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Abstract

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and
a dimension k ∈ {1, . . . , d}, we investigate the typical k-face and the weighted
typical k-face (weighted by k-dimensional volume), without isotropy assumptions on
the tessellation. The case k = d concerns the previously studied typical cell and zero
cell, respectively. For k < d, we first find the conditional distribution of the typical k-face
or weighted typical k-face, given its direction. Then we investigate how the shapes of the
faces are influenced by assumptions of different types: either via containment of convex
bodies of given volume (including a new result for k = d), or, for weighted typical
k-faces, in the spirit of D. G. Kendall’s asymptotic problem, suitably generalized. In
all these results on typical or weighted typical k-faces with given direction space L, the
Blaschke body of the section process of the underlying hyperplane process with L plays
a crucial role.
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1. Introduction

A stationary Poisson hyperplane mosaic in Euclidean space R
d gives rise to interesting

random polytopes. The zero cell is the almost surely unique cell containing a given point,
without loss of generality, the origin of R

d . Typical cells are obtained, heuristically, by picking
out cells at random, possibly with weights; a precise definition can be given with the aid of Palm
distributions (see Section 2). The investigation of asymptotic shapes of such random polytopes
was initiated by a well-known problem of David Kendall. He asked (see the formulation in the
foreword to the first edition of [14]) whether the zero cell of a stationary, isotropic Poisson line
process in the plane, under the condition of large area, must be approximately circular, with
high probability. After an affirmative answer had been given by Kovalenko [7], extensions of
the problem to higher dimensions and without the assumption of isotropy were treated. In the
anisotropic case, it turned out that the so-called Blaschke body, an auxiliary centrally symmetric
convex body constructed from the directional distribution of the underlying hyperplane process,
governs the asymptotic shape. In [5], a suitable measure of shape deviation from the Blaschke
body was defined, and the following was shown. The probability that the shape of the zero
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cell or the shape of the typical cell of a stationary Poisson hyperplane mosaic in R
d , under the

condition that the volume of the cell is at least a > 0, deviates from the shape of the Blaschke
body by more than some prescribed bound is exponentially small with increasing a. Various
modifications of Kendall’s problem are treated in [2], [3], and [6].

There are also other manifestations of the phenomenon that, for the shape of the cells of
stationary Poisson hyperplane tessellations, under suitable assumptions, the Blaschke body
of its underlying Poisson hyperplane process plays a crucial rôle. Let K ⊂ R

d be a convex
body containing the origin and of given positive volume. Then the probability that the zero
cell contains K is maximal if and only if K is homothetic to the Blaschke body (see [13,
Theorem 10.4.11]). Below we prove a (less immediate) analogue of this result for the typical
cell (Theorem 2 of Section 4).

The notions of typical cell and zero cell can be generalized to faces of lower dimensions in the
mosaic, in the form of typical k-faces and k-volume weighted typical k-faces. The extension of
the mentioned results to typical or weighted typical k-faces, for k < d, meets with the difficulty
that properties of lower-dimensional faces in the mosaic depend on their directions, except if the
mosaic is isotropic. By the direction of a k-dimensional convex body we understand here the
linear subspace that is a translate of the affine hull of the body. A version of Kendall’s problem for
typical k-faces was treated in [4], where the condition of large k-volume was supplemented by
the condition that the direction of the typical k-face is in a small neighbourhood of a prescribed
direction. In the following, we deal with typical k-faces of a given direction. Since, in general,
these occur only with probability 0, we consider the regular conditional probability distribution
of the typical k-face (or weighted typical k-face), given that its direction is a prescribed linear
subspace L. Our first main result (Theorem 1 of Section 3) says that this conditional distribution
is equal to the distribution of the typical cell (respectively, the zero cell) of a stationary Poisson
hyperplane process in L, whose intensity and directional distribution are determined in a simple
way from those of the original hyperplane process. We see this fact as a further remarkable
consequence of the independence properties of Poisson processes. It allows us to extend the
mentioned results for zero and typical cells to (weighted) typical k-faces with given direction
(Theorem 3 of Section 4, and Theorems 4 and 5 of Section 5).

2. Preliminaries

First, we fix some notation and collect the fundamental facts about stationary Poisson hyper-
plane tessellations (or mosaics—both terms are used synonymously). General introductions to
random tessellations can be found in [10], Chapter 10 of [13], and [14].

