LEMMA 3. Let G be a group, and let K be a periodic abelian normal subgroup of
infinite exponent of G whose proper G-invariant subgroups are finite. Then K is contained
in the centre of the Fitting subgroup of G. In particular, if CG(K) = K, then K is the Fitting
subgroup of G.

Proof. Let N be a nilpotent normal subgroup of G. Then KN is also nilpotent, and
hence K n Z{KN) is infinite, since K has infinite exponent (see for instance [6], Theorem
2.23). But K(~\Z(KN) is normal in G, and K has no infinite proper G-invariant
subgroups, so that K D Z(KN) = K. Therefore K < Z(KN) and N < CC(K). This proves
that K lies in the centre of the Fitting subgroup of G.

PROOF OF THEOREM A. Assume that the result is false, and among all the
counterexamples for which the soluble radical 5 of G has minimal index choose one
G = AB such that 5 has minimal derived length. As the theorem is true for finite groups
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by Lemma 1, the group G is infinite, and hence its soluble radical is not trivial. It follows
that G contains an abelian normal subgroup K such that the theorem holds for the factor
group G/K. Write M = A0H D B0H. Then M/K lies in the Hirsch-Plotkin radical of
G/K, and hence M is ascendant in G, as the Hirsch-Plotkin radical of G/K is
hypercentral. Since H<M, this proves that M is not locally nilpotent. The factorizer
X(H) of H in G =AB has a triple factorization

where A = AHBH and B = Bf\AH. If A0 = A0C\A =A0D BH and B0 = B0DB =
B0DAH, then Ao and Bo are contained in the Hirsch-Plotkin radicals of A and B,
respectively. Moreover

AOH n BOH = (Ao n BH)H n (s0 n AH)H = /!„# n BOH = M,

so that A0HC\B0H is not locally nilpotent. Therefore X{H)=AB is also a minimal
counterexample, and without loss of generality we may suppose that G has a triple
factorization

G=AB=AH = BH.

Then the subgroups A0H and BQH are normal in G, and hence also M is a normal
subgroup of G. The structure of soluble groups with finite abelian section rank (see [6])
allows us to investigate only the following possible choices for K.

Case 1: K is finite. By induction on the order of K be may suppose that K is a
minimal normal subgroup of G. As M is not locally nilpotent, we have that [K,M]¥=l
and hence [K, M] = K. Then H0(M/K, K) = 0, and it follows from Theorem 3.4 of [9] that
H2(G/K,K) = 0. Therefore there exists a subgroup J of G such that G = KJ and
KC\J = 1. The centralizer Cj(K) is normal in G, and Lemma 1 shows that the theorem
holds for the finite factor group G/Cj(K). In particular MCJ(K)/CJ(K) is locally
nilpotent, and so M is locally nilpotent since K DCj(K) = l. This contradiction proves
that the subgroup K cannot be finite.

Case 2: K is periodic and residually finite. Each primary component Kp of K is finite,
and so by Case 1 the group M/Kp, is locally nilpotent for every prime p . As the groups Kp

and KlKp. are G-isomorphic, it follows that Kp is hypercentrally embedded in M. Then K
is hypercentrally embedded in M, and M is locally nilpotent, a contradiction.

Case 3: K is a radicable p-group (p prime). By induction on the rank of K we may
suppose that every proper G-invariant subgroup of K is finite. In particular, as K is not
hypercentrally embedded in M, the intersection Z(M) OK is finite. It follows from Case 1
that also the factor group G/(Z(M) n K) is a counterexample, and hence it can be
assumed that Z(M)DK = l. Thus H°(M/K,K) = 0. Moreover, G/Cc(K) is isomorphic
with an irreducible linear group by Lemma 5 of [4], and hence it is abelian-by-finite (see
[6] Part 1, Theorem 3.21). Then M/CM(K) is FC-hypercentrally embedded in G, and
Theorem 3.5 of [9] yields that H2(G/K, K) = 0. Therefore there exists a subgroup / of G
such that G = KJ and K n / = 1. The centralizer Cj(K) is normal in G, and
MCJ(K)/CJ(K) is not locally nilpotent. Put G = G/Cj(K). As K and K are isomorphic
M-modules, we obtain that Z(M) D K = 1. Moreover Cc(K) = K, and replacing G by G
we may suppose that CG(K) = K and Z(M)DK = 1. In particular K is the Fitting
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subgroup of G by Lemma 3, and the factor group G/K is abelian-by-finite. Let L/K be an
abelian normal subgroup of G/K such that G/L is finite. For each positive integer n, the
n-th term Zn(H) of the upper central series of H is a nilpotent normal subgroup of G, so
that Zn(H)^K. On the other hand, K lies in Zm{H), since H is hypercentral, and so
K = ZW{H). Assume that Z(A0) n K contains a non-trivial element a, and let m be the
least positive integer such that a e Zm{H). Then Zm_x(H) is properly contained in K, and
hence is finite. Write G = G/Zm_i(//). Then a centralizes Ao and H, so a € Z(M) n £
and Z(M) C\K=tl. As Zm_l{H) is finite and Z(M)nA" = l, this contradicts Lemma
2.3 of [2]. Therefore Z(A0) C\K = 1 and hence also A0DK = l. But /I n K is contained in
Ao, so that AC\ K = 1. The same argument shows that B C\ K = 1. Then the subgroups A
and B are abelian-by-finite, and in particular the indices |/4:.<40| and \B:B0\ are finite.
The factorizer X = X(K) of K in G = AB has a triple factorization

;r = ,4*5* =>!**; = B*K,

where A*=ADBK and B* = BD,4/C. It follows from Lemma 2 that AQKC\B0K =
(AonBK)Kn(BoC\AK)K is nilpotent-by-finite and hence X is also. Thus the Fitting
subgroup Y of X is nilpotent and Z/Y is finite. As K < Y n L ^ L, we have that Y n L is
a nilpotent normal subgroup of L. Clearly JC is the Fitting subgroup of L, so that
YDL = K,mdK has finite index in X. But A* n K = B* C\ K = 1, so that A* and B* are
finite, and X = A*B* is also finite. This contradiction completes the proof of this case.

