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Abstract

In this paper we study three-dimensional contact metric manifolds satisfying ||7]| = constant. The local
description, as well as several global results and new examples of such manifolds are given.
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1. Introduction

In contact geometry, the tensor field 7 = L¢g, introduced by Chern and Hamilton [4],
and the Jacobi operator [ = R(., £)¢ play a fundamental role. In a (2m + 1)-dimensional
contact metric manifold M, the function Tr/ and the scalar torsion ||7|| are related
by the relation ||7||> = 4(2m — Tr1) > 0 [4, 13]. So the constancy of each Tr/ and ||7]|
implies the constancy of the other. (Thus we will be using the constancy of ||7|| or
Tr [ interchangeably in this paper.) It is well known that there exist a lot of classes
of contact metric manifolds with ||7]| = constant, such as the Sasakian manifolds, the
K-contact manifolds, the tangent sphere bundle equipped with the Sasaki metric of
a Riemannian manifold of constant curvature, or more generally the (k, u)-contact
manifolds [2], the normal bundle of a maximal dimension integral submanifold of
a Sasakian manifold [1, page 189], the homogeneous contact Riemannian three-
manifolds [12], the three-dimensional pseudosymetric of constant type contact metric
manifolds which satisfy one more condition [6, 7], and the Jacobi (k, u)-contact
manifolds [5]. For more information about contact metric manifolds with ||7]| =
constant, see [9, 11]. So it is natural to look for the potential existence of more contact
metric manifolds with ||7|| = constant beyond the aforementioned well-known classes.

In this paper, we study the condition ||7]| = constant in the three-dimensional case
and the content is organized in the following way. Section 2 is devoted mainly to
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preliminaries on contact metric manifolds and to some new examples. In Section 3,
several global results of three-dimensional contact metric manifolds with ||7]| =
constant are given. Finally, Section 4 is concerned with the local description of such
manifolds. In particular, in this section, in terms of contact metric manifolds with
|||l = constant, we distinguish between and characterize the (x, ;)-contact manifolds
and the Jacobi (k, u)-contact manifolds.

2. Preliminaries

A contact manifold is a differentiable manifold M>"*! together with a global 1-
form 7 (a contact form) such that n A (dn)™ # 0 everywhere. Since dn is of rank 2m,
there exists a unique vector field & (the Reeb or the characteristic vector field of the
contact structure 7) satisfying n(¢) = 1 and dn(X, &) = 0 for all vector fields X. The
distribution D defined by the subspace XeT,M : n(X) = 0 for all peM is called the
contact distribution. Every contact manifold has an underlying almost contact structure
(n,£.¢), where ¢ is a global tensor field of type (1, 1) such that

@ =1, ¢&=0, no¢p=0, ¢ =-I1+n®E 2.1
A Riemannian metric g (the associated metric) can be defined such that
nX)=gX,&) and dn(X,Y) = g(X,¢Y) (2.2

for all vector fields X and Y on M*"*!. We note that g and ¢ are not unique for a given
contact form 7, but g and ¢ are canonically related to each other by

89X, ¢Y) = g(X,Y) — n(X)n(Y). (2.3)

We refer to (1, £, ¢, ) as a contact metric structure (c.m.s. in short) and to the manifold
M?"*! carrying such a structure as a contact metric manifold (c.m.m. in short) and this
will be denoted by M>"*(n, &, ¢, g). Denoting Lie differentiation and the curvature
tensor by £ and R, respectively, we define the operators /, 4 and 7 by

I=R(,OE h=31Lep, v=Leg=2ghs,.).
On every c.m.m. M>"*1(n, £, ¢, g) we have many important formulas,
E=hé=0, noh=0, Trh=Trdh=0, hd=—gh,
hX = AX implies hpX = —1pX.

Moreover, if V is the Riemannian connection of g, S is the Ricci tensor of type (0, 2),
Q is the corresponding Ricci operator satisfying g(QX,Y) =S(X,Y) and r =Tr Q is
the scalar curvature, then
Vep=0, Vx&=—-¢X—¢hX, Trl=g(Q& &) =2m—Trh* <2m
T=2g(p.,h.), Ver=2g(¢.,(Veh).)
Vih = ¢ — ¢l — ph?.
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The conditions ||7]| = constant, Tr/ = constant and Tr 4> = constant are equivalent.
A c.m.m. M?™ (5, &, ¢, g) for which & is a Killing vector field, that is, for which
L;g =0, is called a K-contact manifold. A c.m.m. M*"*'(n, &, ¢, g) is K-contact
manifold if and only if & = O (or, equivalently, T = 0). If we take the product M>"*! x R,
the c.m.s. on M>"*! gives rise to an almost complex structure J on M>"*! x R given
by J(X, f(d/dt)) = (¢X — f& n(X)(d/dt)). If this structure is integrable, then M>"*!
is called Sasakian. A c.m.m. is Sasakian if and only if R(X, Y)¢ = n(¥Y)X — n(X)Y for
all vector fields X, Y on the manifold. If dim M?"*! = 3, then a K-contact manifold is
Sasakian. A c.m.m. M(n, &, ¢, g) is said H-contact manifold if the characteristic vector
field ¢ is harmonic or, equivalently, if £ is an eigenvector of the Ricci operator [13].
Sasakian and K-contact manifolds are H-contact manifolds. More details on contact
manifolds are found in [1].

A generalization of Sasakian manifolds are the (k, u)-contact manifolds [2], the
curvature tensor of which satisfies the condition

R(X,Y)¢ = k((V)X = n(X)Y) + p(n(Y)hX — n(X)hY) (2.4)

for all vector fields X, Y, where x = Trl/2 and u are constant. If «,u in (2.4) are
nonconstant smooth functions, then M>™*! is called a generalized («, )-contact
manifold [10].