We work in d-dimensional Euclidean vector space R
d (d ≥ 2), with origin o, scalar product

〈·, ·〉, and norm‖·‖. Its unit sphere is denoted by S
d−1, the Grassmannian of k-dimensional linear

subspaces of R
d by G(d, k), and the affine Grassmannian of k-dimensional affine subspaces

of R
d by A(d, k). These spaces carry their standard topologies. For L ∈ G(d, k), the set

SL := S
d−1 ∩L is the unit sphere in L. By K we denote the space of convex bodies (nonempty,

compact, convex sets) in R
d , endowed with the Hausdorff metric. (Notions and results from

convex geometry that are not explained here can be found in [11].) For a convex body K ,
the number Vk(K) is its kth intrinsic volume, and we note that, for dim K = k, this is the
k-dimensional volume of K . By B(T ) we denote the Borel σ -algebra of a topological space T .
As usual, we identify a simple counting measure on a topological space with its support.
Accordingly, the realizations of a point process which is simple and locally finite (as is always
assumed in the following) are also treated as locally finite sets.
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Throughout this paper, we assume that X is a stationary Poisson hyperplane process in R
d ,

that is, a Poisson point process in the space A(d, d−1) of hyperplanes, with a distribution that is
invariant under translations. The underlying probability space is denoted by (�, A, P), and the
mathematical expectation by E. The intensity measure � = E X(·) of X has a representation
(see, e.g. [13, Equation (4.33)])

�(A) = 2γ

∫
Sd−1

∫ ∞

0
1A(H(u, t)) dtϕ(du) (1)

for A ∈ B(A(d, d − 1)), where we parametrize hyperplanes which do not contain o by

H(u, t) = {x ∈ R
d : 〈x, u〉 = t}

with u ∈ S
d−1 and t > 0. We assume that γ , the intensity of X, is positive and that ϕ, the

directional distribution of X, is an even probability measure on the sphere S
d−1 which is not

concentrated on any great subsphere (i.e. on a set S
d−1 ∩ L, where L is a (d − 1)-dimensional

linear subspace of R
d ).

Owing to the latter assumption, the hyperplane process X induces a random tessellation or
mosaic, in the obvious way. We denote this random mosaic (i.e. as in [13, Chapter 10], the
particle process of its cells) by X(d), and the process of its k-dimensional faces by X(k) for
k = 0, . . . , d − 1. For the definition of grain distributions, we need a centre function (see [13,
p. 110]), and we use here the Steiner point (see [13, Equation (14.28)]). Being a stationary
particle process, X(k) has a grain distribution with respect to the Steiner point, and a random
polytope with this distribution is called the typical k-face of the random mosaic X(d) (as in [13]).
Equivalently, we can define the random measure Nk assigning mass 1 to each Steiner point of
a k-face of the mosaic and then use the Palm distribution P0

Nk
of X with respect to Nk . If Y is

a hyperplane process with distribution P0
Nk

then its induced mosaic has almost surely a unique
k-face containing o. This defines a random polytope which is stochastically equivalent to the
typical k-face of X(d). The same procedure, with Nk replaced by the random measure defined
by the k-dimensional Hausdorff measure restricted to the k-skeleton of X(d) (i.e. the union
of its k-faces), leads to the k-volume weighted typical k-face of X(d). Instead of ‘k-volume
weighted typical k-face’ we briefly say ‘weighted typical k-face’. We denote the typical k-face
by Z(k) and the weighted typical k-face by Z

(k)
0 . The distributions of both random polytopes

are connected by the relation

E f (Z
(k)
0 ) = 1

E Vk(Z(k))
E[f (Z(k))Vk(Z

(k))], (2)

which holds for every translation invariant, nonnegative, measurable function f on the space
of k-dimensional polytopes. (More details can be found in, e.g. [1] and [12]). The typical
d-face, Z(d), is briefly denoted by Z and called the typical cell. The weighted typical d-face is
stochastically equivalent to the zero cell of X(d), which is defined by

Z0 :=
⋂

H∈X

H−.

Here H− denotes the (for o /∈ H unique) closed half-space bounded by H that contains o.
The investigation of these random polytopes requires a few more constructions from the

theory of hyperplane processes. For k ∈ {0, . . . , d − 2}, the intersection process of X of order
d − k is obtained by intersecting any d − k hyperplanes of X which have linearly independent
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normal vectors. It is a stationary process of k-flats and is denoted by Xd−k . According to [13,
Theorem 4.4.8], its intensity γd−k and its directional distribution Qd−k are given by

γd−kQd−k(A) = γ d−k

(d − k)!
∫

(Sd−1)d−k

1A(u⊥
1 ∩ · · · ∩ u⊥

d−k)∇d−k(u1, . . . ,ud−k)

× ϕd−k(d(u1, . . . , ud−k))

for A ∈ B(G(d, k)). Here u⊥ denotes the orthogonal complement of the linear subspace
spanned by u, and ∇m(u1, . . . ,um) is the m-dimensional volume of the parallelepiped spanned
by u1, . . . ,um. In addition, Q1 := ϕ.

