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Abstract

The role played by the Mobius function of the lattice of all partitions of a set in the theory of
^-statistics and their generalisations is pointed out and the main results concerning these statistics are
derived. The definitions and formulae for the expansion of products of generalised /c-statistics are
presented from this viewpoint and applied to arrays of random variables whose moments satisfy
suitable symmetry constraints. Applications of the theory are given including the calculation of (joint)
cumulants of fc-statistics, the minimum variance estimation of (generalised) moments and the
asymptotic behaviour of generalised fe-statistics viewed as (reversed) martingales.

1980 Mathematics subject classification (Amer. Math. Soc): 62 A 05.

1. Introduction

In an earlier paper (Speed (1983)) we showed how the definition and basic
properties of wth order multivariate cumulants could be obtained elegantly and
efficiently by recognising the role that the Mobius function ju of the lattice ^(m)
of partitions of m = {l,. . . ,m} plays in the theory. Our aim in this paper is to
discuss Fisher's ^-statistics and Tukey's polykays from this same viewpoint, once
more deriving the main results of the theory by exploiting the role of /i and ^(m).

We begin with a brief historical survey motivating our notion of generalised
/c-statistics, this being essentially equivalent to a polykay extension of Kaplan's
(1952) tensor approach to ^-statistics, and coinciding with the approach of
Doubilet (1972) to the classical symmetric functions. Most of the useful results
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[21 Cumulants and partition lattices II 35

concerning these generalised ^-statistics stem from the fact that the (tensor)
product of two such expands as a linear combination of higher-order ones, and in
Section 3 we review the main results concerning the coefficients in these expan-
sions.

After this discussion of generalised ^-statistics we turn to arrays of random
variables and, under certain symmetry constraints, define generalised moments
and generalised cumulants, these reducing to the moments and cumulants indexed
by ^(m) as in our earlier paper when the arrays consist of independent and
identically distributed (iid) random vectors. It is then easy to state and prove the
main facts concerning the (minimum variance) unbiased estimation of generalised
cumulants in terms of generalised ^-statistics. In Section 5 we present a very
compact proof of the main theorem of Fisher (1929) concerning the joint
cumulants of his ^-statistics, whilst Section 6 shows how generalised ^-statistics
are reversed martingales and hence converge almost surely to their expectations.

Most of the results in this paper can be found in some form in the literature,
although we feel that the approach we take unifies, generalises and simplifies their
presentation, but there is another reason for our collecting and arranging this
material in the way we do. It is the fact that this approach generalises im-
mediately to the multi-indexed arrays of random variables found in the analysis
of variance. In that context generalised cumulants of order two correspond to
components of variance, generalised ^-statistics of order two to the standard
linear combinations of mean squares used to estimate components of variance,
and so on. A rich and fruitful theory arises simply by generalising the index sets
and the underlying symmetry constraints, and it contains most of the contents of
this paper. However it would appear to be quite unmotivated if we went directly
to this theory, bypassing the single index case where all the ideas originally
developed.

2. Generalising ^-statistics

Problems associated with population moments of sample moments occupied
many journal pages in the period 1900-1940 but in retrospect, there seems to be
little disagreement that the major work on this topic was Fisher (1929). In that
paper Fisher gave the definition of k-statistics as the symmetric sample functions
which give unbiased estimators of the population cumulants, and he also obtained
the joint cumulants of the ^-statistics of order at most 10 by an ingenious
combinatorial method. In this context sample refers to a sequence Xx, X2,... of
mutually independent random variables with a common distribution—the popula-
tion—having cumulants K1,K2,..., and so the ^-statistics k^X^... ,Xn),

https://doi.org/10.1017/S1446788700026483 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026483


36 T. P. Speed [3|

k2(Xl,...,Xn),... are characterised by symmetry and the property that for
1 < m < n

(2-1) Elld{kJXl,...,Xn)} = Km,

where Eiid denotes expectation under the stated assumptions on the {Xt).
Similar problems were studied in the context of simple random samphng from

finite populations by a number of authors including Neyman (1923, 1925), who
first derived an expression for the variance of the variance under these assump-
tions. The big breakthrough in this field came when Tukey (1950) introduced
polykays, also called l-statistics by Kendall and Stuart (1969). The polykays of a
given order m were labelled by partitions X = (\1\2,...), X1 ̂  \ 2 > . . . , of the
number m and reduced to the sample Ac-statistics when \ = (m). These statistics
were "inherited on the average" under the simple random sampling hypothesis,
i.e. when E7 X̂ , = m < n

(2.2) Esrs{kx(X1,...,Xn)}=kx,

where kx is the corresponding population statistic and Esrs denotes an average
over all (^) samples from the population. It turns out that we also have

(2-3) E l , , { * x ( J f 1 , . . . j r J } = KXiKX2,. . . ,

and these properties, together with symmetry, can also serve as a definition of
polykays.