Moreover generalizations of (k, u)-contact manifolds and K-contact manifolds are
the Jacobi (k, u)-contact manifolds, which satisfy the condition

[ = —k¢? + pih, (2.5)

where «, u are constant [5]. From (2.5), Trh =0 and Tr ¢2 = —2m, it follows that
Trl = 2mk = constant.

We note that all manifolds are assumed to be connected and smooth. The set of the
vector fields on the manifold M will be denoted by X(M).

In the next proposition, an essential characteristic of the class of contact metric
manifolds with Tr/ = constant is proved.

ProrosiTioN 2.1. For a contact metric (2m + 1)-manifold, the condition Tr [ = constant
is invariant under a D-homothetic deformation.

Proor. By a D-homothetic deformation [14] on M(n, &, ¢, g) we mean a change of
structure tensors of the form

_ -1 - _
n=an, §=5§, p=¢, g=ag+ale-1nen,

where «a is a positive constant. It is well known that M (7, &, ¢, g) is also a c.m.m. By
direct computation, we see that the tensor 4 is transformed in the following way.

- 1
h=—h.
o

Moreover, using this and Tr! = constant (equivalently, Tr /> = constant), we get
Trh? = constant and so Trl = constant for any positive number a.
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In the following, we give new examples of contact metric manifolds with Tr/ =
constant # 2. Examples (1)—(3) concern Jacobi (k, u)-contact manifolds, which,
for appropriate choices of the function f = f(y,z), degenerate into (k, u)-contact
manifolds. Example (4) concerns a Jacobi (k, u)-contact manifold. Examples (5)
and (6) concern contact metric manifolds with Tr/ = constant, which are not Jacobi
(x, p)-contact manifolds. O

Examples. In all six examples, the three-dimensional manifold M is always the same
contact manifold (R?, = dx — ydz), and only the associated metric g defines the
different examples.

(1) Consider on M an arbitrary smooth function f = f(y, z) of variables y, z. The tensor
fields (1,¢, ¢, g), where

0
f—as
g=(gi):gn=gn=1 gn=g1=0, gi=gs=-y
1+ (px — )2

1
83 =8n= E(Px -, gn=y+ 2 p = constant > 0

and
¢p=(¢ij):d11=021=6031=0, =2y, ¢13=y(px~f), ¢n=f-px,
$23 = —M, $=2, ¢3=px—F[,
define a contact metric structure on M. Moreover, M (1, ¢, ¢, g) is generally a non(x, w)-
contact manifold, Jacobi (k, u)-contact manifold with k = Trl/2 =1 - p?/4 < 1 and

u =2 —p < 2. In particular, if we choose f = f(z), then M(n, &, ¢, g) is a (k, p)-contact
manifold.

(2) Consider on M an arbitrary smooth function f = f(y, z) of variables y, z. The tensor
fields (m, ¢, ¢, g), where

0
f—a’
g=@):gn=1 gn=g1=0, gi=g1=-y, gn=€"

1+ f2e2

By p = constant > 0
e

83 =8n= —%fepx, g =y +

and
G =(dij): p11 =21 =31 =0, ¢1o =2y, ¢13=-yfe™,
¢ = [, ¢n =27, ¢ =—%§fz’)x, ¢33 = —fe,

define a contact metric structure on M. Moreover, M(n, &, ¢, g) is generally a non(x, u)-
contact manifold, Jacobi («, u)-contact manifold with k = Tr1/2 =1 - p?/4 and u = 2.
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In particular, M is a (k, it)-contact manifold if we choose f(y,z) = —%py2 + d(z), where
d(z) is a smooth function of z.

(3) Consider on M an arbitrary smooth function f = f(y, z) of variables y, z. The tensor
fields (m, ¢, ¢, g), where

£ 0
Cox
g=@iN:gn=1 gn=81=0, gz=g1=-y, &3=gn=—35(+px),
1+ (f + px)?
gn=1 g3 =y2 + # p = constant > 0

and
d=(¢ij)) 11 =02 =031 =0, P12=2y, ¢13=—y(f +px),

1 2
¢ =f+px, ¢n=2, ¢n= —w, ¢33 = —(f + px)

define a contact metric structure on M. Moreover, M(n, ¢, ¢, g) is generally a non(x, u)-

contact manifold, Jacobi («, u)-contact manifold with k = Tri/2 =1 - p?/4 and u =
p + 2> 2. In particular, M is a (k, u)-contact manifold if we choose f = f(z).

(4) The tensor fields (n, ¢, ¢, g), where

pX
g=@ip:gn=1, gn=g1=0, g3=g1=-y, g€3=8n= ER

gn=p X +1, gu=y+ i, p = constant > 0
and
d=(gi):b11=¢n =31 =0, ¢12=2y0>3*+1), ¢i3=pxy,
b0 =-px, ¢n=200"x+1), ¢n=-% ¢3=px

define a contact metric structure on M. Moreover, M(n, &, ¢, g) is a non(k, u)-contact
manifold, Jacobi (k, u)-contact manifold, withk = Tri/2=1—-p?/4andu=p +2 > 2.

(5) In the open subset U = {(x, y,z)eR? : 0 < y < 71} of M, the tensor fields (i, &, ¢, g),
where

g=(g):gn=1, gn=g1=0, gi3=g3=-y, gun=e™

, l+cot’y

1
823 =83% =5 coty, g3 =y + dgproiny o = constant > 0
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and

= (b)) 11 =0 =¢31 =0, ¢1p=2ye" ", 13 =ycoty,
1 +cot’y

oy #32= 267, sy = coty

¢ =—coty, ¢=
define a contact metric structure. Moreover, U(1n, ¢, ¢, g) is a non-Jacobi (k, u)-
manifold, contact metric manifold with Tr/ = 2(1 — p?/4) = constant and u =2 +
pcosy is the nonconstant smooth function of Proposition 3.1. This follows a
comparison of the Lie brackets [£, e] of Lemma 3.2 and Theorem 4.4 and using
u=-2A,1=p/2.

