REGULAR TSUJI FUNCTIONS WITH INFINITELY
MANY JULIA POINTS

W. K. HAYMAN
To K. Nosuiro on his 60th birthday

1. Introduction

Let D denote the unit disk |z| <1, and C the unit circle |z] = 1." Corresponding
to any function f meromorphic in D we denote by f* the spherical derivative
gy = SN2
@ = 1 {ran

We write

Ly = 5: T reyrds,  0<r<l,

and shall say that fe Ty() if

lim L(#) << + oo,
r->1

The functions f& Ti(J) are called Tsuji functions by Collingwood and Piranian
[1]. Following their notation we call a rectilinear segment S lying in D except
for one end-point ¢’® on C a segment of Julia for f provided that in each open
triangle in D having one vertex at ¢’® and meeting S, the function f assumes
all values on the Riemann sphere except possibly two. A point e® is called a
Julia point for f provided thét‘each rectilinear segment S lying except for one
endpoint ¢ in D is a segment of Julia for f.

Following Tsuji [3] Collingwood and Piranian [1] investigated the class
T,(1) and provided a number of illuminating examples. They proved among
other results [1, Theorems 1, 5]

TueoreMm A. There exists a meromorphic Tsuji function for which each point
of C is a Julia point.

TaeoreM B. The function
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0= eo{(172)])

is a regular Tsuji function with two segments of Julia at z=1. Their examples
led Collingwood and Piranian to the following 3 conjectures concerning regular
Tsuji functions.

I. If f is a regular Tsuji function then at most finitely many points of C
are endpoints of segments of Julia for f.

1I. If f is a regular Tsuji function then at most finitely many segments in
D are segments of Julia for f.

III. If f is a regular normal Tsuji function then f has no segments of Julia.

In this paper we shall give a counter-example to I and II by proving

TueoreM 1. There exist regular Tsuji functions with infinitely many Julia

points.

We shall prove elsewhere [2] that a normal meromorphic Tsuji function
necessarily remains continuous in |z]|<1 in the metric of the closed sphere so
that conjecture III holds even for meromorphic Tsuji functions. Also such a
function can have no point other than f(e®) in its range set at ¢°. We shall

prove however

THEOREM 2. There exists a bounded Tsuji function. continuous in |z|<1 and
having zeros in each open triangle in D one of whose endpoints belongs to a certain

infinite set on C.

Thus the range at ¢'® need not be empty.

2. Preliminary results

We shall proceed by means of a series of lemmas We have first

Lemma 1. Let 4 be the domain defined by w = pe®, where
2TM<o<, if g=mr n=1,2, ..
0<p<], if 0<¢p<m, ¢ é—T,,—

Then a function w= f(z) which maps D(1, 1) conformally onto 4 is a bounded
Tsuji function which remains continuous on C and vanishes at a countable set of
points on C but no points of D.
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Clearly 4 is a simply connected domain whose boundary r is rectifiable and
of length

[=2+z+232" =4 +4n.
1

Thus (see e.g [2, Lemmas 8 and 101

lim 0 | F1(re™®)| rdd = 4 + =,

751

so that fe Ti(4+=). Also f remains continuous on C and maps C onto 7 in
such a way that each point of C corresponds in a (1, 1) manner to a prime
end of r. Since there are infinitely many prime ends of r at the point w=0,

namely those for which

7'7"2_‘1‘ <¢< gﬁ’ n=0, 1, 2, o . e ,and ¢=0,

there exists a corresponding sequence of points z = ¢ on C which are mapped
onto w=0 by f(z). Further since 4 does not contain w =0, f(z)=0in D. This
proves Lemma 1.

Theorems 1 and 2 will be a consequence of

THeOREM 3. Suppose that f(z)e Ti(D), f(2) £0, and that F is a finite or
countable set on C such that f(z) vanishes continuously at the points % of F. Then
there exists a sequence z, of poinits in D such that

() 21—z, < + =,
" Rk A Y-

(i) If o) = I(-f25) 2
then f(2)/I1(2) and fA2II(2) both belong to T\(I') for some I' < + o,

(iii) Each point €& F is a Julia point for f(z2)/[1(2), with zero as the only
possible exceptional value.

(iv) ADTI(2) has infinitely many zeros in every triangle with vertex at { < F.

Also A I1(2) remains continuous at every point ¢ < F.

We choose the sequence z, = p,e® to satisfy the following conditions
1 1
a) (1—p+)/(1—p,)< g v=L2 =

b) Every triangle in D with .vertex at a point ¢ in F contains infinitely
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many of the points z,.
¢) | f(re™®)|<2™, for 20,—1<7r<1, and |6 — ¢,| <2"(1 - p,).
d) f(z») *0.