Let k ∈ {1, . . . , d − 1} and L ∈ G(d, k). The section process of X with L is obtained
by intersecting L with each hyperplane of X which is in general position with respect to L,
that is, satisfies dim(L ∩ H) = k − 1. This results in a stationary Poisson hyperplane process
with respect to L (thus, a process of (k − 1)-flats in L), which is denoted by X ∩ L (see [13,
pp. 129ff.]). We denote the intensity of this section process by γL and its directional distribution,
defined on SL, by ϕL. These data depend in the following way on γ and ϕ. Let (·)|L denote
the orthogonal projection to L. The spherical projection of the measure ϕ to SL is defined by

(πLϕ)(A) :=
∫

Sd−1\L⊥
1A

(
u|L

‖u|L‖
)

‖u|L‖ϕ(du)

for A ∈ B(SL). Then
γLϕL = γπLϕ. (3)

This is Equation (3.2) of [4] and a special case of [13, Theorem 4.4.7]. In particular,

γL = γ

∫
Sd−1\L⊥

‖u|L‖ϕ(du).

Note that γL depends also on ϕ, although this is not shown by the notation. The measure ϕL

depends only on ϕ and L.
Finally, we need two useful auxiliary convex bodies. The associated zonoid �X of X is the

o-symmetric convex body with support function given by

h(�X, u) = γ

2

∫
Sd−1

|〈u, v〉|ϕ(dv), u ∈ S
d−1.

The Blaschke body BX of X is the o-symmetric convex body with surface area measure

Sd−1(BX, ·) = γ ϕ.

For the notion of the surface area measure, see [13, p. 607] or Section 4.2 of [11]. The
existence and uniqueness of the Blaschke body follow from Minkowski’s theorem (see, e.g. [11,
Theorem 7.1.2]).

For a subspace L ∈ G(d, k), we denote the associated zonoid of the section process X ∩ L

by �X∩L and its Blaschke body by BX∩L. Both are convex bodies in L. We have

�X∩L = �X|L (4)

(due to Matheron; see [13, Equation (4.61)]). According to (3), the surface area measure
SL

k−1(BX∩L, ·) of BX∩L with L as ambient space is given by

SL
k−1(BX∩L, ·) = γπLϕ;

this is a measure on the unit sphere SL in L.
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3. Typical faces with given directions

The direction D(K) ∈ G(d, k) of a k-dimensional convex body K ⊂ R
d is the linear

subspace which is a translate of the affine hull of K; it can also be written as D(K) = lin(K−K),
the linear hull of the vector sum of K and −K . The mapping D from the space of k-dimensional
convex bodies to G(d, k) is continuous.

The random polytope Z
(k)
0 takes its values in K , which is a Polish space. Therefore,

the regular conditional distribution of Z
(k)
0 , given the direction D(Z

(k)
0 ) = L, exists for L ∈

G(d, k). We denote it by P{Z(k)
0 ∈ · | D(Z

(k)
0 ) = L}. Similarly, P{Z(k) ∈ · | D(Z(k)) = L}

denotes the regular conditional distribution of the typical k-face Z(k), given the direction
D(Z(k)) = L, for L ∈ G(d, k).

The following theorem describes these conditional distributions. As a by-product, it also
provides the directional distributions of the weighted typical k-face and of the typical k-face,
that is, the distributions of D(Z

(k)
0 ) and D(Z(k)).

Theorem 1. Let k ∈ {1, . . . , d −1}. The directional distribution of the weighted typical k-face
is equal to Qd−k .

For Qd−k-almost all L ∈ G(d, k), the conditional distribution of the weighted typical k-face
Z

(k)
0 , given the direction D(Z

(k)
0 ) = L, is equal to the distribution of the zero cell of a stationary

Poisson hyperplane process in L with intensity γL and spherical directional distribution ϕL.
The directional distribution Rk of the typical k-face is given by

Rk(C) = Vd−k(�X)(
d
k

)
Vd(�X)

∫
C

Vk(�X|L)Qd−k(dL) (5)

for C ∈ B(G(d, k)) (and hence is equivalent to Qd−k).
For Qd−k-almost all L ∈ G(d, k), the conditional distribution of the typical k-face Z(k),

given that D(Z(k)) = L, is equal to the distribution of the typical cell of a stationary Poisson
hyperplane process in L with intensity γL and spherical directional distribution ϕL.

Proof. A crucial tool is the following integral representation for the distribution of the
weighted typical k-face Z

(k)
0 , which was obtained in [12, Theorem 1]. For A ∈ B(K),

P{Z(k)
0 ∈ A} =

∫
G(d,k)

P{Z0 ∩ L ∈ A}Qd−k(dL). (6)

For C ∈ B(G(d, k)), we obtain, since D(Z0 ∩ L) = L almost surely,

P{Z(k)
0 ∈ A, D(Z

(k)
0 ) ∈ C} =

∫
C

P{Z0 ∩ L ∈ A}Qd−k(dL); (7)

in particular, P{D(Z
(k)
0 ) ∈ C} = Qd−k(C). Thus, Qd−k is equal to the distribution P

D(Z
(k)
0 )

of
D(Z

(k)
0 ) (this can also be seen in a more direct way).

By the definition of the conditional distribution,

P{Z(k)
0 ∈ A, D(Z

(k)
0 ) ∈ C} =

∫
C

P{Z(k)
0 ∈ A | D(Z

(k)
0 ) = L}P

D(Z
(k)
0 )

(dL).