(6) Consider on M the function F = f e’ cos xdx, p = constant > 0. The tensor
fields (n, €, ¢, g), where

— pPCOsX

g=(gip):gn=1 gn=g1=0, g3=g1=-y, gn=
1+p2F26_2pCOSX
Qe—Pcosx

—pCcos X

F 2
823 =83 = —EPE 833 =Yy +

and

¢=(di)) 1 p11 =21 =31 =0, P12 =2y, ¢33 =—pye P *F,

212 ,—-2pcosx
boy = peP I, __1+pFe
22 = P P 23 = Depcosx

P33 = _pe—pcos XF,

—p COS
. 3 =2,

define a contact metric structure on M. Moreover, M(n, &, ¢, g) is a non-Jacobi
(k, u)-manifold, contact metric manifold with Tr/ = 2(1 — p*/4) = constant and yu =
1 + pcos x is the nonconstant smooth function of Proposition 3.1. This follows a
comparison of the Lie brackets [£, e] of Lemma 3.2 and Theorem 4.4 and using
pu=-2A,1=p/2.

The claims of examples 1-6 could follow from Theorems 4.2, 4.5 and 4.6 by
properly choosing the functions 7 = #(x, y, z), c; = c1(y,z) and ¢; = ¢»(y, 7). Specifically,
examples 1, 2 and 3 follow choosing ¢ = &, /2,0, respectively, and ¢; = f(y,z), c2 = 2.
Example 4 follows choosing ¢ = 2cot™l px, c; =0, ¢ =2. Examples 5 and 6 follow
choosing t =y, t = x, respectively, and ¢; =0, ¢; = 2.

From the above examples, it follows that the class of contact metric manifolds with
Tr [ = constant is a proper generalization of classes of (k, u)-contact manifolds and
Jacobi («, p)-contact manifolds. In particular, the following diagram is valid.

(x, p)-contact Jacobi (k, u)-contact contact metric manifolds
manifolds manifolds with Tr [ = constant.
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3. Global results

As we have seen, the (k, u)-contact manifolds are characterized by the relation (2.4),
where « = Tr /2 and u are constant. In the next proposition, an expression of R(X, Y)&
is given for an arbitrary three-dimensional c.m.m. with Tr/ = constant.

ProrosiTion 3.1. Let M(1,&, ¢, g) be a three-dimensional c.m.m. with Tr [ = constant.
(1) IfTrl=2, then M is a Sasakian manifold and so R(X, Y)¢é = n(Y)X — n(X)Y.
(1)) IfTrl+2, then
R(X, Y)¢ = g(X, oY) Q& + k(n(Y)X — n(X)Y) + u(n(Y)hX — n(X)hY)
for any X, YeX(M), where k = Trl/2, and
1
U= —E(r -2k —

is a smooth function, not necessarily constant (compare with examples 5 and 6)
where div denotes the divergence.

div ¢h Qf)

1-«

To prove Proposition 3.1, we will need the following lemma [3, 8].

Lemmva 3.2. Let M(n, &, ¢, g) be a three-dimensional c.m.m. and let U be the open set
of M, where h # 0. Then, for any point PeU, there exists a smooth local orthonormal
basis {¢, e, pe}, such that he = de, hdpe = —Ade, where A is a nonvanishing smooth
function. Therefore, in U,

Vb=~ +Dpe, Vgé=(1-Ae, V=0,

Vee = Age, V.,e=Bge, Vype=Ce, Vepe=-Ae,

Vgee = —=Coe + (A1 — 1), V.pe =—Be+ (1 + )¢, 3.1

[E,el =(A+ A+ Dge, [& el =—(A—A+ 1)e,

[e, pe] = —Be + Coe + 2¢,

where A, B, C are smooth functions on U. Moreover,

R(e, pe)é = (2AC — ed)e + (ped — 2AB) e, 39
R(e,&)é = (1 — A2 =21A)e, R(pe,&)é=(1-2%+ 2/1A)¢e,} (3-2)

Qe = (% +22-1- 2/1A)e + (ED) e + (2AB — ped)é,
Ode = (ED)e + (% F 21+ 2/1A)¢e +(24C = ed)é, (3.3)

Q¢ = (2AB — ped)e + 2AC — ed)pe + (Tr D)€,

r=2(C +¢eB— B> —C* +2A +1 - 2%, (3.4)
B=—divge, C=—dive, (3.5)
EB=-CA-2+1)+e(A-2), 36
§C:B(A+/l+1)—¢e(A+/l).} (36)
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REMARK 3.3. When Tr! = constant # 2, then, from the relation 4> = (Trl/2 — 1)¢?,
which is valid on any three-dimensional c.m.m., we have h # 0 (that is, 4 # 0) in any
point of the manifold and so Lemma 3.2 is applied around any point of the manifold.
We suppose that 4 > 0.

Proor or Proposition 3.1. (i) If Trl = 2, then & = 0 and so M is a Sasakian manifold.
(i) If Trl # 2, let

X =pre+ prpe+nX)é and Y =pje+ urpe +n(¥)é forall X, YeX(M),

where p;, y; are smooth functions on the manifold. Using the basic properties of the
curvature tensor and (3.2), we calculate

R(X,Y)¢ = (p1p2 = pap)R(e, pe)s + (pin(Y) — puin(X))R(e, )¢
+(pan(Y) — pon(X))R(ge, £)§
= (pip2 — p2p11)((2AC)e — (24B)ge)
+(Pin(Y) = mnO)(1 = 2% = 22A)e
+(pan(Y) = uan(X))(1 = 2% + 22A) e
= (p1p2 — p21)((2AC)e — (2AB)¢e)
+(1 = D) n(Y)(pre + page) - n(X)(uie + page))
—22A{n(Y)(p1e — p2ge) — n(X) (e — page)).
Now, using the relations ¢& = 0, hé = 0, he = de, hpe = —Ape, ¢p*e = —e and (3.3), we
find
8(X, 9Y) = g(pre + prgpe + N(X)E, e — pae) = —(pip2 = papir)
P& = p((2AB)e + 2AC)pe + (Tré) = —((2AC)e — (2AB)ge)
hX = A(pre — page),  hY = Apie — pode).
Substituting the above and Tr! = 2(1 — A%) = 2« in R(X, Y)& gives