Both /c-statistics and polykays (which we will call generalised k-statistics) may
be viewed simply as symmetric functions of a single set (JC,) of indeterminates,
and each has an obvious generalisation to a bivariate, trivariate,... form involv-
ing indeterminates (JC,), (yt), (z,), For example,

(2-4) -~rL(x,-x.)(yi-y)
" l 7 = 1

is readily recognised as the "cross /c-statistic" unbiassedly estimating the "cross-
cumulant" K11 (covariance) of (Xt, Yt) under i.i.d. sampling.

However, whilst we have no trouble recognising (say) the trivariate /c-statistic of
order m = 3 as

where x. = n~lT."xt, and similarly for y. and z., a little thought shows that the
trivariate analogue of the polykay /c(21) takes three forms corresponding to the
partitions 1|23, 13|2 and 12|3 of (1,2,3}, namely
(2-6)

1 n n
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141 Cumulants and partition lattices II 37

and the two similar expressions obtained by pairing x with z and x with y as we
have y with z in the first summation. Just how we get these expressions will be
explained shortly.

The fact that symmetric functions naturally labelled by partitions of a number
m might usefully be viewed as being labelled by partitions of the set m =
{l,...,m} has been noted and exploited very effectively by Doubilet (1972). In
our context it is not only convenient to do so when studying generalised ^-statis-
tics as functions of a single set of indeterminates, it is necessary when we wish to
discuss (multivariate) generalised /c-statistics as functions of a number of sets of
indeterminates, the most general case being where there are as many distinct sets
of indeterminates as the degree of the statistic. With this in mind we would write
(2.4), (2.5) and (2.6) as k{{, k^ and k^2\ respectively, whilst the two expressions
similar to (2.6) would be written k2^\ and k^2. The other generalised ^-statistic
of order three would, of course, be kfffi3 and the superscript can be suppressed (as
is the number n 3s 3) when no confusion is likely to result. In what follows m is
the number of distinct (sets of) indeterminates, later coinciding with the number
of distinct sequences of random variables whilst n is the number of inde-
terminates in each array, later coinciding with the sample size.

The next step in our approach to generalised ^-statistics is the removal of the
indeterminates, leaving simply their coefficients. This is in essence the tensor
approach introduced by Kaplan (1952) although we prefer to use the modern
multi-linear form of tensors rather than Kaplan's classical one involving multiple
subscripts. As a preliminary we must record some simple facts concerning the
action of the symmetric group Sn on the set nm of all mappings h: m -> n. The
kernel of any such map is the partition ker/i whose blocks are the non-empty
inverse images of elements of n under h, i.e. l1 and l2 belong to the same block of
ker h if h{lY) = h(l2), lx, l2 G m. The group Sn acts on nm as follows: hg(l) = h(lg),
I G n, g G Sn, h e nm and for any partition it e ^(m), the set of all partitions of
m, we write &„ = {h e nm: ker/i = w}. These subsets constitute the orbits of Sn

acting on nm, i.e.

LEMMA 2.1.

(i) { <PV: 77 G 0> (m)} forms a partition of nm.

(ii) 0W is Sn-invariant, m G &>(m).

(hi) Sn acts transitively onO^,m G ^ ( m ) .

Now let us take the set {81, 82,... ,8"} of n-tuples which form the standard
basis for the vector space of all n X 1 column vectors, i.e. (S')j = 8j = 1 if / = j
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38 T. P. Speed [s]

and 0 otherwise, 1 «s i,j< n. Then for a map h: m -> n we can define the tensors
(mn X 1 vectors)

h = 8hm® ••• ® Sh(m).

