QF - 1 RINGS OF GLOBAL DIMENSION ≤ 2 ## CLAUS MICHAEL RINGEL R. M. Thrall [10] introduced QF -1, QF -2 and QF -3 rings as generalizations of quasi-Frobenius rings. (For definitions, see section 1. It should be noted that all rings considered are assumed to be left and right artinian.) He proved that QF -2 rings are QF -3 and asked whether all QF -1 rings are QF -2, or, at least, QF -3. In [9] we have shown that QF -1 rings are very similar to QF -3 rings. On the other hand, K. Morita [6] gave two examples of QF -1 rings, one of them not QF -2 and therefore not QF -3, the other one QF -3, but not QF -2. The global dimension of the latter ring is 2, and the following theorem shows that under this assumption a QF -1 ring must always be QF -3. THEOREM. A QF -1 ring of left global dimension ≤ 2 is a QF -3 ring. In order to classify finite dimensional algebras, T. Nakayama [8] defined the dominant dimension dom dim R of a ring R. Since dom dim $R \ge 1$ if and only if R is a QF -3 ring, and, in this case, dom dim $R \ge 2$ if and only if the minimal faithful left R-module is balanced, we may reformulate the theorem as follows: a QF -1 ring R of left global dimension ≤ 2 has dom dim $R \ge 2$. It was proved by K. R. Fuller [4] that for a ring R with dom dim $R \ge 2$, every faithful module which is either projective or injective has to be balanced. Naturally, the question arises whether it is possible to characterize those rings R of left global dimension ≤ 2 which have dom dim ≥ 2 by the fact that certain faithful R-modules are balanced. This question seems to be interesting in view of the importance of the class of rings of global dimension ≤ 2 and dominant dimension ≥ 2 , recently demonstrated by M. Auslander [1]. The proof of the theorem uses besides the socle conditions of [9] a result concerning the right socle of a QF -1 ring, and the methods to prove this are similar to those developed in [9]. The assumption in the theorem on the global dimension can be replaced by the (weaker) condition that the right socle, considered as a left module, is projective. 1. Preliminaries. Throughout the paper, R denotes a (left and right) artinian ring with unity. By an R-module we understand a unital R-module and the symbols $_RM$ and M_R will be used to underline the fact that M is a left or a right R-module, respectively. Received January 10, 1972 and in revised form, March 21, 1972. This research was supported by an NRC grant. The length of the module M will be denoted by ∂M . For every module M, Rad M is the intersection of all maximal submodules. The radical of R is by definition $\operatorname{Rad}_R R$; it will be denoted by W. It is well-known that for an artinian ring, W is nilpotent. The submodule of M generated by all simple submodules, is called the socle, $\operatorname{Soc} M$ of M. Since R is artinian, we have for every left R-module, $\operatorname{Rad} M = WM$ and $\operatorname{Soc} M = \{m \in M | Wm = 0\}$. Considering R, we get the left socle $L = \operatorname{Soc}_R R$, considering R, we get the right socle $J = \operatorname{Soc} R$ of R. If e is an idempotent, Re always will be considered as a left R-module, and the R-homomorphisms $Re \to Re'$ (where e' is another idempotent) will be identified with the elements of eRe'. Also, it should be noted that Re and Re' are isomorphic if there are elements $x \in eRe'$ and $y \in e'Re$ with exy = e. The ring R is called a basis ring if for orthogonal idempotents e and e', Re and Re' never are isomorphic. Basis rings can be characterized by the fact that $eR(1-e) \subseteq W$ for every