R(X,Y)¢ = g(X, pY)pQ&
+ (1 = P)n(NX = n(X)€) = nX)(Y = n(V)é))

I 1
- Z/IA{n(Y)ZhX - n(X)th}
= g(X, pY)p0O& + k(n(Y)X — n(X)Y) + u(n(Y)hX — n(X)hY),

where u = —2A.
Moreover, using ¢h = —h¢, (3.3), (3.5), 3.4) and 2> =1-Trl/2=1-«, we
calculate

PhQE = —hp Q& = —h{—(2AC)e + (2AB)pe} = 2A%(Ce + Boe)
div phQ¢ = 22%div(Ce + Bpe) = 22*(Cdiv e + eC + Bdiv ¢e + peB)

= 22(—C? + ¢C — B* + ¢eB) = 2/12(§ _2A-(1- /12)).
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So (1/22%)div ¢hQé& = r/2 + 1 — k and thus

1 1
= ——(r — 2k — ——div ¢hQ§).
2 1 -«
This completes the proof of Proposition 3.1. O

An immediate consequence of Proposition 3.1 and the definition of a Jacobi (k, u)-
contact manifold (see (2.5)) is the following corollary.

COoROLLARY 3.4. A three-dimensional c.m.m. M(n, &, ¢, g) with Trl = constant # 2 is a
Jacobi (k, p)-contact manifold if and only if the function r — (1/(1 — k))div phQ¢ is
constant. In this case, k = Trl/2 and u = —%(r -2k — (1/(1 — k))div phQ¢).

Another immediate consequence of Proposition 3.1 and of the divergence theorem
is the following theorem.

TueoreM 3.5. Let M(n, &, ¢, g) be a three-dimensional closed (compact without
boundary) c.m.m. with Tr [ = constant # 2. Then

f(r—z(K—u))dM:o.
M

We recall that on any three-dimensional, non-Sasakian, (k, u)-contact manifold,
r=2(k—p) [2] is valid.

Now, in order to prove the next theorem, recall that on any three-dimensional
Riemannian manifold the well-known formula

D (V. Q)e; = L grad 3.7)

i
is valid, where ¢;, i = 1,2, 3 is a local orthonormal frame.

THEOREM 3.6. On any three-dimensional c.m.m. with Tr [ = constant # 2, the following
formula is valid.

div Q¢ = gg.

In particular, if M is closed, then

f érydm = 0.
M
Proor. Using the relations (3.1), (3.3), (3.5) and (3.6) of Lemma 3.2, we calculate

(V.Q)e = V,Q¢ — QV,e = Ve{(g + 21— 2/1A)e + (2/13)5} — O(Bge)
- (eg - 2/leA)e + (% + 21— 2/1A)B¢e + 2(eB)é
—22B(1 + Ve — B{(% + 21+ Z/IA)qSe + (2/1C)§}

= (eg - 2/leA)e — {4AAB + 2A(1 + D)Blge + 2A(eB — BC)E,
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(V¢€Q)¢€ = V¢EQ¢€ - QV¢€¢€
- v¢e{(§ FR2—1+ 2/1A)¢e ; (2/10)5} —CQe

- (¢e% N 2/l¢eA)¢e + (% -1+ 2/1A)C¢e + 2ApeC)e
+22C(1 - de - c{(% +2-1-20A)e + (2/lB)§}

= (44AC + 22(1 — )C)e + (qﬁe% + 2/l¢eA)¢e
+ (2A¢eC — 2ABC)E,

(VeQ) = V0§ — OVt = Ve{(2AB)e + (2AC)ge + (Tr Dé}
= 2A(éB)e + 2AABge + 2A(£C)pe — (2AAC)e
=2f{-CA-A+1)+eA—-ACle

+2UH{AB+ B(A+ A+ 1) — peAlde.

From the above,
(V.0)e + (Ve Q)e + (Ve 0)E = (e%)e N (¢e§)¢e 1 20(eB + ¢eC - 2BOY.  (3.8)
On the other hand (3.7), for ) = e, es = de, e3 = &, is written as
(VeQ)e + (Vg Q)pe + (V:0)é = {(er)e + (ger)de + (1)), (3.9)
Comparing (3.8) and (3.9),
ér = 4(eB + ¢eC — 2BC). (3.10)
Also

div Q¢ = div{(24B)e + (2AC)pe + (Tr )¢}
= (2AB)div e + e(24B) + (2AC)div ¢pe + pe(2AC) + (Tr Ddiv &
= —2ABC + 24eB — 2ABC + 2A¢eC
=2A(eB + ¢eC — 2BC). (3.11)
From (3.10) and (3.11),
2div Q¢ = ér.

Moreover, if M is closed, then

f Er)dM =2 f (div Q&) dM = 0.
M M

This completes the proof of Theorem 3.6. ]

Next, we provide two cases when a three-dimensional c.m.m. with tr/ = constant #
2 reduces to a (k, p)-contact manifold.
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ProposiTioN 3.7. A three-dimensional c.m.m. M(n, &, ¢, g) with Trl = constant # 2 is

an H-contact manifold if and only if M(n, &, ¢, g) is a (k, p)-contact manifold. In

particular, M is locally isometric to one of the following unimodular Lie groups SU(2),

SL(2,R), E(2), E(1, 1) equipped with a left invariant metric.

Proor. If M is an H-contact manifold, then ¢Q¢ = 0 and so, from Proposition 3.1,
R(X, Y)¢ = k(m(Y)X — n(X)Y) + p(n(Y)hX — n(X)hY),

where k = Tr//2 = constant # 2 and u is a function. This means that M is a generalized
(k, p)-contact manifold. Therefore, from [10, Theorem 3.6], we have that the function
u is constant and so M is a (k, u)-contact manifold. The inverse is an immediate
consequence of Proposition 3.1. For the rest of the proof, see [2, Theorem 3].