In terms of these we can define three families of tensors indexed by partitions n
of the set m, m < n, namely the association tensors, which give the augmented
monomial symmetric functions

(2-7) A,= £ h,
h: ker h = ir

and the relationship tensors, which give the power sum symmetric functions

(2-8) R,= E h.
h: ker h > •n

An immediate consequence of these definitions is the following pair of identities:

where f and ju are the zeta and Mobius function, respectively, of the lattice ^"(m),
and the famih'ar identities relating the augmented monomial and power sum
symmetric functions follow at once. We can now define the generalised k-statistic
tensors

(2-9) F,= E ti{o,v)j±-Aa,
n)

where (n)a = n(n — 1) • • • ( « - b(o) + 1), with b(a) the number of blocks of
a G ^"(m). Identities relating Fw and R^ are discussed in Proposition (2.1) below.

Let us see how (2.7) generalises (apart from the factor (n)'1) Tukey's symmet-
ric means and (2.9) his polykays, whilst (2.8) corresponds to the so-called
unrestricted symmetric sums. To do so we write x = (jtj , . . . ,*,,) ' as a column
vector of indeterminates, and similarly for y, z,..., and use the inner product
[u\v] = T,auljja where u and v are tensor products of one or more of x, y, z,

EXAMPLES, (a) m = 2.

An = I 8A(1) ® S*<2)

h: ker/i = 12

and so

[ Al2\x ®y]= E [ «*(1) ® Sh(2)\* ® y] = E x m ) y h ( 2 ) = E x,^,.
h: ker A = 12 A: ker A = 12 i = 1

Similarly

[ ] E **(i)^*(2)= E E x,yj
h: ker/i = l|2 i = l j = \
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[61 Cumulants and partition lattices II 39

whilst [R12\x ® y] = [Au\x <8> y] and

= E x

h: ker/i3sl|2

1|2|JC® y\ + [Al2\x9y\.

Finally,

[ F l 2 \ x 9 y ] = j - ^ - [ A u \ x Q y ] - j - ^ - [ A1{2\x 9 y]

-\ n -I n n

which is well known to simplify to the second (mixed) /^-statistic (2.4). In this
expression we used the values

M( 1|2,12) = - 1 , p( 1|2, 1|2) = /i(12,12) = + 1

of the Mobius function in
(b) w = 3. We refer to Speed (1983) for a diagram of ^ (3 ) from which the

values of the Mobius function n of ^"(3) are easily read. Beginning with the finest
partition IT = 1|2|3 we see that

A|2|3 = L «*(1) ® «"(2) ® S"<3>
A: kerA-l|2|3

whence

[ £ [ S**1) ® 5*<2' 9 8H^\x 9 y 9 z]
h: ker/i = l|2|3

h: kerA = l|2|3

n n n

= E E E
1 = 1 7 = 1 A = l
/ , 7 , k, distinct

the familiar sum Tukey (1950) writes as E* xiyjzk. Similarly we find that

= E *
A:kerA = l|23
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continuing to use Tukey's notation E* . Since ju(l|2|3,1|23) = - 1 we then have

[ ^ii23|* ® y ® ]

which may be rearranged into (2.6).
Finally, [A123\x ® y ® z] = Ixj ,z , . and, since ju(l|23, 123) = ju(13|2, 123) =

ju(3|12,123) = - 1 andju(l|2|3,123) = 2,

1 l v l r* -, • •,
® v <8> z\ = — Lx.-y^i ; r l , x,y,z, - 2 similar terms

J n '•" ' n(n - 1) ' J J

This expression simplifies to (2.5), as is well known, but no general results
currently exist concerning such simplifications, cf. the remark following proposi-
tion (2.1) below.

One of the important aspects of any discussion of symmetric functions such as
ours is the ease with which we can pass from one form to the other. Indeed this is
the feature of Doubilet's (1972) approach via partition lattices which is most
compelling: the entries in the transition matrices are easily computed functions of
n and the Mobius function of ^"(m). Write M(A, F) for the matrix over ^(m)
defined by An = T.pM(A, F)n pFp, the sum being over ^(m), with similar
definitions for M(A, R), etc. In (iii) below we use the notation «":= n*'"',
a e £P(m), and note the interrelations between these ordinary and the descending
powers:

the sums being over r e £P(m). Furthermore, the notation w V p denotes the least
upper bound or sup of the partitions IT and p taken in ̂ "(m), i.e. the finest
partition of m which is coarser than both m and p. The result embodied in the
second half of (iii) can be found in Carney (1970, Theorem 1).