3. Proof of Theorem 3
We prove Theorem 3 in two stages.

LemMmA 2. The conditions a), B), ¢), d) are compatible, i.e. a sequence z, exists

satisfying them all.

We assume that L, 2=1, 2, ... is a countable system of rays, such that
every /r has one endpoint at a 'point ¢=e¢"eF, and ‘further‘ such that every
Stolz angle with vertex at such a point ¢ contains infinitely many of the rays
lr. Since F is finite or countable we can clearly choose éuch a system I.
Next let #, be a sequence of positive integers such that », assumes every
positive integral value % infinitely often. For this we may choose for instance
np=1+p—[vpl, where [«] denotes the integral part of x. We then choose
zp to lie on the ray In,. In this way condition b) is certainly satisfied. =~We
can also satisfy a) and ¢). Suppose in fact that ¢=¢™ is the vertex of Iny.

Then by hypothesis we have
[f(2)]| <272, if |2—¢|<ep, say and |z]|<1.
We now choose pp so near 1, that
2772 ¢ =z, = min{(1 = pp-1), €5}
Then (1 — ) /(1 ~ pp-1) <2727% so that a) holds. We also suppose that f(z,) =0, so
that d) holds. Further if z= 7™, and 20, - 1<7r<1, |¢ — argz,| <22(1 — p,), then
lz-¢l<lz-zpl+lzp—Cl<lp —arg zpl + 201 = pp) +12p— €| |
<(2P42)(1—pp) +12p— 1 <22+ 3)|¢ = 2p] <ep.

Thus | f(2)] <27 and c¢) is also satisfied. This proves Lemma 2.
We have finally.

LemwMma 3. If the points z, saiisfy a), b), ¢) and d), then the conclusions of
Theorem 3 hold.

In fact (i) is an immediate consequence of a). Again (iv) follows at once
from b) and the fact that |TI(z)|<1 and so fi2)II(2) >0 as z->(E F from
lz] <1.
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We next prove (iii). We note that

1=z U-laPiO-lah
=2 - lz—2z["
Thus
1 213 -]z a—]z)
log | frzy| <2 2 =01 _

Suppose now that |z| =7, where —% <r<1, and let g be the largest value of »

for which |z,|<27r~-1. Then, for 0<¢t<g—1, we have from a)

1— | zgmt| =441 — | 2g]) > 2.4/(1 = ).

Also
2= 2g-t] = (1= |24-¢]) s0 that
1-|2g-tl (1—lzg-£]) . 4
[e=zaeF =1 7 a1
|“2-‘(1-_lzq—t|/J
Thus
15 U-la)a-lzl» _ 1-laa-n S (-t
= lz—2, 32»2:;1 lz=2z, [} <4§4 <6

Again if p is the least value of » for which }zylzl(l +7), we have for =0

in view of a)

(1-lzprel) <4741 - Izpl)s%('(l—-r)

2
and if |z| =7, v=p, then lz—zvlzz{%(l—r)}-
“Thus

© _ 2 - 2) © -t — - o’

s 4 Izl,;_,lzmlz 2 547 =001 Syt g

t=0 p+t t=v 1 t=0
[“2*(1—7')]

Thus if II;(z) denotes the product IT(z) with the omission of the factor cor-

N])—-ﬂ

responding to the value z,, if any, for which

2r-—1<]zy[<—%-(1+r), (1)

then we have on |z| =7

12

1
1Th(2)] <e
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ie.
A1<IH1(Z)[<1, (2)

where A, =¢ .

We note that in view of a) there can be at most one v for

which z, lies in the range (1). ‘
Suppose now that z, is a zero of II(z) and hence by d) a pole of f(z)/I1(2)

and consider f(z)/T1(z) on the circle [z —z,| = 27Y*¥(1 - pv). On this circle we

have in view of ¢)

’f(z) ! I Az 1, z»zl<A_12 v, U=z, +lz=2)] 2]

O | = Ihe " 2=z 2= (T =p,)
3A727%1 - p,)

< Tz,

=3 A7t27,

f(2)
I1(2)
inside this circle, i.e. exactly once, and if w is fixed and w0, this condition

-(1/2)v

Hence assumes every value w, with [w|>3 A7'2

equally often

is satisfied for all sufficiently large ». It follows that, in any Stolz angle con-
taining one of the lines I, fiz) assumes infinitely often all values except
possibly zero, and so these are all Julia lines. Since every Stolz angle at (= F
contains such lines /, it follows that every ray with endpoint at ¢ is a Julia

line, and so ¢ is a Julia point.