idempotent e. If R is an arbitrary artinian ring and we write $$1 = \sum_{i,j} e_{ij}$$ with primitive and orthogonal idempotents e_{ij} such that $Re_{ij} \approx Re_{kl}$ if and only if i = k, then, for $E = \sum_{i} e_{i1}$, the ring ERE is a basis ring which is Morita equivalent to R. The ring R is a QF -3 ring if R has a unique minimal faithful left R-module RX (that is, RX is faithful, and is a direct summand of every faithful left R-module). A QF -3 ring also has a unique minimal faithful right R-module. The ring R is QF -3 if and only if for every primitive idempotent e with $Je \neq 0$, the socle Je of Te is simple, and similarly for every primitive idempotent Te with Te Te 0, the socle Te 0 of Te is simple [2, Theorem (3.6)]. Module homomorphisms always act from the opposite side as the operators; in particular, every left R-module RM defines a right $\mathscr C$ -module $M_{\mathscr C}$, where $\mathscr C$ is the centralizer of M. The double centralizer $\mathscr D$ of M is the centralizer of M, and there is a canonical ring homomorphism $R \to \mathscr D$. The module M is called balanced if this morphism $M \to \mathscr D$ is surjective. If every finitely generated faithful (left or right) M-module is balanced, then M is said to be a M-1 ring. Until now, no internal characterization of M-1 rings seems to be known, but in M-1 certain necessary socle conditions were proved. For the convenience of the reader and for later reference, we recall these conditions: If M is a M-1 ring and M-2 and M-3 are primitive idempotents with M-1 M-3 and M-4 are primitive idempotents with M-1 M-2 and M-3 are primitive idempotents with - (1) either $\partial_R Je = 1$ or $\partial_I L_R = 1$, - (2) we have $\partial_R Le \times \partial_f J_R \leq 2$, - (3) $\partial_R Le = 2$ implies $Je \subseteq Le$, and - (3*) $\partial f J_R = 2$ implies $fL \subseteq fJ$. In particular, (2) shows that a QF -1 ring is very similar to a QF -3 ring. If $_{\it R}M$ is an indecomposable module of finite length, then the centralizer $\mathscr C$ of M is a local ring. Consequently, all simple $\mathscr C$ -modules are isomorphic. Moreover, the radical $\mathscr W$ of $\mathscr C$ is nilpotent, thus the radical of $M_{\mathscr C}$ is a proper submodule, and Soc $M_{\mathscr C}$ is essential in $M_{\mathscr C}$. If ${}_RM$ and ${}_RN$ are modules, then elements in the double centralizer of ${}_R(M \oplus N)$ can be constructed as follows: Let $\mathscr C$ be the centralizer of ${}_RM$, and let M' and M'' be $\mathscr C$ -submodules of $M_{\mathscr C}$ such that the image of every R-homomorphism ${}_RN \to {}_RM$ is contained in M', whereas M'' is contained in the kernel of every R-homomorphism ${}_RM \to {}_RN$. Then, given a $\mathscr C$ -homomorphism ψ of the form $$M_\mathscr{C} \xrightarrow{\epsilon} M/M' \to M'' \xrightarrow{\iota} M_\mathscr{C}$$ (where ϵ is the canonical epimorphism, ι the inclusion), the trivial extension $$\begin{bmatrix} \psi & 0 \\ 0 & 0 \end{bmatrix} : M \oplus N \to M \oplus N$$ of ψ belongs to the double centralizer of $_{\mathbb{R}}(M \oplus N)$. If, for a module M, there exists an exact sequence of R-modules $$0 \to M \to D_1 \to D_2 \to \ldots \to D_n$$ with D_i both projective and injective, then the dominant dimension dom dim M of the module M is $\geq n$. Now dom dim $_RR \geq 1$ if and only if R is a QF -3 ring [5]. In this case, dom dim $_RR \geq 2$ if and only if the minimal faithful left R-module is balanced [7]. Since the minimal faithful left R-module of a QF -3 ring is both projective and injective, all faithful left or