Since this equation and (7) hold for all C ∈ B(G(d, k)), we deduce that

P{Z(k)
0 ∈ A | D(Z

(k)
0 ) = L} = P{Z0 ∩ L ∈ A} for Qd−k-almost all L ∈ G(d, k).

https://doi.org/10.1239/aap/1308662480 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662480


Faces with given directions in anisotropic Poisson hyperplane mosaics SGSA • 313

Here the exceptional set depends on A, but since the σ -algebra B(K) is countably generated,
there is a Qd−k null set N ⊂ G(d, k) such that

P{Z(k)
0 ∈ · | D(Z

(k)
0 ) = L} = P{Z0 ∩ L ∈ ·}

for all L ∈ G(d, k) \ N .
It remains to observe that Z0 ∩ L = Z0(X ∩ L), where Z0(X ∩ L) denotes the zero cell of

the section process X ∩ L, and that X ∩ L is a stationary Poisson hyperplane process in L with
intensity γL and spherical directional distribution ϕL. This proves the part of Theorem 1 that
refers to the weighted typical k-face.

For the second part, concerning the typical k-face, let h be a translation invariant, non-
negative, measurable function on the space of k-dimensional polytopes, and set f (K) :=
h(K)Vk(K)−1 for such polytopes K . Then (2) gives

E h(Z(k)) = E Vk(Z
(k)) E[h(Z

(k)
0 )Vk(Z

(k)
0 )−1].

We apply (6), observe that Z0 ∩ L = Z0(X ∩ L), then apply (2) again, this time in L, where
we denote by Z(X ∩ L) the typical cell of X ∩ L. This yields

E h(Z(k)) = E Vk(Z
(k))

∫
G(d,k)

E[h(Z0(X ∩ L))Vk(Z0(X ∩ L))−1]Qd−k(dL)

= E Vk(Z
(k))

∫
G(d,k)

1

E Vk(Z(X ∩ L))
E h(Z(X ∩ L))Qd−k(dL)

=
∫

G(d,k)

E h(Z(X ∩ L))Rk(dL) (8)

with

Rk(C) =
∫

C

E Vk(Z
(k))

E Vk(Z(X ∩ L))
Qd−k(dL)

for C ∈ B(G(d, k)). From [13, Equations (10.43), (10.3), (10.44)] we know that

E Vk(Z
(k)) = Vd−k(�X)(

d
k

)
Vd(�X)

.

This can be applied to X ∩ L, with R
d replaced by the k-dimensional space L, and together

with (4) this gives

E Vk(Z(X ∩ L)) = 1

Vk(�X∩L)
= 1

Vk(�X|L)

and, thus, (5).
Let A ∈ B(K). We apply the result (8) to the function defined by h(K) = 1A(K − s(K)),

where s(K) denotes the Steiner point of K . Since our notion of typical faces and cells uses
the Steiner point as the centre function, we have s(Z(k)) = o and s(Z(X ∩ L)) = o. Thus, we
arrive at

P{Z(k) ∈ A} =
∫

G(d,k)

P{Z(X ∩ L) ∈ A}Rk(dL).

This equation describes the distribution of the typical k-face of the stationary Poisson hyperplane
mosaic X(d) in terms of typical cells in k-dimensional subspaces and is thus a counterpart to
Theorem 1 of [12]. It can be employed similarly as (6) was used above. In this way, the proof
of Theorem 1 is completed.
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4. Comparison with given shapes

The typical k-face Z(k) and weighted typical k-face Z
(k)
0 are random polytopes, and we

want to study their ‘preferred’ shapes under different conditions. The question for a ‘mean
shape’ can be approached in different ways. If K is a random convex body in R

d satisfying a
suitable integrability condition, we can define itsAumann expectation, which is closely related to
Minkowski addition. In our context, a different type of mean body, related to Blaschke addition,
is more appropriate. The Blaschke sum K#M of two d-dimensional convex bodies K and M is
the unique convex body with surface area measure Sd−1(K#M, ·) = Sd−1(K, ·) + Sd−1(M, ·)
and, say, Steiner point at o. Let C be a d-dimensional random convex body in R

d with
E Vd−1(C) < ∞. Then the Blaschke expectation (see [9, p. 200]) of C can be defined as the
convex body EBL(C) with Sd−1(EBL(C), ·) = E Sd−1(C, ·) and Steiner point at o. As indicated
by Molchanov (loc. cit.), it is possible to derive a strong law of large numbers for normalized
Blaschke sums.

For the typical cell Z, which is the typical grain of the stationary particle process X(d), it
turns out that its Blaschke expectation is a dilate of the Blaschke body BX of the hyperplane
process X (this follows from [13, pp. 488–489]). This is one instance of the existing relations
between the shape of the typical cell and the Blaschke body of X. Another one is expressed in
the following theorem. Recall that a homothet of a convex body K ⊂ R

d is any body of the
form λK + t with λ > 0 and t ∈ R

d .

