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QF - 1 RINGS OF GLOBAL DIMENSION g 2 

CLAUS MICHAEL RINGEL 

R. M. Thrall [10] introduced QF - 1, QF - 2 and QF - 3 rings as generali­
zations of quasi-Frobenius rings. (For definitions, see section 1. It should be 
noted that all rings considered are assumed to be left and right artinian.) He 
proved that QF — 2 rings are QF — 3 and asked whether all QF — 1 rings 
are QF — 2, or, at least, QF — 3. In [9] we have shown that QF — 1 rings are 
very similar to QF — 3 rings. On the other hand, K. Morita [6] gave two 
examples of QF — 1 rings, one of them not QF — 2 and therefore not QF — 3, 
the other one QF — 3, but not QF — 2. The global dimension of the latter 
ring is 2, and the following theorem shows that under this assumption a 
QF — 1 ring must always be QF — 3. 

THEOREM. A QF — 1 ring of left global dimension ^ 2 is a QF — 3 ring. 

In order to classify finite dimensional algebras, T. Nakayama [8] defined the 
dominant dimension dom dim R of a ring R. Since dom dim R ^ 1 if and only 
if R is a QF — 3 ring, and, in this case, dom dim R ^ 2 if and only if the 
minimal faithful left i^-module is balanced, we may reformulate the theorem 
as follows: a QF — 1 ring R of left global dimension rg2 has dom dim R ^ 2. 
It was proved by K. R. Fuller [4] that for a ring R with dom dim R ^ 2, 
every faithful module which is either projective or injective has to be balanced. 
Naturally, the question arises whether it is possible to characterize those 
rings R of left global dimension ^ 2 which have dom dim ^ 2 by the fact 
that certain faithful i^-modules are balanced. This question seems to be 
interesting in view of the importance of the class of rings of global dimension 
5^2 and dominant dimension ^ 2 , recently demonstrated by M. Auslander [1]. 

The proof of the theorem uses besides the socle conditions of [9] a result 
concerning the right socle of a QF — 1 ring, and the methods to prove this 
are similar to those developed in [9]. The assumption in the theorem on the 
global dimension can be replaced by the (weaker) condition that the right 
socle, considered as a left module, is projective. 

1. Preliminaries. Throughout the paper, R denotes a (left and right) 
artinian ring with unity. By an i^-module we understand a unital i^-module 
and the symbols RM and MR will be used to underline the fact that M is a 
left or a right i?-module, respectively. 
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T h e length of the module M will be denoted by BM. For every module M, 
Rad M is the intersection of all maximal submodules. T h e radical of R is by 
definition R a d ^ ; it will be denoted by W. I t is well-known t h a t for an 
ar t inian ring, W is ni lpotent . T h e submodule of M generated by all simple 
submodules, is called the socle, Soc M of M. Since R is ar t inian, we have for 
every left i^-module, Rad M = WM and Soc M = {tn £ M\Wm = 0} . 
Considering RR, we get the left socle L = Soc RR, considering RRj we get 
the r ight socle / = Soc RR of R. 

If e is an idempotent , Re a lways will be considered as a left i^-module, and 
the i?-homomorphisms Re —> Re' (where e' is another idempotent ) will be 
identified with the elements of eRe'. Also, it should be noted t h a t Re and Re' 
are isomorphic if there are elements x £ eRe' and y Ç e'Re with exy = e. 
T h e ring R is called a basis ring if for orthogonal idempotents e and e', Re and 
Re' never are isomorphic. Basis rings can be characterized by the fact t h a t 
eR{\ — e) C W for every idempotent e. If R is an a rb i t ra ry ar t inian ring 
and we write 

1 = Z) eu 
id 

with primitive and orthogonal idempotents etj such t h a t Rexj ~ Reki if and 
only if i = k, then, for £ = J^i en, the ring ERE is a basis ring which is 
Mor i ta equivalent to R. 