We note that Proposition 3.7 extends [5, Proposition 1.3]. O

Prorosition 3.8. If the Ricci operator Q of a three-dimensional c.m.m. with Trl =
constant # 2 is parallel (VQ = 0), then M is flat, that is, a (0, 0)-contact manifold.

Proor. At first from (3.7) we get r = constant. Moreover, using the formulas (3.1),
(3.3) and (3.6) of Lemma 3.2, we calculate

0 = (VeQ)e = VQe — QVse
- vf{(g -1 Z/lA)e + (213)5} — O(Ade)
= 2A(EA)e + (g + 21— 2/1A)A¢e +2A(EB)E

_A{(g + 221+ Z/IA)gbe + (2/1C)§}

= “21(£A)e — 41A%pe + 2A{—C(2A — 1 + 1) + eA)E.

Thus
A=0 and (1-21)C=0. (3.12)

Following this method and using (3.12) we get, from (V4. Q)e = 0 and (V.Q)¢e = 0,
the following relations.

(1=DB=0, (1+DB=0, (1+)C=0
(- 1)(% L 1) +20geB+21C =24 —1)(1 -2 =0,  (3.13)

A+ 1)(% Ny 1) +20eC + 2AB% - 21+ 1)(1 = 2) = 0.

So, from (3.12), (3.13), (3.4) and Tr/ = 2(1 — A?), we finally find Q = 0, and from the
well-known formula

RX,Y)Z = g(Y,2)QX — g(X, 2)QY + g(QY, 2)Y - g(QX,2)Y

r
- 58X 2)X - g(X.2)Y),

which is valid on any three-dimensional Riemannian manifold, we have R = 0. This

implies that the manifold is flat. O
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4. The local description

In order to describe locally the three-dimensional contact metric manifolds (c.m.m.)
with ||7|| = constant (equivalently, Tr/ = constant), we will use the following classical
theorem of Darboux [1, page 24] for the 3-dimensional case.

Tueorem 4.1. For each point P of a three-dimensional contact manifold (M, n) there
exist local coordinates (U, (x,y, z)), PeU, such that

n=dx-ydz. 4.1)

Now, let M(n, &, ¢, g) be a three-dimensional c.m.m. Our initial goal is to describe
(1, ¢, ¢, g) in this Darboux coordinate system.

We have & = §/0x and, from (2.1), ¢(0/0x) = 0. Let
0 0 0 0

2 —g— +bh— +c— 4.2

¢3y aax+bay+caz, (4.2)

where a, b, ¢ are smooth functions on U. From (4.1),

0 0
2o, (—):—. 43
n( ay) U y (4.3)
From (2.1), (4.2) and (4.3), it follows that
4] 0 0 4]
— =—ab— — (1 +b*)— — bc— 4.4
g, = "Wy ~ L+ 005 —beg ¢4
and a = cy. So (4.2) is written as
0 0 0 0
— =cy—+b—+c—. 4.5
¢(9y Vox - ay - C(?Z (45)
From (4.5), it immediately follows that ¢ # 0 everywhere on U and so (4.4) is written
as
0 a 1+b*0 0
—=-by—— ————-b—. 4.6
¢8z Y ox c 0y 0z (46)
Consequently, the matrix of the components of ¢ in this system is given by
0 yc —yb
1+5°
6=lo0 b - . @.7)
c
0 ¢ -b

Now, for the calculation of the metric tensor g, using (2.1), (2.2), (4.3), (4.5), (4.6) and
dn(X,Y) = L(Xn(Y) = Yn(X) = n(IX, Y1) (see [1, page 69]), we finally get

0 0 J 0
g1 = 8(a—x B_x) =1, gn=gi1= g(a_x 8_y) =0,
0 0
813 =831 = g(a (9_1) ==y
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and
1 +b%

1
bgxn +cgx3 =0, 80 +bgy ==, bgn+cgy= 5t cy’.

l\)l'—‘

From the last three equations, we have gx =¢/2 >0, g3 =g3 = —b/2 and g33 =
2+ (1 +b%)/2c.
So the matrix of components of g is

1 0 -y
0 c b 1
g= D) ) with detg = T 4.8)
b, 1+b?
v Y

We will now calculate, in the Darboux coordinates system, the tensor field i = %quﬁ.
Using (4. 5)

2h— (£§¢) [f,qsi]—sb[f,ﬁ]
rep]-

= [ 0 gb[ ] +b 9 +c g
~lax € 6x ox’ dy Yooy Yoy o7
where A, = dA/0x. So
0 0 0 0
2h— =ycy— + by— + ¢y —. 4.9
ay ye (')x+ 3y+cﬁz (49)
Analogously, using (4.6),
0 0 1+b%\ 0 0
e = bx——( ) = - bor 4.10
oz~ ox c Loy oz (4.10)
Consequently, the matrix of 4 is
1 1
~YEx -5 bx
0 2yc 2y
1 1/1+5b°
h=0 <b, _-( ) 411
0 Zb 2\ ¢ i ( )
1 1
0 ECX sz

From (4.9) and (4.10), it follows that # = 0 if and only if b, = ¢, = 0. So the metric
g is Sasakian (that is, Tr/ = 2) if and only if the functions » and ¢ are independent
of x (see [1, page 230]). From now on we suppose that the three-dimensional c.m.m.
M@, &, ¢, g) has Trl = constant # 2. From (4.11), we have that the eigenvalues of &
satisfy the equation

1 1
-1 5YCx —Eybx 2
1 1/1+ b? b2 1 (1+b?
0= —by—A —= =A{AZ——X+—X( )}
0 3bi=d 2( c ) 4 T\ T ),
1 1
0 —c, ——b,— A
2¢ 2
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So, since A # 0 (Remark 3.3), it follows that