Theorem 2. Among all convex bodies C of given volume Vd(C) > 0, precisely the homothets
of the Blaschke body BX maximize the probability that the typical cell Z contains a translate
of C.

A similar result holds for the zero cell, but without admitting translations (see [13, The-
orem 10.4.11]). Theorem 2 requires a different approach. We extend the proof of [13,
Theorem 10.4.8], which uses an idea of Miles [8] to determine the distribution of the inradius
of the typical cell; we generalize this from the usual inradius to the relative inradius. Let C be
a convex body of positive dimension. For a convex body K containing some positive homothet
of C, the relative inradius of K with respect to C is defined by

rC(K) := max{λ > 0 : there exists z ∈ R
d with λC + z ⊂ K}.

We shall show that

P{rC(Z) > a} = e−2dV (C,BX,...,BX)a for a ≥ 0, (9)

where V denotes the mixed volume. From (9) we can then deduce that

P{Z contains a translate of C} = P{rC(Z) ≥ 1}
= e−2dV (C,BX,...,BX)

≤ exp[−2dVd(C)1/dVd(BX)1−1/d ],

by Minkowski’s inequality (see, e.g. [11, Theorem 6.2.1]). Equality holds if and only if C is
homothetic to the Blaschke body BX. This is the assertion of Theorem 2.

We remark that assertion (9) holds whenever C has positive dimension. We prove it under
this assumption.
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Proof of (9). We modify the proof of [13, Theorem 10.4.8] as far as necessary. For a convex
body K , let

HK = {H ∈ A(d, d − 1) : H ∩ K 
= ∅}.
We assume, without loss of generality, that o ∈ C. Let a ≥ 0, and set

�a := {ω ∈ � : X(ω)(HaC) = 0}.
Every hyperplane H ∈ A(d, d − 1) \ HaC is of the form H = H(u, t) with u ∈ S

d−1 and
t > h(aC, u), where h denotes the support function. We define a map Ta : A(d, d−1)\HaC →
A(d, d − 1) by TaH(u, t) := H(u, t − h(aC, u)). Let Aa be the trace σ -algebra of A on �a ,
and let Pa be the restriction of P/P(�a) to �a . On the probability space (�a, Aa, Pa) we define
a simple hyperplane process Xa by Xa(ω) := {TaH : H ∈ X(ω)}, ω ∈ �a .

Let A ∈ B(A(d, d − 1)) (with o /∈ H for all H ∈ A, without loss of generality). We have

�(T −1
a (A)) = 2γ

∫
Sd−1

∫ ∞

h(aC,u)

1
T −1

a (A)
(H(u, t)) dtϕ(du)

= 2γ

∫
Sd−1

∫ ∞

h(aC,u)

1A(H(u, t − h(aC, u))) dtϕ(du)

= 2γ

∫
Sd−1

∫ ∞

0
1A(H(u, t)) dtϕ(du)

= �(A).

Let k ∈ N0. Since T −1
a (A) ∩ HaC = ∅, the independence property of Poisson processes

gives

Pa{Xa(A) = k} = P(�a)
−1P{X(T −1

a (A)) = k, X(HaC) = 0}
= P{X(T −1

a (A)) = k}

= e−�(T −1
a (A)) �(T −1

a (A))k

k!
= e−�(A) �(A)k

k!
= P{X(A) = k}.

It follows (e.g. from [13, Theorem 3.1.1]) that Xa and X are equal in distribution.
With every hyperplane H ∈ X we associate the slab Ha := H −aC. The cells induced by X

and a are defined as the closures of the connected components of R
d \ ⋃

H∈X Ha . The system
X(d,a) of all these cells is a stationary particle process. We denote its intensity by γ (d,a) and
its grain distribution by Q(d,a). If ω ∈ �a then among the cells induced by X(ω) and a there
is one containing o; we denote it by Z

(a)
0 . This defines a random polytope on (�a, Aa, Pa);

it is equal to the zero cell of the hyperplane mosaic induced by Xa . Since Xa and X are
stochastically equivalent, Z

(a)
0 and Z0 are also stochastically equivalent. Now we can exactly

copy the argument in [13, p. 503], with e−2γ̂ a replaced by P(�a), to derive

γ (d,a) = P(�a)γ
(d,0). (10)

Let K be a d-dimensional convex body, and suppose that λC +x ⊂ K , where λ is maximal.
Then x is called a relative incentre of K . The set Z(K) of all relative incentres of K is a convex
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body (often one-pointed, but not always), and we denote by z(K) its Steiner point. The function
z is translation covariant and measurable, and, hence, can be used as a centre function (in the
sense of [13, Section 4.1]). We do this, and write K0 := {K ∈ K : z(K) = o}. (Since the
relative inradius is translation invariant, the distribution of the relative inradius of the typical
cell does not depend on the choice of the centre function.)

Now we observe that to every cell K ∈ X(d) with rC(K) > a there corresponds a unique
cell Ka ∈ X(d,a) contained in it: if

K =
m⋂

i=1

{x : 〈x, ui〉 ≤ ti}

then

Ka =
m⋂

i=1

{x : 〈x, ui〉 ≤ ti − ah(C, ui )}.