4. Proof of (ii)
It remains to prove (ii) and this is by far the hardest part of the argument.

We proceed in a number of stages.

LEmma 4. If%gr<l, and I1:(2) is formed from I1(z) by omitting the

factor corresponding to that zero z., if any, for which (1) holds, then if
F(2) = f(2)/I11(2) or F(z) = f(2)I1,(2), we have

2n .
SO F(re™) rdd <1, < + oo,

where |, is independent of r.
Consider first F(z) = f(2)1T,(z). We have

[F'(2)| [ /T4

I Fast]
TFIFF = T4 /ILT

1+[/TLF

+ (3)

In view of (2) we have |fII;|> A\lf|, and so if |f]>1, we have
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S T . —— (4)

TH/IE T T A T

while if | f| <1

2

P
<I<pp

1
T+ 1fTL
Thus (4) holds in all cases and

S”" | (re™) T (re™)| rdo < S”‘ |/ (re™)| rdo 41_

o 1+|f(re®)Ih(re®)? — Al 1+ f (re™)|? 5

if 7 is sufficiently near 1.
We now consider the second term on the right hand side of (3). In view

of (4) we may write

i 2 A 1T < 2 I ;IL!

1+|/ILE ~ AL 14|71 A 1+ T
Also
IH _'m 1“,2»] < I‘IZVP
T ‘— l'»z: 1-z,2) (z—2,) SZI: lzo—2F " (6)
We therefore proceed to estimate
7] —lz.|*
Slll=r 1+[/1F |av—2]? |dz|.
Suppose first that |z,]> %(1 + 7). Then if z=7e", z, = p.e”, we have
20— 2" = (p, = 1*+ 20[1 = cos (p =)= - (1 -7+ ‘¢f,@lf.

for ¢, —n<¢<¢.+ . Thus

1 o™ dp o™ d¢
N S . .. 6P . a9
S.z.=r Prrikad S"S-r.qfﬂl—r)’ S”S_,, ¢+ (1=7)
=1
Thus
- Fl 1-lz.P | x .
IZ0z g < E —lz.) < 4,
12y, |>%’(1+r)§;zl =r 1‘|‘1f|2 |z, —z/ ldz| 2(1-r) |;\,4>12;2(1+r)(1 l2.") < 4s (7)

in view of a).
Next suppose that |z./|<27-1. Then we have

B S L (8)
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since p,> 2~ r=> % By ¢) we have, for |¢ —¢,]<2"*(1-p,),

_ A =1 2a%271-pl) _ 27%7
I+f1F |zv—2] (1-py)? (1-py)

Thus

|f| 1- Izvlz o -(1/2)v
S“ wi<atitviampy, TH 7T —-——~kz 2 ldz| < A2 . (9)

Again if |¢ — ¢,|=2"*(1—p,), then

1 2t ,
lz\,—z[’ (p—9v)?
and so
|dz| dr _ 4q270my
S',; ’;v|22(1/2)u(1 ~py) Izv__zlﬂ —-4 52(1/2;\:(1 ~py) x - ( _ ) . (10)
On combining (9) and (10) we deduce that if |z,|<2r -1,
’ lfl 1- lZ\« —(uzn
oo T T el < 422 (11)

Now using (6), (7) and (11) we see that

LTI )
f 1oy (TN %21 < 4s.

From this and (5) Lemma 4 follows for the case F= fII,, when we apply (3)

and (4).
The case F=f/II, is similar. We write
|F'| | AT |/ IT4] < /A { I,
1+|F|? = I HERT + NIHERYIN A{1+lfl2 *3 1+ 11, I}

in view of (2). We now obtain our result as before, using (6), (7) and (11).

5. To complete the proof of Lemma 3 and so of Theorem 3 we now con-

sider the possible effect of the single factor in II(z) corresponding to a zero
z,, for which 27—-1<|z,]< ;—(1+r).

We consider first
F(z) = f(2)I1(2), G(2) = F(2)al(z),

where a(z) = (2 ~2,)/(1 = Z,2) and z, = p,&™.
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a' |
612 _ [Pl lal 7!“‘”
TH]GFF < 1H[afT TTarT

If lz—2,|> —;—(1— lz,]), then we see from (8) that

1 a|_ 1-lzp 27%(1 =)
5 <la(x1<1 and | %] < 2=zt S =p)+lp—t"

Hence if E is the range of ¢, for which [re""—-pve"”vlz%(l - pv), we have

IF'
[ 1Flallazl I al® <of M@l
E 1+|aF| I3 i 1 l FP 121=r 1+ F(2)]
say, while
la'Fld¢ a' (1-0%)do
SF 1'+|aF{2 —S | ld¢$27r e (=) +(r—p)7

If |r— p»l< 4 ~p,), we see that |¢ — ¢»lz (1 - py) in our range so that the

righthand side is bounded by an absolute constant. If |7 —p,| = —41—(1 - ), then

(1—0})d¢ ® (1-pdx _ =(1—pd)
Sz (p—0v) '+ (r—0.)* S-w 2+ (r—p)t ~ |r—ol =8=
Thus in either case
[G'(2)
Sxmwld2i<ch (12)

where C; is independent of 7.