1 +b° by — bc,)? + c2
4r =p - 2) = (hem b + & (4.12)
c /i c
We note that at any point of the manifold is (by, ¢,) # (0, 0).
Equation (4.12) is written as
V2 [ce)\?
(bx - b—) ; (—) — 2 P =42 forallp>0. (4.13)
c c

Putting b, — b(c,/c) = pcost and c,/c = psint for any smooth function ¢ = #(x, y, 2),
the differential equation (4.13) is reduced to the system of two differential equations
given by

{bx —b% _ pcost=0and ¢, — p(sinf)c = 0}. (4.14)
c
The solutions of this system are
0<c=cx,y,2) =y, Z)epf(Si“’)dx,

' , (4.15)
b=b(x,y,z) = e”f(s'"’)d"{cl(y, 2)+p fepf(sm D4x(cos £) dx},
where ¢1(y, z) and c,(y, z) > 0 are arbitrary smooth functions of y and z.

So we have proved the following theorem.

TueorREM 4.2. Let M(n, &, ¢, g) be a three-dimensional contact metric manifold. Then,
around any point of M, there exist coordinates (x,y,z) so that the tensor fields
n,&, ¢, g and h are given by (4.1), £ = 0/0x, (4.7), (4.8) and (4.11), respectively, where
b =b(x,y,z) and c = c(x,y,z) > 0 are arbitrary smooth functions. In particular:

(1) Trl=2 (thatis, M is a Sasakian manifold) if and only if the functions b and c
are independent of x; and

(i) Trl = constant # 2 if and only if the functions b and c satisfy (4.15), where
c1(y,2), c2(y,2) > 0 and t(x,y, z) are arbitrary smooth functions.

The eigenvector of & when Tr/ = constant # 2. Let us suppose now that X =
01(0/0x) + p2(0/dy) + p3(3/9z) is a nonzero eigenvector of h with hX = AX, 4 > 0,
where p;, i = 1,2, 3 are smooth functions. Then, using (4.9), (4.10) and h(d/0x) = 0,
0

0 0
hX = prth— h— h—
P1 ax+pz 6y+p3 oz

1 ( 8+b6+ 8)+1 ( ba (1+b2)6 ba)
== Cx7— xo- tCx = —YOx7— — o T Ox )
sz 3 0x ay 0z 2p3 Y 0x c /oy 0z

So

14+b6%\\0 0
) )— + (p2cx —Psbx)a—-
x Z

0
2hX = y(prcy = p3by)— + (prx - P3(
0x ady

https://doi.org/10.1017/51446788718000265 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788718000265

248 T. Koufogiorgos and C. Tsichlias [15]

From this and from 24X = 2(0,(3/0x) + p2(d/dy) + p3(3/07)), we get the system

2

1+b
{2)*.01 = y(pacx — prx)a 2202 = p2bx - P3( ) , 2403 = pacy — p3bx}'
x

From the first and the third equations of the system, we get p; = ypo3 and so
X = yp3(0/9x) + p2(8/3y) + p3(0/9z). Hence the above system is reduced to the
homogeneous system

2

1
{@a-bop +(= b ) o5 =0.—cyp2 + @2+ b)ps = 0] (4.16)

with determinant d = 0. So, using (4.5) and (4.6), the eigenvectors of & are &, X, ¢pX,

where
0 0 0 0
(=—, X=yo3s—+pr—+p3— and
Ox Ox ay 0z
5 “4.17)

1+5b

0 0
8X = 3(p2c = pab)o + (p2b = ——ps) - + (pac = psb) -,
ox c ay 0z
with eigenvalues 0, A and —A, respectively, where p, and p3 are solutions of the system

(4.16) and (b, cy) # (0,0) everywhere.

Special cases. In this paragraph, we will look for conditions that characterize the
(x, p)-contact manifolds and the Jacobi (k, u)-contact manifolds as subclasses of the
class of contact metric manifolds with Tr/ = constant # 2.

First, we state the following lemma, the proof of which immediately follows from
relations (4.14).

Lemmva 4.3. Let M(n, ¢, ¢, g) be a three-dimensional contact metric manifold with
Trl = constant # 2 (& A = p/2 = constant > 0). Then, at any point P of the manifold,
there exists a neighborhood U of P so that at least one of the functions b, + p and
b, — p does not vanish anywhere in U. Moreover:

if by +p # 0, then cost # —1 everywhere in U; and
if by —p #0, then cost # 1 everywhere in U.

Now, we will examine, separately, the cases b, + p # 0 everywhere in U and
b, —p # 0 everywhere in U. In each case, we will find at each point of the manifold
a local orthonormal frame (¢, e, ¢e) of eigenvectors of h. Next, we will compute the
Lie brackets [£, e], [£, ¢e] and [e, ¢e] in order to compare these with the corresponding
ones of Lemma 3.2.

The case b, + p # 0 everywhere in U. From the second equation of (4.16), we have
p3 = (cx/(byx + p))p2. Substituting p3 in (4.17) and using (4.14), (4.7) and Lemma 4.3,
we calculate
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YCxP2 g 0 2 O

—+
b, +pox p26y by +p 0z

= bxpi p{ycp(sin ’)a% + (p + bpsint + pcos t)(% + cp(sin t)a%}

0 0 0 0
= —bfz-i—pp{(snlt)(ych + ba—y + Ca—z) + (1 + cos I)a—y}

Choosing p; = (b, + p)/p # 0, we have the nonzero eigenvectors
0 0 0 0
X=(int)p— + (1 +cost)— and ¢X =—(sint)— + (1 + cost)p—.
dy dy dy dy
Moreover, using (2.3), (4.3) and (4.8),

o 0 0 0
X2 = |6X]? = (sin? (_ _) 1 2(__)
1X] |pX| (sin“ 1)g ¢8y’¢8y + (1 +cost)’g 3 9y

a0 0
= (sin®t + 1 + cos’>t + 2 cos t)g(—, —)

dy dy
=c(l + cos?).