right modules which are either projective or injective are balanced [4, Theorem 5]. In particular, also the minimal faithful right module is balanced, and dom dim $R_R \geq 2$. So we simply may say that the dominant dimension of R is ≥ 2 . If there exists a natural number m such that for every exact sequence of left R-modules $$0 \to K \to P_{m-1} \to \ldots \to P_1 \to P_0 \to M \to 0$$ with P_i projective for $0 \le i \le m-1$, K is also projective, then the smallest such m is called the left global dimension of R. It is easy to see that the left global dimension of R is ≤ 2 if and only if the kernel of every R-homomorphism ${}_RF \to {}_RF'$, with ${}_RF$ and ${}_RF'$ both free, is projective. **2.** The aim of this section is to prove the following general result on QF -1 rings. PROPOSITION. Consider a QF -1 ring R with left socle L and right socle J. Let e and f be primitive idempotents. If y is an element of fJe which does not belong to L, and if $fL \neq 0$, then Ry = Je. *Proof.* Obviously, we may assume that R is a basis ring, because if the propo- sition holds for a basis subring of R, it is also true for R. Also, we may assume that $y \in W$, since otherwise the conclusion is trivial. Let e_1 be a primitive idempotent such that e_1 and $e_2 = e$ are either orthogonal or equal, and which satisfies $f(L \cap J)e_1 \neq 0$. Let x be a non-zero element in $f(L \cap J)e_1$. Since $xR \cap yR = 0$, the left R-module $$_{R}M = (Re_{1} \oplus Re_{2})/R(x, y)$$ is indecomposable [9]. The endomorphisms of $_{R}M$ are induced by matrices $$\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$$ with entries $r_{ij} \in e_i Re_j$, for $1 \leq i$, $j \leq 2$, operating on $Re_1 \oplus Re_2$ from the right. If (r_{ij}) induces an endomorphism of $_RM$, then r_{21} belongs to the radical W of R. For, consider the image of (x, y) under (r_{ij}) . We have $$(xr_{11} + yr_{21}, xr_{12} + yr_{22}) = (\lambda x, \lambda y)$$ for some $\lambda \in R$. Thus $yr_{21} = \lambda x - xr_{11} \in L$, and, since $y \notin L$, we conclude that $r_{21} \in W$. Also, if (r_{ij}) induces a nilpotent endomorphism of $_RM$, then $r_{22} \in W$. For, consider the image of (0, y) under (r_{ij}) . We have $$(0, y)\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} = (yr_{21}, yr_{22}) = (0, yr_{22}),$$ since $y \in J$ and $r_{21} \in W$. By induction, we get for natural n $$(0, y) \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}^n = (0, yr_{22}^n).$$ Since, by assumption, (r_{ij}) induces a nilpotent endomorphism, there is some n with $$(0, yr_{22}^n) = (\lambda x, \lambda y),$$ where λ can be chosen in Rf. But $\lambda x = 0$ implies $\lambda \in W$, thus λ is nilpotent. If $\lambda^m = 0$, then $yr_{22}^n = \lambda y$ yields $yr_{22}^{nm} = \lambda^m y = 0$, and consequently, r_{22} cannot be invertable in e_2Re_2 . Let $\mathscr C$ be the centralizer of $_RM$. It follows from the considerations above that $(0 \oplus Je_2) + R(x,y)/R(x,y)$ is contained in Soc $M_{\mathscr C}$. For, if $\mathscr W$ denotes the radical of $\mathscr C$, the elements of $\mathscr W$ can be lifted to matrices (r_{ij}) with r_{21} and r_{22} in W. Thus, for $z \in Je_2$, we have $$(0,z)\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} = (zr_{21},zr_{22}) = (0,0),$$ and thus $(0, z) + R(x, y) \in \text{Soc } M_{\mathscr{C}}$. Also, $(0 \oplus Je_2) + R(x, y)/R(x, y)$ belongs to the kernel of every homo- morphism $_RM \to R(1-e_1)$. For, we may lift such a morphism to $$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix} : Re_1 \oplus Re_2 \to R(1 - e_1)$$ with $r_i \in e_i R(1 - e_1)$, mapping (x, y) into 0. The last condition gives us the equality $xr_1 + yr_2 = 0$, thus, since $x \in J$ and $r_1 \in e_1 R(1 - e_1) \subseteq W$, we get $yr_2 = 0$. This shows that not only r_1 but also r_2 belongs to W, and, as a consequence, the image of $(0, z) \in 0 \oplus Je_2$ under $\begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$ is $zr_1 + zr_2 = 0$. Since $x, y \in J$, every matrix $$\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \text{ with } r_{ij} \in e_i W e_j$$ induces a nilpotent endomorphism of $_RM$, thus $We_1 \oplus We_2/R(x, y) \subseteq MW$. Moreover, if e_1 and e_2 are orthogonal, we have the equality $$We_1 \oplus We_2/R(x, y) = M \mathcal{W}.$$ For, assume that $\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$ with $r_{ij} \in e_i Re_j$ induces an endomorphism φ of $_RM$; then $r_{12} \in e_1 Re_2 \subseteq W$, and, if φ is nilpotent, we conclude similarly to a proof above that $$(x,0)\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}^n = (xr_{11}^n,0),$$ and that therefore also $r_{11} \in W$. This shows that for $\varphi \in \mathcal{W}$, all r_{ij} 's belong to W, so $M\mathcal{W} \subseteq We_1 \oplus We_2/R(x, y)$. Next, we claim that $(e_1, 0) + R(x, y)$ does not belong to $M \mathcal{W} = \operatorname{Rad} M_{\mathscr{C}}$. This is obvious in the case where e_1 and e_2 are orthogonal. So, we only consider the case $e = e_1 = e_2$. If we assume that (e, 0) + R(x, y) belongs to $M \mathcal{W}$, then, since $M \mathcal{W}$ is a proper R-submodule of ${}_R M$ also containing $We \oplus We/R(x, y)$, we have $M \mathcal{W} = Re \oplus We/R(x, y)$. Also, Soc $M_{\mathscr{C}}$ is an essential \mathscr{C} -submodule of M, thus $(Je \oplus Je) + R(x, y)/R(x, y)$ intersects Soc $M_{\mathscr{C}}$ nontrivially. Therefore, there is a non-zero \mathscr{C} -homomorphism ψ of the form $$M_{\mathscr{C}} \xrightarrow{\epsilon} M/M\mathscr{W} \to (Je \oplus Je) + R(x,y)/R(x,y) \xrightarrow{\iota} M_{\mathscr{C}},$$ where ϵ is the canonical epimorphism, ι the embedding. The image of every R-homomorphism $R(1-e) \to {}_R M$ is contained in $We \oplus We/R(x,y) \subseteq M \mathcal{W}$, since we may lift such a morphism to $$R(1-e) \xrightarrow{(r_1, r_2)} Re \oplus Re$$ with $r_i \in (1-e)Re \subseteq W$. On the other side, $(Je \oplus Je) + R(x,y)/R(x,y)$ is contained in the kernel of every morphism $_RM \to R(1-e)$. Thus the trivial extension ψ' of ψ to $_RM \oplus R(1-e)$ belongs to the double centralizer of $_RM \oplus R(1-e)$. But this morphism ψ' vanishes on $M\mathscr{W} \oplus R(1-e)$ which is a faithful module since Re is embeddable in $(Re \oplus We)/R(x,y) = M\mathscr{W}$. This shows that ψ' cannot be induced by multiplication, a contradiction. So we have shown that (e,0) + R(x,y) cannot belong to $M\mathscr{W}$. There is a \mathscr{C} -submodule M' of M which contains $M\mathscr{W}$ and also the images of all R-homomorphisms $R(1-e_1) \to_R M$, but which does not contain the element $(e_1,0)+R(x,y)$. For, in the case where e_1 and e_2 are orthogonal, choose $M'=(We_1\oplus Re_2)/R(x,y)$. Since all matrices $\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$ which induce endomorphisms of $_RM$ satisfy $r_{12}, r_{21} \in W$, we see that M' is actually a \mathscr{C} -submodule. Obviously, $M'\supseteq M\mathscr{W}=We_1\oplus We_2/R(x,y)$, and given an R-homomorphism $R(1-e_1)\to_RM$, we may lift it to $$R(1-e_1) \xrightarrow{(r_1, r_2)} Re_1 \oplus Re_2$$ with $r_i \in (1 - e_1)Re_i$. But $r_1 \in (1 - e_1)Re_1 \subseteq W$, thus the image of (r_1, r_2) is contained in $We_1 \oplus Re_2$. Secondly, consider the case $e_1 = e_2$. In this case, let $M' = M \mathcal{W}$. Since every R-homomorphism $R(1 - e_1) \to_R M$ again can be lifted to (r_1, r_2) where now both r_1 and r_2 belong to $(1 - e_1)Re_1 \subseteq W$, the image of $R(1 - e_1) \to_R M$ has to be contained in $$We_1 \oplus We_2/R(x, y) \subseteq M \mathscr{W} = M'.