Consider finally the range E' where |z —p,e| < %(1 —p,). Itfollows from
¢) that in this range and even for ¢ in a disk centre z and radius ;— (1-p),

we have | F(¢)| < %—, and so also |G({)|< % so that

: 2
|G'(2) | < =
Thus if 7 is sufficiently near one, we have

S‘ |G'(re'®))

. i0 2 o1—p)=
mmdﬁﬂml@w Ndf <521~ p) = 4. (13)
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194
On combining (12) and (13) we have Lemma 3 for G(2) = f(2)T1(2).

It remains to consider the case where

fl2) _ Fl2)
Glz) = I1(z) a(z)

We consider now the two ranges £E, where

and Fl(z2) —flz)/[L(z)
Iz—zv|>» f(l—lz\.l) and E', where lz—z»|< (I—IZyl) Since
11 1| F
ey “z' Nl
2 —_— '2 ’
G + | FET 0 EX
a '’ Va I
we prove just as before that (12) holds.
However in E’ our argument is different. We note that E((zz—; has a pole
of residue 7= F(z,)(1—12z,*) at z=2,, and write
G(2) = f((:; = 7 4 Gil2) = (o) + Gi(2) say.
Thus
v ity _ 1G'(re™)| _ |Gi(re™)| (re™)|
D = Her < 1+6r T iFl6T
o is lc'(re™)|
_<_]Gl(re )|+ 1+IG*l-f . (14)
In view of ¢) and (2) |F\2)l, |G(2)| and so |G(2)| are small for |z —2z,| = 5-(1 — |z,!)

when v is large and since G,(z) is regular in |z -2z,|< —~(1— |z,1), we deduce

that for large » we have on E'
G2 <1, IGi(2)| < (1 -]z,

Since the length of E’ is at most (1—|z,|) for large » we deduce that
(15)

{ 16ite™1ap<1
Fr
for large v.

To estimate the other term in (14) we let E" be the part of . E' where
le(z)]> 2.

Then in E” we have
Gzl | - 5 le@) | = 5l
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[e'(2)] 4ic'|

i+IGP < IcF = 4/|7|.

Since the length of E" is at most 2|7,| for large v, we deduce that
1] g
SE"M—(@ Dl gp<s. (16)

Finally if E' is the part of E’' outside E”, then

let(re™®)] I Anldy
SF'" 56T d¢ < S le'(7e') |dp = S =z (17)

We have in E" z =re™®, z, = p.e", where

lz— 2z 2= (r—0,)* + 4 7p, sin® Lqi__cb»_ %lrolz.

Suppose first that |7 —p,| > % |7|. Then since r> %, 0= %— we have

S 1nldg S‘L‘” n’| 7o) dg

£ iZ"‘Z ~l’ ® (r"'pa)z'i' (¢~¢")2
l:_].?\‘ll <4n (18)

If on the other hand lr—-ovlsi |70, then we must have in E' 4rp,

sin* 8- ~¢“ —é—lrolz, so that

Thus in this case

]ro](_i¢ » 7*]7’0[(1{ PRI P
SF”’lz -z stlr.m x? =2minl W—Sn’

so that (18) still holds. On combining (14) to (18) we deduce
SEG*( re'®) dp < As,
if 7 is sufficiently near one. On combining this with (12) we deduce Lemma 3.

6. Proof of Theorems 1 and 2. By choosing the function f(2) of Lemma
1 and for F the corresponding countable set we see that Theorem 3 yields a
non-zero Tsuji function f(2)/I1(z) having every point of F as a Julia point.
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Then the function IT(2)/f(z) satisfies the conclusions of Theorem 1. Also
T1(2)f(2) satisfies the conclusions of Theorem 2.

In fact to see this we have only to show that Il (z)f(z) remains continuous
on C. This is obvious at all points of C which are not limits of zeros of I1(z),
since I1(z) remains continuous at such points. The only other points of C are
the points where f(z) vanishes continuously and so I1(z)f(z) vanishes and so
remains continuous also at these points, since |I1(z)|<1.

I should like to thank the referee for pointing out two mistakes in the

original argument.
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