Hence, the vector fields (&, e, ¢e), where & = d/0x,

1 d . 0
€= Ve (1 + 8075 + Cinne )
1 N 9
=\ rrempl Vg 1+ eosdg)

define, at any point P of U, a smooth local orthonormal frame, such that
hé =0, he = de, hgpe = —A¢e and A = p/2 > 0. Putting E = sint/ vc(1 + cost) # 0,
F = (1 +cost)/ Ve(1+cost) # 0, we have & = 3/0x, e = F(0/0y) + E¢(0/dy) and
pe = —E(8/dy) + F¢(8/dy) with |_P;5 El = F? + E* =2/c # 0. Now, using the above
expressions of &, e, ¢e and relations (4.7) and (4.14), we will calculate the Lie brackets
[£, e, [€, ¢e] and [e, ge].
0 0 0 0 0 o 0 o 0
[& el = [6x’E¢8y " F@y] h E"%y " Fxﬁy " E[Bx’ 6y] " F[c’)x’ By]

0 0 0 ]

E¢8+F a+E[a +b—+
= LxQ— XA o YC o T C
ay ay ox"Y  ox dy 0z

= Exqﬁaﬂ + Fxﬁ + E(ycxi + bxi + cxﬁ)
Y

ay ox oy 0z
= E@% + Fx% + Ec—c"(yc% + b% + c&% - b(%) + bea%

https://doi.org/10.1017/51446788718000265 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788718000265

250

(e e

But

C
E.+E—

T. Koufogiorgos and C. Tsichlias

cb

(Fx -EX 9
C

ay
ch, — bcx)i
dy’

+ be)

(Fx+E
C

X
C

( sint
Ve(l + cost)/x

-2
s~ ¢

Ve(l + cos 1)

[17]

(*)

t(cost)vc(l +cost) — —(sm H)—

—c(sin t)tx)}

(cx(1 + cost)

V(1+ s1)

psm t

Ve(l + cost)

sint
Ve(l + cos

psm 1
Ve(l + cost)

{p sin® ¢ + 1,(cos 1)

|

+
c(1 + cos t)

{ t.(cost)vc(l + cost 2

—c(sin t)tx)}

1
Ve(l + cost)

1 sin ¢
2 c¢(1 +cost)

(pc(sin 1)(1 + cost)

c(1 + cost)

(oc(sin £)(1 + cos t) — c(sin t)tx)}

1 1 1 sin“¢
—_— r+1 H-= I+ = t
Ve(l + cost) {P sin’ x(cos 1) 2P sin’ 21 +cost }

1

Ve(l + cost)
1

Ve(l + cost)

1 1
{5’0 sin® ¢ + 1,(cos 1) + 5(1 —Cos t)tx}

lt}
2)(

1 1
P l—coszt+tx1+cost}
2 \fe(1 + cost) {p( )+ 8l )
1+ t 1
= L(p—pcost+tx)= 5F(p—pcost+tx).

2+/c(1 + cost)

1 1
{Ep sin? 7 + E(COS Dt +

Also,

cb, — bc

= :Fx+Epcost:(

1+ cost sintcost
F.+E )

Ve(l + cost)/x p Ve(l + cost)

c —t(sint)c — (1 + cos t)c, N
1 +cost c?

sin ¢ -
Vel +cosn
_ _Ep—pcost+tx
—

c
psintcost

Ve(l + cost)

— (1 +cost)p +2pcost}

N = N =
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Substituting the two last relations in (), we finally get
[£,e] = 1(p — pcost + t,)pe. (4.18)

Comparing (4.18) with [£,e] = (A + A+ 1)ge of (3.1), we have A+ 1+ 1 = %(p -
pcost+t,), where 1 =p/2, and so A =-1—-(p/2)cost + %tx. Substituting A in
[£,pe] = —(A — A+ 1) of (3.1) gives

[£,¢e] = Lo+ pcost —t,)e. (4.19)

Now, we will compute [e, ¢e], using the properties of the Lie bracket.

o 8 0
e, pe] = [E¢—+F F¢ay Ea—y]

[rod red- 2l et e

- EF|og 05|+ Eo o~ Fo Eos
- (Ez[qsaﬁ ai] + E¢(%E% - E(%Eqﬁ%)
+(Pl5 05+ Fareg - FogF )

0 0 0 0 0 _0
EF F—E— -E—F—
( [6}) 6y] " ay Oy ay (9y)

8 3 d 8 \0
_(E¢6—yF—F¢a—yE)¢a—y—( a—yE Ea F)a—

W?%Eﬁw-ﬂ—ﬂ)
(Fa F%—y F%— a—y [ aﬁ])

0 0 0
= (E¢—F - F¢—E +E—E+ F—F)¢—
dy 0

( F§E+E;F E¢ E- F¢— )2
y dy dy
+(F? + EZ)[—, gb—]
=(-r ¢ﬁ5+1—< 2+F2>)¢—

(—F2 0 E 1 %(E +F2))% + (E? +F2)[%,¢%]. (%)
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But using (4.5), we compute

0E 10 1+cost O sint 192
—F*p—— + = —(E*+ F}) = - — ———
¢6 F 26( ) c ¢(9y1+c0st 2d0yc
_ 14cost 1 ¢£t+£l
a ¢ l+cost"dy dyc
1 0 0 0 c
(Cﬁx+ 6y+cc')z =
=—E(yctx+bty+ctz)——;
Also,
0E 1 1+cost d sint 1 02
_pIE 1,0 ey — —p—=
oy F 2¢8( +F) ¢ 0yl+cost 2¢(9yc
1 +cost 1 0 0 0\1
ool en we2))
¢ 1+cost ox dy d7/c
1 1
= _Zty + z(yccx + bey + cc;)
and