$$ So we see that also in the second case M' satisfies all conditions. Also, there is a \mathscr{C} -submodule M'' of $M_{\mathscr{C}}$ contained in Soc $M_{\mathscr{C}}$ and in the kernel of every R-homomorphism $_{R}M \to R(1-e_{1})$, and containing $$(0 \oplus Je_2) + R(x, y)/R(x, y).$$ For, we simply may take the intersection of Soc $M_{\mathscr{C}}$ and the kernels of all maps $_{R}M \to R(1-e_{1})$. By construction, M/M' and M'' both are semisimple $\mathscr C$ -modules. Given $z \in Je_2$, there is a $\mathscr C$ -homomorphism ψ of the form $$M_{\mathscr{C}} \xrightarrow{\epsilon} M/M' \to M'' \xrightarrow{\iota} M_{\mathscr{C}}$$ (where again ϵ denotes the canonical epimorphism, ι the embedding) mapping $(e_1,0)+R(x,y)$ onto the element (0,z)+R(x,y). Since the image of every morphism $R(1-e_1)\to_R M$ is contained in M' and the kernel of every morphism $R(1-e_1)\to R(1-e_1)$ contains M'', the trivial extension of Ψ to $R(1-e_1)$ belongs to the double centralizer of $R(1-e_1)$. Using the fact that R is a QF -1 ring, we find an element $\rho \in R$ which induces this extension. In particular, we have $$\rho(e_1, 0) - (0, z) \in R(x, y).$$ Thus $z \in Ry$, as we wanted to prove. **3. The main theorem.** The result of the previous section can be considered as a forth socle condition for QF-1 rings. Using these socle conditions we can show THEOREM. Let R be a QF -1 ring and assume that the right socle J of R, considered as a left module, is projective. Then R is a QF -3 ring. *Proof.* Obviously, we may assume that R is two-sided-indecomposable, i.e. that there are not two two-sided non-zero ideals I_1 and I_2 with $R = I_1 \oplus I_2$. Let e and f be primitive idempotents with $f(L \cap J)e \neq 0$. Then according to the second socle condition $$\partial_R Le \times \partial_f J_R \leq 2.$$ We have to show that in our case the product actually is equal to 1. So, assume $\partial_R Le = 2$ and consider first the case $Le \subseteq Je$. The third socle condition implies Le = Je. Since Je is a projective left R-module, and Je is properly contained in Re, we find a non-zero idempotent e' such that e and e' are orthogonal, Re' is isomorphic to a direct summand of Je, and $fLe' \neq 0$. Then $fL \supseteq f(L \cap J)e \oplus fLe'$ and therefore $\partial fL_R > 1$, a contradiction to the first socle condition. If $Le \not\subseteq Je$, take a primitive idempotent f' and an element $x = f'xe \in Le \setminus Je$. Let e' be a primitive idempotent and $w = we' \in W$ with $0 \neq xw \in L \cap J$. Then $\partial f' L_R > 1$, thus, using the fact that $f'(L \cap J)e \neq 0$ the first socle condition implies $\partial_R J e' = 1$. As a consequence, Rxw = Je' is projective and since it is isomorphic to Rf'/Wf', we conclude Wf' = 0, thus f' belongs to L. But since $x \in f'Le \setminus J$ and $Je \neq 0$, we may apply the Proposition of section 2 to the opposite ring of R in order to conclude that xR = f'L, and therefore we find $\rho \in R$ with $f' = x\rho = f'x\rho$. Right multiplication by x gives an isomorphism $Rf' \to Re$. But obviously $Re \not\subseteq L$, whereas $Rf' \subseteq L$. This contradiction proves that $\partial_R Le = 1$. Secondly, assume $\partial f J_R = 