T h e ring R is a Q F — 3 ring if R has a unique minimal faithful left i^-module 

RX ( tha t is, RX is faithful, and is a direct summand of every faithful left 
i^-module). A Q F — 3 ring also has a unique minimal faithful r ight i^-module. 
T h e ring R is Q F — 3 if and only if for every primit ive idempotent e with 
Je 9^ 0, the socle Le of Re is simple, and similarly for every primit ive idem-
p o t e n t / w i t h / L ?± 0, the s o c l e / / of fR is simple [2, Theorem (3.6)]. 

Module homomorphisms always act from the opposite side as the opera tors ; 
in part icular , every left i^-module RM defines a r ight ^ - m o d u l e M^, where ^f 
is the centralizer of RM. T h e double centralizer 3l of RM is the centralizer 
of My, and there is a canonical ring homomorphism R —» &. T h e module RM 
is called balanced if this morphism R —> «^ is surjective. If every finitely 
generated faithful (left or r ight) i^-module is balanced, then R is said to be 
a Q F — 1 ring. Unti l now, no internal characterizat ion of Q F — 1 rings 
seems to be known, bu t in [9] certain necessary socle conditions were proved. 
For the convenience of the reader and for later reference, we recall these 
condit ions: If R is a Q F — 1 ring and e a n d / are primitive idempotents with 
f(L r\ J)e 9* 0, then 

(1) either dRJe = 1 or dfLR = 1, 
(2) we have dRLe X dfJB ^ 2, 
(3) dRLe = 2 implies Je CI Le, and 
(3*) dfJR = 2 imp l i e s /L QfJ. 

In part icular , (2) shows t h a t a Q F — 1 ring is very similar to a Q F — 3 ring. 
If RM is an indecomposable module of finite length, then the centralizer ^f 
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of M is a local ring. Consequently, all simple ^-modules are isomorphic. 
Moreover, the radical W of *€ is nilpotent, thus the radical of M^ is a proper 
submodule, and Soc M<# is essential in M<#. If RM and RN are modules, then 
elements in the double centralizer of R(M © N) can be constructed as follows: 
Let <€ be the centralizer of RM, and let M' and M" be ^-submodules of M^ 
such that the image of every i^-homomorphism RN —> RM is contained in M', 
whereas M" is contained in the kernel of every i^-homomorphism RM —• RN. 
Then, given a ^-homomorphism x// of the form 

M* -4 ikf/ikf -> M " -+ Af» 

(where e is the canonical epimorphism, i the inclusion), the trivial extension 

[ J Q ] : AT © N -> M © TV 

of ^ belongs to the double centralizer of R(M © N). 
If, for a module M, there exists an exact sequence of i^-modules 

0 -> M -> Z>i -> D2 -> . . . -» A* 

with Dj both projective and injective, then the dominant dimension dom dim ilf 
of the module M is ^n. Now dom dim RR ^ 1 if and only if i? is a QF — 3 
ring [5]. In this case, dom dim RR ^ 2 if and only if the minimal faithful 
left i^-module is balanced [7]. Since the minimal faithful left i?-module of a 
QF — 3 ring is both projective and injective, all faithful left or right modules 
which are either projective or injective are balanced [4, Theorem 5]. In 
particular, also the minimal faithful right module is balanced, and 
dom dim RR ^ 2. So we simply may say that the dominant dimension of R 
is ^ 2 . 

If there exists a natural number m such that for every exact sequence of 
left i^-modules 

0 -> K -> Pm_x ->...-+P1->Po-*M-^0 

with Pi projective for 0 ^ i S m — I, K is also projective, then the smallest 
such m is called the left global dimension of R. It is easy to see that the left 
global dimension of R is S 2 if and only if the kernel of every i^-homomorphism 
RF —> RFf, with RF and RFf both free, is projective. 

2. The aim of this section is to prove the following general result on QF — 1 
rings. 

PROPOSITION. Consider a QF — 1 ring R with left socle L and right socle J. 
Let e and f be primitive idempotents. If y is an element of fJe which does not 
belong to L, and if fL ^ 0, then Ry = Je. 

Proof. Obviously, we may assume that R is a basis ring, because if the propo-
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sition holds for a basis subring of R, it is also true for R. Also, we may assume 
that y G W, since otherwise the conclusion is trivial. 