If rC(K) = λ, the set of relative incentres of K is given by Z(K) = K ∼ λC, where ‘∼’
denotes the Minkowski difference (see [11, p. 133]). We have Ka = K ∼ aC and, hence (by
[11, Equation (3.3.14)]), Ka ∼ (λ − a)C = K ∼ λC 
= ∅. This shows that rC(Ka) ≥ λ − a,
and, from Ka + aC ⊂ K , it follows that rC(Ka) + a ≤ rC(K) = λ; hence, rC(Ka) = λ − a.
Therefore, Z(Ka) = Ka ∼ (λ − a)C = Z(K). We conclude that z(Ka) = z(K).

Let B ∈ B(Rd) be a set with Lebesgue measure 1. Since Q(d,0) is the distribution of the
typical cell Z, we obtain, from [13, Theorem 4.1.3(a)],

P{rC(Z) > a} =
∫

K0

1(a,∞)(rC(K))Q(d,0)(dK)

= 1

γ (d,0)
E

∑
K∈X(d), z(K)∈B

1(a,∞)(rC(K))

= 1

γ (d,0)
E

∑
Ka∈X(d,a), z(Ka)∈B

1

= 1

γ (d,0)
γ (d,a)

= P(�a),

by (10). It remains to remark that, by the Poisson property, P(�a) = e−�(HaC), and (1) gives

�(HaC) = 2γ

∫
Sd−1

h(aC, u)ϕ(du)

= 2a

∫
Sd−1

h(C, u)Sd−1(BX, du)

= 2dV (C, BX, . . . , BX)a,

where a formula for mixed volumes ([13, Equation (14.23)]) was used. This yields

P(�a) = e−2dV (C,BX,...,BX)a,

completing the proof of (9).
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We can now use Theorem 1 to derive from Theorem 2 and [13, Theorem 10.4.11] the
following result.

Theorem 3. Let k ∈ {1, . . . , d − 1}. For each L ∈ G(d, k), let CL ⊂ L be a convex body with
Vk(CL) = 1. Then, for Qd−k-almost all L ∈ G(d, k), the following holds.

The conditional probability that the typical k-face Z(k) contains a translate of CL, given
that D(Z(k)) = L, is at most

exp[−2kVk(BX∩L)1−1/k], (11)

and it is equal to this value if and only if CL is homothetic to BX∩L.
Assume in addition that o ∈ CL for L ∈ G(d, k). The conditional probability that the

weighted typical k-face Z
(k)
0 contains CL, given that D(Z(k)) = L, is at most the value (11),

with equality if and only if CL is homothetic to BX∩L.

5. Large faces

The solution of D. G. Kendall’s problem for the zero cell of anisotropic stationary Poisson
hyperplane processes, mentioned in the introduction, was extended in [4] to weighted typical
k-faces with large k-dimensional volume and direction in a small neighbourhood of a given
direction. In this section, we state a version of this result for the conditional distribution of a
weighted typical k-face, given its direction and given that it has large k-volume.

To define the conditional probabilities in question, we consider, for any a ≥ 1, the random
variable ηa : � → {0, 1} defined by ηa := 1{Vk(Z

(k)
0 ) ≥ a}, where {0, 1} is endowed with the

σ -algebra generated by the singletons. We denote by

P{Z(k)
0 ∈ · | (ηa, D(Z

(k)
0 )) = (b, L)} (12)

the regular conditional probability distribution of Z
(k)
0 , given that (ηa, D(Z

(k)
0 )) = (b, L) for

(b, L) ∈ {0, 1} × G(d, k).

Lemma 1. A version of the regular conditional probability distribution (12) is given by

�(b,L)(·) := P{Z0(X ∩ L) ∈ ·, Vk(Z0(X ∩ L)) < a}
P{Vk(Z0(X ∩ L)) < a} 1{b = 0}

+ P{Z0(X ∩ L) ∈ ·, Vk(Z0(X ∩ L)) ≥ a}
P{Vk(Z0(X ∩ L)) ≥ a} 1{b = 1}

for (b, L) ∈ {0, 1} × G(d, k).

Proof. For L ∈ G(d, k), we define a measure µL on {0, 1} by

µL := P{Vk(Z0(X ∩ L)) < a}δ0 + P{Vk(Z0(X ∩ L)) ≥ a}δ1,

where δ0 and δ1 are the Dirac measures at 0 and 1, respectively. Then (7) implies that

P{(ηa, D(Z
(k)
0 )) ∈ ·} =

∫
G(d,k)

∫
{0,1}

1{(b, L) ∈ ·}µL(db)Qd−k(dL).
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For Borel sets A ⊂ K and C ⊂ G(d, k), and for B ⊂ {0, 1}, we obtain∫
{0,1}×G(d,k)

�(b,L)(A)1{(b, L) ∈ B × C}P
(ηa,D(Z

(k)
0 ))

(d(b, L))

=
∫

C

∫
B

�(b,L)(A)µL(db)Qd−k(dL)

=
∫

C

[P{Z0(X ∩ L) ∈ A, Vk(Z0(X ∩ L)) < a}1B(0)

+ P{Z0(X ∩ L) ∈ A, Vk(Z0(X ∩ L)) ≥ a}1B(1)]Qd−k(dL)

= P{Z(k)
0 ∈ A, (ηa, D(Z

(k)
0 )) ∈ B × C},

from which the assertion follows.