2$. If $f J \subseteq f L$, then according to the first socle condition we have $\partial_R Je = 1$ for every primitive idempotent e with $fJe \neq 0$. Thus fJ is a direct summand of $_{R}J$, and therefore also projective. This yields that Rf is of length 1, that is $f \in L$. But the socle condition (3*) implies $fL \subseteq fJ$, thus $Rf \subseteq L \cap J$. Since R is assumed to be two-sided-indecomposable, we have R = RfR, and R is semisimple; but then $\partial fR_R = 1$, a contradiction. Next, assume $fJ \not\subseteq fL$, and take a primitive idempotent e' and an element $y = fye' \in fJe' \setminus L$. By the result of section 2, Ry = Je', since we assume $f(L \cap J)e \neq 0$. Now, if Je' is a proper submodule of Re', then using the fact that Je' is projective and local, we find a primitive idempotent e'', orthogonal to e', with Je' = Re''. If f' is a primitive idempotent with $f'(L \cap J)e' \neq 0$, then also $f'Le'' \neq 0$, thus $\partial f'L_R > 1$. But since $Je' \not\subseteq L$, we also have $\partial_R J e' > 1$. Together with $f'(L \cap J)e'$ this gives a contradiction to the first socle condition. So, we have to assume that Je' = Re'. Since Ry = Je' and y = fye', we may assume e' = f. Now $Rf \subseteq J$, and $f \notin L$, thus no simple left ideal can be isomorphic to Rf/Wf. But this is a contradiction to $fL \neq 0$, and therefore we have shown $\partial f J_R = 1$. COROLLARY. A OF -1 ring of left global dimension ≤ 2 is a OF -3 ring. *Proof.* Let R be a QF - 1 ring of left global dimension ≤ 2 . If w_1, \ldots, w_n are generators of W_R , consider the maps $$\varphi: {}_{R}R \to \bigoplus_{i=1}^{n} {}_{R}R$$ with $1\varphi = (w_1, \ldots, w_n)$. Then the right socle J of R is just the kernel of φ , so $_{R}J$ has to be projective. **4. Remarks.** If we consider the class of rings of left global dimension ≤ 2 , we asked in the introduction for a characterization of those rings R with dom dim $R \ge 2$. The following example shows that not all rings of global dimension ≤ 2 and dominant dimension ≥ 2 are QF -1 rings. Let R be a generalized uniserial ring with the Kupisch series Then, according to [3], R is not a QF -1 ring, but since R is generalized uniserial and coincides with its complete ring of left quotients, dom dim $R \geq 2$. Also, the global dimension of R is 2. On the other side, the QF -1 rings of global dimension ≤ 2 are not all of dominant dimension ≥3, as Morita's second example in [6] shows. It can easily be seen that the dominant dimension of this algebra is precisely 2. ## References - 1. M. Auslander, Representation dimension of Artin algebras (Queen Mary College Math. Notes, London). - **2.** K. R. Fuller, *The structure of OF* 3 rings, Trans. Amer. Math. Soc. 134 (1968), 343–354. - 3. —— Generalized uniserial rings and their Kupisch series, Math. Z. 106 (1968), 248–260. 4. —— Double centralizers of injectives and projectives over artinian rings, Illinois J. Math. 14 (1970), 658–664. - 5. J. P. Jans, Projective injective modules, Pacific J. Math. 9 (1959), 1103-1108. - 6. K. Morita, On algebras for which every faithful representation is its own second commutator, Math. Z. 69 (1958), 429-434. - 7. K. Morita and H. Tachikawa, OF 3 rings (to appear). - 8. T. Nakayama, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22 (1958), 300–307. - **9.** C. M. Ringel, Socle conditions for QF -1 rings (to appear in Pacific J. Math.). - 10. R. M. Thrall, Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173–183. Mathematisches Institut der Universität, Tübingen, Germany; Carleton University, Ottawa, Ontario