Let ei be a primitive idempotent such that e± and e2 = e are either orthogonal 
or equal, and which satisfies f(L Pi J)e\ ^ 0. Let x be a non-zero element in 
f(L Pi J)ex. Since xR C\ yR = 0, the left i?-module 

RM = (Rei ®Re2)/R{x,y) 

is indecomposable [9]. The endomorphisms of RM are induced by matrices 

["Vu rul 
\_r21 r22] 

with entries rtj G eiRe^ for 1 S h j ^ 2, operating on Rei 0 Re2 from the 
right. If (ru) induces an endomorphism of BM, then r2\ belongs to the radical 
W of R. For, consider the image of (x, y) under (r^) . We have 

(xrn + yr21l xr12 + yr22) = (Xx, \y) 

for some \ (z R. Thus 3̂ 21 = Xx — xrn G A and, since y (t L, we conclude 
that /-21 G W. 

Also, if (fij) induces a nilpotent endomorphism of RM, then r22 G W. For, 
consider the image of (0, y) under (r{j). We have 

(°> 30 I11 ? 2 = (^21, yr22) = (0, yr22), 
L^2i r22j 

since y £ J and r2i G W. By induction, we get for natural n 

(0. y) f!" ' " 1 " = <0, yr,,-). 
L^21 ^22J 

Since, by assumption, (V^) induces a nilpotent endomorphism, there is some n 
with 

(0,^22») = (A*f Xy), 

where X can be chosen in Rf. But Xx = 0 implies X G W, thus X is nilpotent. 
If Xm = 0, then yr22

n = \y yields yr22
nm = \my = 0, and consequently, r22 

cannot be invertable in e2Re2. 
Let *$ be the centralizer of RM. It follows from the considerations above that 

(0 ® Je2) + R(x, y)/R(xt y) is contained in Soc M^. For, if W denotes the 
radical of ^ , the elements of W can be lifted to matrices (/%•-,) with r2\ and r22 

in W. Thus, for z G Je2, we have 

(0, z) I"11 l12~\ = (zrtl, zrit) = (0, 0), 
\_r2i r22_] 

and thus (0, z) + R(x, y) G Soc M^. 
Also, (0 ®Je2) + R(x, y)/R(x, y) belongs to the kernel of every homo-
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morphism RM —>i?(l — e\). For, we may lift such a morphism to 

®Re2-*R(l -et) [:;]: ** 
with Yi G £*R(1 — ei), mapping (x, y) into 0. The last condition gives us the 

equality xr\ + yr2 = 0, thus, since x G / and r± G eiR(l — e\) C W, we get 

3/7-2 = 0. This shows that not only r\ but also r2 belongs to W, and, as a conse­

quence, the image of (0, z) G 0 0 Je2 under is zr\ + zr2 = 0. 

Since x, y G J", every matrix 

p u ^12! 
L^21 2̂2 J 

with Ttj G etWej 

induces a nilpotent endomorphism of RM, thus TFei 0 PT^2/i^(x, y) C MiV. 
Moreover, if ei and 62 are orthogonal, we have the equality 

Wei © We2/R(x, y) = MiV. 

frn ri2"j 
L/21 2̂2 J 

For, assume that with rtj G etRej induces an endomorphism <p of 
L^21 ^22J 

zgikT; then r\2 G îî ^2 ^ W, and, if ç is nilpotent, we conclude similarly to a 
proof above that 

(*.0)Pn "12T = (xnAO), 
L^21 ^22j 

and that therefore also rn G W. This shows that for q> G ^ , all r^/s belong 
to W, so Af)^ C M^i 0 TF*2/i?(x, y). 