Case 4: K is a periodic radicable group. Each primary component Kp of K is
radicable, so that Case 3 shows that M/Kp> is locally nilpotent for every prime p. Then
K/KP' is hypercentrally embedded in M, and hence Kp lies in the hypercentre of M. It
follows that K is hypercentrally embedded in M, and M is locally nilpotent.

Case 5: K is torsion-free. Let T be the maximum periodic normal subgroup of G. As
K H T = 1, we have that MTIT is not locally nilpotent, and hence the factor group GIT is
also a counterexample. Thus we may suppose that G has no non-trivial periodic normal
subgroups, so that in particular the set of primes n{G) is finite (see [6] Part 2, Lemma
9.34). It follows that G is nilpotent-by-polycyclic-by-finite (see [6] Part 2, Theorem
10.33). If F is the Fitting subgroup of G, then / C n Z ( F ) # l . Consider a non-trivial
element x of K n Z(F), and let N be the normal closure of x in G. Thus N is a cyclic
module over the polycyclic-by-finite group GIF, and hence it contains a free abelian
subgroup E such' that N/E is a jr-group, where n is a finite set of primes (see [6] Part 2,
Corollary 1 to Lemma 9.53). Clearly

so that Pi Np is periodic, and f] Np = 1 since N^ K is torsion-free. Let p be any prime

which does not belong to n. As Np # 1, by induction on the torsion-free rank of G we
may suppose that the theorem holds for G/Np. Therefore M/Np is locally nilpotent. Let r
be the Priifer rank of N. Then \N/NP\ =pr, so that N/N" lies in the r-th term of the upper
central series of M/Np. It follows that
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and so N<Zr(M). Thus M is locally nilpotent, and this last contradiction completes the
proof of Theorem A.

Proof of Theorem B. Assume that the result is false, and choose a counterexample
G = AB such that the radicable part R of the maximum periodic normal subgroup of G
has minimal total rank. Put F0 = A0F (1 B0F. Then Theorem A proves that Fo lies in the
Hirsch-Plotkin radical of G, and hence is locally nilpotent. The periodic subgroups of the
factor group G/R are finite, so that the Hirsch-Plotkin radical and the Fitting subgroup
of G/R coincide (see [6] Part 2, p. 35), and it follows again from Theorem A that FJR is
contained in the Fitting subgroup of G/R. As the Fitting subgroup of an 5^-group is
nilpotent, we obtain that Fo is subnormal in G and FJR is nilpotent. Also, in an 5 ,̂-group
each nilpotent subnormal subgroup lies in the Fitting subgroup, so Fo is not nilpotent and
R ¥= 1. Since Fo is locally nilpotent, we have also that Fo is not finite-by-nilpotent. Let 5 be
an infinite G-invariant subgroup of R with minimal total rank, Then 5 is a radicable
abelian p-group for some prime p, and all its proper G-invariant subgroups are finite.
Thus G/CG(S) is isomorphic with an irreducible linear group by Lemma 5 of [4], and
hence it is abelian-by-finite. Moreover G/S is an S^-group, so that its Fitting subgroup
FJS is nilpotent and Fo< Fx by the minimal choice of G. Therefore [5, Ft] =t 1, and hence
[5, F,] = 5. Thus H0(FJS, S) = 0, and Theorem C of [8] yields that H2(G/S, S) has finite
exponent. Then there exists a subgroup J of G such that G = SJ and S DJ is finite. The
subgroup SDJ is normal in G, and the factor group G/(S C\J) is also a counterexample,
since Fo is not finite-by-nilpotent. Therefore we may suppose that S f l / = 1 , so that
R = Sx(J(lR), where JDR is a radicable normal subgroup of G. Clearly
F0(J D R)/(J n R) is not nilpotent, so / D R = 1 and R has no infinite proper G-invariant
subgroups. The centralizer Cj(R) is normal in G, and the periodic subgroups oiJ/Cj(R)
are finite (see [6] Part 1, Corollary to Lemma 3.28), so that G/Cj{R) is an 5^-group. As
Cj{R) C\R = 1, the group F0CJ(R)/CJ(R) is not nilpotent, and the theroem is false for the
group G/Cj(R). Clearly R is G-isomorphic with the radicable part of the maximum
periodic normal subgroup of G/Cj(R), so that G/Cj(R) is also a minimal coun-
terexample. Moreover

and hence we may suppose that Cj(R) = 1 and CG(R) = R. Thus it follows from Lemma 3
that R is the Fitting subgroup of G. The factorizer X = X{R) of R in G has the triple
factorization

X=A*B*=A*R = B*R,

where A* = AH BR and B* = B HAR. Write AQ = Ao D BR and Bt = B0C\AR. Then A£
and Bo are nilpotent normal subgroups of A* and B*, respectively, and Lemma 2 shows
that AQR n BQR is nilpotent. Since

AZR D BZR = (Ao D BR)R n (Bo D AR)R = A0R D B0R = A0F D B0F = Fo,

we have that Fo is nilpotent. This contradiction completes the proof of Theorem B.
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