In the following, we choose �(b,L)(·) as a definite version of the regular conditional proba-
bility distribution (12). Thus, introducing the notation

P{Z(k)
0 ∈ · | Vk(Z

(k)
0 ) ≥ a, D(Z

(k)
0 ) = L} := P{Z(k)

0 ∈ · | (ηa, D(Z
(k)
0 )) = (1, L)}

for a ≥ 1 and L ∈ G(d, k), we obtain

P{Z(k)
0 ∈ · | Vk(Z

(k)
0 ) ≥ a, D(Z

(k)
0 ) = L} = P{Z0(X ∩ L) ∈ ·, Vk(Z0(X ∩ L)) ≥ a}

P{Vk(Z0(X ∩ L)) ≥ a} . (13)

For L ∈ G(d, k), in addition to the Blaschke body BX∩L of the section process X ∩ L, we
introduce the scaled version BL ⊂ L, which is defined by SL

k−1(BL, ·) = ϕL. Moreover, for a
k-dimensional convex body K ⊂ L, we measure the deviation (in shape) of K from BL by the
function

ϑ(K, BL) = log min

{
β

α
: α, β > 0, there exists z ∈ L : αBL ⊂ K + z ⊂ βBL

}
.

The constants c1, c2, . . . appearing in the following may depend on ϕ, γ , and ε; the precise
dependence will be indicated in each case.

By Lemma 4.2 of [4] (recall that Z0 ∩L = Z0(X∩L)), the following is true. For 0 < ε < 1,
there exists a constant c1 > 0, depending only on ϕ, γ , and ε, and a constant c2 > 0, depending
only on ϕ, such that, for L ∈ G(d, k), a ≥ 1, and h ∈ (0, 1

2 ),

P{ϑ(Z0(X ∩ L), BL) ≥ ε, Vk(Z0(X ∩ L)) ∈ a(1, 1 + h)}
≤ c1h exp[−2(1 + 2c2ε

k+1)γLτLa1/k], (14)

where τL = kVk(BL)1−1/k .
By Lemma 4.1 of [4], there exist constants c3 and 0 < h0 < 1

2 , depending only on ϕ, γ ,
and ε, such that

P{Vk(Z0(X ∩ L)) ≥ a} ≥ P{Vk(Z0(X ∩ L)) ∈ a(1, 1 + h0)}
≥ c3h0 exp

[
−2

(
1 +

(
c2

2

)
εk+1

)
γLτLa1/k

]
.
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We apply (14) with h = h0. Since L �→ γLτL is continuous and therefore bounded from
below by a positive constant depending only on ϕ and γ , we obtain as in [5, pp. 1164–1165,
Case 2],

P{ϑ(Z0(X ∩ L), BL) ≥ ε, Vk(Z0(X ∩ L)) ≥ a}
≤ c4h0 exp[−2(1 + c2ε

k+1)γLτLa1/k],
where c4 > 0 is a constant which depends only on ϕ, γ , and ε. Hence, for L ∈ G(d, k) and
a ≥ 1, we obtain

P{ϑ(Z
(k)
0 , BL) ≥ ε | Vk(Z

(k)
0 ) ≥ a, D(Z

(k)
0 ) = L} ≤ c5 exp[−c2ε

k+1γLτLa1/k],
where c5 > 0 is a constant which depends only on ϕ, γ , and ε. Thus, we have proved the
following theorem.

Theorem 4. Let ε ∈ (0, 1) and a ≥ 1. There exist constants c6, c7 > 0, where c6 depends
only on ϕ, γ , and ε, and c7 depends only on ϕ and γ , such that

P{ϑ(Z
(k)
0 , BL) ≥ ε | Vk(Z

(k)
0 ) ≥ a, D(Z

(k)
0 ) = L} ≤ c6 exp[−c7ε

k+1a1/k]
for Qd−k-almost all L ∈ G(d, k).

We note that, for the special version given by (13), the estimate of Theorem 4 is valid for all
L ∈ G(d, k).

Now we denote by P{Z(k)
0 ∈ · | (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (a, L)} the regular conditional prob-

ability distribution of Z
(k)
0 , given that (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (a, L). A similar argument as

above leads to an estimate for

P{ϑ(Z
(k)
0 , BL) ≥ ε | Vk(Z

(k)
0 ) = a, D(Z

(k)
0 ) = L}.