Next, we claim that Oi, 0) + R(x, y) does not belong to MiV = Rad M«. 
This is obvious in the case where e\ and e2 are orthogonal. So, we only con­
sider the case e = ei = e2. If we assume that (e, 0) + R(x, y) belongs to MW, 
then, since MiV is a proper i^-submodule of RM also containing 
We © We/R(xy y), we have MiV = Re © We/R(x, y). Also, Soc M^ is an 
essential ^-submodule of M, thus (Je ® Je) + R(x, y)/R(x, y) intersects 
Soc M<g nontrivially. Therefore, there is a non-zero ^-homomorphism ^ of 
the form 

Met -4 M / M ^ T -> (Je © /<?) + 2î(x, y)/R(x, y) 4 M*f 

where e is the canonical epimorphism, 1 the embedding. The image of every 
i?-homomorphismi?(l — e) —> ^M is contained in T ê © We/R(x, y) Ç i l f )^ , 
since we may lift such a morphism to 

(fi» ^2) 
i?(l - e)1 >Re@Re 

with /%• G (1 - é02?e ^ W- 0 n the other side, (7e © Je) + i?(x, y)/R(x, ?) 
is contained in the kernel of every morphism RM —* R(l — e). Thus the trivial 
extension \p' of \f/ to RM ® R(l — e) belongs to the double centralizer of 
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RM ®R(l - e). But this morphism $' vanishes on MlV © i ? ( l - e) which 
is a faithful module since Re is embeddable in (Re 0 We)/R(x, y) = MW. 
This shows that \pf cannot be induced by multiplication, a contradiction. So 
we have shown that (e, 0) + R(x, y) cannot belong to MiV. 

There is a ^-submodule M' of M which contains MiV and also the images 
of all i^-homomorphisms R(l — e\) —» RM, but which does not contain the 
element (ei, 0) + R(x, y). For, in the case where e\ and e2 are orthogonal, 

choose M' = (We1®Re*)/R(x,y). Since all matrices r n ru which 
r22_ 

induce endomorphisms of RM satisfy ru, r2\ 6 W, we see that M' is actually a 
^-submodule. Obviously, M' 2 MW = Wei © We2/R(x, y), and given an 
i^-homomorphism R(l — e\) —» îkf, we may lift it to 

(/i, r2) 
R(l - ex) >Rei®Re2 

with ti 6 (1 — ei)Rei. But ri £ (1 — e\)Re\ Ç W7", thus the image of (>i, r2) 
is contained in IFei 0 i£e2. Secondly, consider the case e\ = e2. In this case, 
let Mf = MW. Since every i^-homomorphism R(l — e\) —> ^M again can 
be lifted to (ri, r2) where now both r\ and r2 belong to (1 — e{)Rei C W, the 
image of R(\ — e\) —> RM has to be contained in 

Wex 0 We2/R(x, y) ç M " ^ = M'. 

So we see that also in the second case M' satisfies all conditions. 
Also, there is a ^-submodule M" of M^ contained in Soc M<e and in the 

kernel of every i^-homomorphism RM -^ R(l — e\), and containing 

(0 ®Je2) +R(x,y)/R(x,y). 

For, we simply may take the intersection of Soc M^ and the kernels of all 
maps RM —> R(l — ex). 

By construction, M/M' and M" both are semisimple ^-modules. Given 
z G Je2y there is a ^-homomorphism ^ of the form 

Mv ±> M/M' -> M" -^ My 

(where again e denotes the canonical epimorphism, i the embedding) mapping 
(#i, 0) + i?(x, y) onto the element (0, z) + i^(x, 3/). Since the image of every 
morphism R(l — e±) —» ^ikf is contained in M' and the kernel of every 
morphism RM —> i^(l — 61) contains Af", the trivial extension of \// to 
«M 0 J R ( 1 — ei) belongs to the double centralizer of RM 0 R(l — ei). 
Using the fact that R is a QF — 1 ring, we find an element p Ç R which 
induces this extension. In particular, we have 

P(ei ,0) - (0,s) G 2?(*,y). 

Thus 2; 6 ify, as we wanted to prove. 
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3. The main theorem. The result of the previous section can be considered 
as a forth socle condition for QF — 1 rings. Using these socle conditions we 
can show 

THEOREM. Let R be a QF — 1 ring and assume that the right socle J of R, 
considered as a left module, is projective. Then R is a QF — 3 ring. 

Proof. Obviously, we may assume that R is two-sided-indecomposable, i.e. 
that there are not two two-sided non-zero ideals A and I2 with R = I\ 0 I2. 
Let e a n d / be primitive idempotents with/(L C\ J)e ^ 0. Then according to 
the second socle condition 

dRLe X dfJR ^ 2. 