[ﬁ o9 0 ‘9]
o ey T

c£+ Cy 0 +b 0 1(¢ﬁ— cﬁ—bi)}
ox Yo Ty T ay Yox "8y
0 Z(by_bc))a 2

£+E (9y 02 y¢6y

2 2
= 2§ + C_Z(be - bCy)a—y + C—2¢6—y

24 Fz)[(%,gb(%]

Il
)

Substituting the three last relations in () gives

1 1 1
[e, pe] = {—E(yctx + bty + ct;) - z—;}qﬁi + {—;ty + c—z(yccx +bc, + ccz)}%

dy
2 8 2.8
+2§ + E(be - bCy)a—y + 7(176—)}

d
=5l Ot + 1) + bczy}qsa

1 0

+ C—z{ bey +c(—t, +yc + ¢ + Zby)}g + 2¢&.
So

0

[e, pe] = 2& — { cy+c 2(yt, + t.) + bet }¢—

dy

1 d
+ C_z{_bcy +o(=ty+yex+ o + 2by)}$- (4.20)
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The case b, — p # 0 everywhere in U. From the first of (4.16), we have p, =
(1 + 5% /c),)/(by — p))p3. Substituting p, in (4.17) and using (4.14), (4.7) and
Lemma 4.3, we finally get

< B 9
X = (1 = cos t)((smt)ﬁy + (1 —cos t)gbay).

Choosing p3 = ¢(1 — cost) # 0, we have the nonzero eigenvectors of
0 0 0 0
X=(int)— + (1 —cost)¢p— and ¢X =—(1 —cost)— + (sint)p—.
Ay Ay Ay dy

Moreover, using (2.3), (4.3) and (4.8),

IX| = |¢pX| = yc(1 — cost).

Hence, the vector fields & = 9/0x,

1 N 9
= ROy -0 )
and
1 0 . 0
= T oo * (e

define on U an orthonormal frame of eigenvectors of &, such that k¢ = 0, he = Ae,
hge = —A¢e (1 = p/2 > 0). Working as in the case b, + p # 0, we finally get, for the
Lie brackets [¢, e], [£, gel, [e, ¢e], the formulas (4.18), (4.19) and (4.20), respectively.
So we have proved the following theorem.

THEOREM 4.4. Let M(n, &, ¢, g) be a three-dimensional c.m.m. with Tr [ = constant # 2.
Then, at any point P of M, there exists a neighborhood U of P so that at least one of
the functions b, + p and b, — p does not vanish anywhere on U.

(1) Ifby+p # 0 everywhere in U, then the triad(&, e, ¢e), where & = 0/0x,

1 0 . 0
e = m((l + cos t)a + (sin t)¢a_y)
1 N 9
= e gy (e dg)

defines a smooth orthonormal frame of eigenvectors of h in U, such that hé = 0,
he = de, hgpe = —Agpe (1 =p/2 > 0).
(i) If by —p # 0 everywhere in U, then the triad(&, e, pe), where & = 3/0x,

1 .0 0
e = m((SIHI)a—y + (1 — COS t)¢6_y)

1
Ve(l = cost)
defines a smooth orthonormal frame of eigenvectors of h in U, such that hé = 0,
he = de, hgpe = —Agpe (1 =p/2 > 0).

e = (—(1 ~ cos z)% + (sin r)¢%)
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Moreover, in any case ((i) or (ii)), the Lie brackets [£, e], [€, pe] and [e, pe] are given
by
[£,e] = %(p — pCOSTt+ ty)pe
[€, pe] = %(p +pcost—t)e

[e, pe] = 2¢€ — %{—cy + cz(ytx +1,)+ bcty}qb(%

+ ciz{—bcy +c(=t, +ycx + ¢, + Zby)}a—y.
When is a three-dimensional c.m.m. with Tr / = constant # 2 a Jacobi
(x, p)-contact manifold? Comparing relations [£, e] = %(p —pcost + t)pe of
Theorem 4.4 and [£,e] = (A + A+ 1)peof (3.1), wegetA+p/2+1= %(p —pcost +1,)
orA = %(tx —pcost)—1.Sou=-2A =pcost —t, + 2. Hence, using the definition of
a Jacobi («, u)-contact manifold (see relation (2.5)), we state the following theorem.

THEOREM 4.5. Let M(1,&, ¢, g) be a three-dimensional c.m.m. with Tr [ = constant # 2.
Then M, &, ¢, g) is a Jacobi (k, )-contact manifold if and only if the function
t = 1(x,y, z) satisfies the equation

ty —pcost+v=0, 4.21)
where v = constant. Therefore, in this case, k = Trl/2 =1 —p*/4and u = v + 2.
Comment. Obviously, the function 7 = #(x, y, 7) = constant is a solution of (4.21).

When is a three-dimensional c.m.m. with Tr / = constant # 2 a (k, u)-contact
manifold? Let M(n,¢, ¢, g) be a three-dimensional c.m.m. with Tr/ = constant # 2.
According to Proposition 3.7, M is a (k, pt)-contact manifold if and only if the vector
field £ is an eigenvector of the Ricci operator Q, or, equivalently, from (3.3), B=C =0,
or from (3.1), [e, gpe] = 2&. Therefore, using [e, pe] = 2¢ and the last relation of
Theorem 4.4, we get that M(1, ¢, ¢, g) is a (k, p)-contact manifold if and only if

AWt + 1) +bct,—c; =0 and  c(ty — ¢, — 2by — yc,) + be, = 0. (4.22)
So, we have proved the following theorem.

THEOREM 4.6. Let M(1,&, ¢, g) be a three-dimensional c.m.m. with Tr [ = constant # 2.
Then M(n, ¢, ¢, ) is a (k, p)-contact manifold (equivalently, it is H-contact) if and only
if the functions b = b(x, y, z), ¢ = c(x,y,z) and t = t(x,y, z) satisfy conditions (4.22).

It is obvious that, on a (k, u)-contact manifold, the function ¢ = #(x, y, z) satisfies
condition (4.21).
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