To show this, we first remark that (7) implies that

P{(Vk(Z
(k)
0 ), D(Z

(k)
0 )) ∈ ·} =

∫
G(d,k)

∫ ∞

0
1{(t, L) ∈ ·}PVk(Z0(X∩L))(dt)Qd−k(dL). (15)

Hence, for Borel sets A ⊂ K , C ⊂ G(d, k), and I ⊂ [0, ∞), we deduce from (7) and (15) that∫
C

∫
I

P{Z(k)
0 ∈ A | (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (t, L)}PVk(Z0(X∩L))(dt)Qd−k(dL)

=
∫

I×C

P{Z(k)
0 ∈ A | (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (t, L)}P

(Vk(Z
(k)
0 ),D(Z

(k)
0 ))

(d(t, L))

= P{Z(k)
0 ∈ A, Vk(Z

(k)
0 ) ∈ I, D(Z

(k)
0 ) ∈ C}

=
∫

C

P{Z0(X ∩ L) ∈ A, Vk(Z0(X ∩ L)) ∈ I }Qd−k(dL)

=
∫

C

∫
I

P{Z0(X ∩ L) ∈ A | Vk(Z0(X ∩ L)) = t}PVk(Z0(X∩L))(dt)Qd−k(dL),

where P{Z0(X∩L) ∈ · | Vk(Z0(X∩L)) = t} is the regular conditional probability distribution
of Z0(X ∩ L), given that Vk(Z0(X ∩ L)) = t . Therefore, for P

(Vk(Z
(k)
0 ),D(Z

(k)
0 ))

-almost all

(t, L) ∈ (0, ∞) × G(d, k),

P{Z(k)
0 ∈ · | (Vk(Z

(k)
0 ), D(Z

(k)
0 )) = (t, L)} = P{Z0(X ∩ L) ∈ · | Vk(Z0(X ∩ L)) = t}. (16)
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Let λ1 denote the Lebesgue measure on R. Then, by the same arguments as in [2, Section 9],
applied to the section process X ∩ L in L, we find that P{Vk(Z0(X ∩ L)) ∈ ·} and λ1 have the
same null sets and that, for a Borel set A ⊂ K , L ∈ G(d, k), and λ1-almost all t > 0,

P{Z0(X ∩ L) ∈ A | Vk(Z0(X ∩ L)) = t}
= lim

n→∞
P{Z0(X ∩ L) ∈ A, Vk(Z0(X ∩ L)) ∈ [t, t + 1/n]}

P{Vk(Z0(X ∩ L)) ∈ [t, t + 1/n]} .

Lemma 4.2 of [4] shows that, for ε ∈ (0, 1) and L ∈ G(d, k), there exist constants c8 > 0,
depending only on γ , ϕ, and ε, and c9 > 0, depending only on γ and ϕ, such that, for t ≥ 1
and all integers n ≥ 3,

P

{
ϑ(Z0(X ∩ L), BL) ≥ ε, Vk(Z0(X ∩ L)) ∈

[
t, t + 1

n

]}

≤ c8

nt
exp

[
−2(1 + c9ε

k+1)γLτLt1/k

]
. (17)

In addition, Lemma 4.1 of [4] shows that, for ε ∈ (0, 1) and L ∈ G(d, k), there exist constants
n0 ≥ 3 and c10, depending only on γ , ϕ, and ε, such that, for t ≥ 1 and all integers n ≥ n0,

P

{
Vk(Z0(X ∩ L)) ∈

[
t, t + 1

n

]}
≥ c10

nt
exp

[
−2

(
1 +

(
c9

2

)
εk+1

)
γLτLt1/k

]
. (18)

Thus, (17) and (18) imply that, for ε ∈ (0, 1), L ∈ G(d, k), and λ1-almost all t ≥ 1,

P{ϑ(Z0(X ∩ L), BL) ≥ ε | Vk(Z0(X ∩ L)) = t} ≤ c11 exp[−c12ε
k+1t1/k],

where c11 depends on γ , ϕ, and ε, and c12 depends on γ and ϕ. Thus, (16) yields the following
theorem.

Theorem 5. Let ε ∈ (0, 1). There exist constants c11, c12 > 0, where c11 depends only on ϕ,
γ , and ε, and c12 depends only on ϕ and γ , such that

P{ϑ(Z
(k)
0 , BL) ≥ ε | Vk(Z

(k)
0 ) = a, D(Z

(k)
0 ) = L} ≤ c11 exp[−c12ε

k+1a1/k]
for P

(Vk(Z
(k)
0 ),D(Z

(k)
0 ))

-almost all (a, L) ∈ (1, ∞) × G(d, k).

The exceptional set of P
(Vk(Z

(k)
0 ),D(Z

(k)
0 ))

measure zero that is possibly excluded in Theorem 5

can be chosen independently of ε ∈ (0, 1). This follows from the fact that the constant
c11 = c11(ϕ, γ, ε′) can be bounded uniformly for ε′ ∈ [ε/2, ε] for all ε ∈ (0, 1), as can be seen
by an inspection of the proofs in [6].
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