We have to show that in our case the product actually is equal to 1. So, assume 
dRLe = 2 and consider first the case Le Ç Je. The third socle condition 
implies Le = Je. Since Je is a projective left i^-module, and Je is properly 
contained in Re, we find a non-zero idempotent e' such that e and e' are 
orthogonal, Re' is isomorphic to a direct summand of Je, and fLe' 9^ 0. Then 
fL ~Q_f(L C\ J)e ®fLe' and therefore dfLR > 1, a contradiction to the first 
socle condition. If Le (£ Je, take a primitive idempotent / ' and an element 
x = / 'xe G Le\Je. Let e' be a primitive idempotent and w = we' Ç W with 
0 ^ xw e L r\ J. Then df'LR > 1, thus, using the fact t h a t / ' ( L Pi J)e j± 0 
the first socle condition implies dRJef = 1. As a consequence, Rxw = Je' is 
projective and since it is isomorphic to Rf'/Wf', we conclude Wf ' — 0, thus 
/ ' belongs to L. But since x 6 / 'Le\J and Je F^ 0, we may apply the Propo­
sition of section 2 to the opposite ring of R in order to conclude that xR = f 'L, 
and therefore we find p £ R with / ' = xp — f 'xp. Right multiplication by x 
gives an isomorphism Rf ' —> Re. But obviously Re $£ L, whereas Rf' ' Ç L. 
This contradiction proves that dRLe = 1. 

Secondly, assume dfJR = 2. If fJQfL, then according to the first socle 
condition we have dRJe = 1 for every primitive idempotent e with fJe 9^ 0. 
Thus fJ is a direct summand of RJ, and therefore also projective. This yields 
that Rf is of length 1, that is / G L. But the socle condition (3*) implies 
fL Ç / / , thus Rf Ç. L C^\ J. Since i? is assumed to be two-sided-indecomposable, 
we have R = RfR, and R is semisimple; but then dfRR = 1, a contradiction. 
Next, assume fJ £ fL, and take a primitive idempotent e' and an element 
y = fye' £ fJe'\L. By the result of section 2, ify = Je', since we assume 
f(L C\ J)e y£ 0. Now, if Je' is a proper submodule of Re', then using the fact 
that Je' is projective and local, we find a primitive idempotent e", orthogonal 
to e', with Je' ~ Re". If / ' is a primitive idempotent with f ' (L C\ J)e' ^ 0, 
then also f'Le" ^ 0, thus df'LR > 1. But since Je' <£ L, we also have 
dRJe' > 1. Together with f ' (L C\ J)e' this gives a contradiction to the first 
socle condition. So, we have to assume that Je' = Re'. Since Ry = Je' and 
y = /y^'» w e m a Y assume e' = / . Now Rf Ç JT, and f & L, thus no simple left 
ideal can be isomorphic to Rf/Wf. But this is a contradiction to fL ^ 0, and 
therefore we have shown dfJR = 1. 
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COROLLARY. A QF — 1 ring of left global dimension ^ 2 is a QF — 3 ring. 

Proof. Let R be a QF — 1 ring of left global dimension 5^2. If wi, . . . , wn 

are generators of WR, consider the maps 

n 

<p:RR-+ ® RR 
i=i 

with l(p = (wi, . . . , wn). Then the right socle / of R is just the kernel of <p, so 
RJ has to be projective. 

4. Remarks. If we consider the class of rings of left global dimension ^ 2, 
we asked in the introduction for a characterization of those rings R with 
dom dim R ^ 2. The following example shows that not all rings of global 
dimension ^ 2 and dominant dimension ^ 2 are QF — 1 rings. 

Let R be a generalized uniserial ring with the Kupisch series 

1, 2, 2, 3, 2. 

Then, according to [3], R is not a QF — 1 ring, but since R is generalized 
uniserial and coincides with its complete ring of left quotients, dom dim R ^ 2. 
Also, the global dimension of R is 2. 

On the other side, the QF — 1 rings of global dimension ^ 2 are not all of 
dominant dimension ^ 3 , as Morita's second example in [6] shows. It can 
easily be seen that the dominant dimension of this algebra is precisely 2. 
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