PROPOSITION 2.1.

(i) M(A,R) = (^,p)), M(R,A)={$(v,p)).

(ii) M(F,A)=((n);^(p,ir)), M(A, F) =

(iii)
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[8] Cumulants and partition lattices II 41

PROOF, (i) and (ii) are immediate consequences of the definitions (2.7), (2.8)
and (2.9) and Mobius inversion over ^"(m). The first matrix in (hi) is just the
unsimplified expression resulting from multiplying the earlier expressions
M(F, A)M(A, R) whilst the second matrix is derived as follows:

V p, a)(«)

No simplification of M(F, R) seems to be known, although Kaplan (1952,
equation 2) gives formulae for Fm in terms of Ra, a e £P(m), for m = 2,3 and 4.
It is clear from these formulae that the coefficient M(F, R)ma has the form
fi(o,m)Qa(n) where Qa(n) is the ratio of two monic polynomials in n whose
degrees differ by b(a), but we have been unable to prove this more generally.
Finding a manageable closed form for it seems to be a challenging unsolved
problem. Kendall and Sutart (1969, equation (12.8), pp. 280-281) give expansions
in a less general form up to m = 8, and the above-mentioned pattern persists
although in their case the numerical coefficients include a further combinatorial
multiplier.

3. Products of generalised A-statistics

Most of the useful results concerning generalised ^-statistics stem from the fact
that the tensor product of two or more of them can be expanded as linear
combinations of higher-order ones. Furthermore, there is a good deal of knowl-
edge available concerning the coefficients in such expansions, much due to Dwyer
and Tracy (1968) who systematised and extended earlier results of Fisher, Tukey,
Wishart and others. We will restate the more important of their conclusions
within our framework, abbreviating Fm by (it). Kinney (1976) gives some results
which take a different form from those below and in the works just mentioned,
but we will have no occasion to refer to them.

In the result which follows we suppose that m1,...,mr are disjoint sets
containing ml,...,mr elements, respectively, and that m = mx U • • • U mr. In
examples it is convenient to let mx = [1,2,... ,ml), m2 = [m1 + l,...,m1 +
m2}, etc.

PROPOSITION 3.1. For a1 e ^ ( m j , . . . ,ar <E ^(mr), we have

( a j ® ••• ®(ar) = i ;c (a ;a 1 , . . . , a r ) (a )
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42 T. P. Speed [9]

where the sum is over all a e ^ (m) and

(*> i \ / v V M r
(3.1) c(a;a1,...,ar)= l^(n)p[

PROOF. We use Proposition 2.1 (hi) and obtain

Then we observe that RTi ® • • • ® /?T = i?T|...|T, and write this last expression in
terms of (a) , a £ ^"(m) without simplifying it:

Now f(Tx| • • • \rr, p) = f(T!, p n m,) • • • f(Tr, p n mr) and if we put this
into the preceding equation and substitute the result in our expression for
(oj) ® • • •®(0 r ) , we find that T1?. . . ,rr can be summed out forcing
irl = p n in,,. ..,Trr = p n mr.

Since | ^ ( m ) | grows very rapidly with m, it would be hoped that most of the
coefficients c(o; ol7... ,ar) are zero, or at least there is a simplification possible in
the formulae for computing c. Our next three propositions are the major results
along these lines; a few others can be found in Tracy (1968) to which we also refer
for the proofs of Propositions 3.2 and 3.3.

PROPOSITION 3.2. Suppose that a e ^ (m) is a partition having a block a1 which
is a proper subset of a block o\ ofav Then c(o; aY,... ,ar) = 0.

PROPOSITION 3.3. Suppose that a e ^ (m) is a partition having a block a1 which
coincides with a block a\ of av Then c(a; ox , . . . ,ar) = c(a*; of,... ,ar) where a*
and of denote the partitions o and ol without their first block.

With these propositions it is easy to calculate the coefficients for important
special cases. For example, if ox = m1; o2 = m2, then c(m1|m2; m^ni j ) = 1. All
other c(o; m,, m2) vanish unless each block of o intersects both m, and m2, and
in this case

(3.2) c{o; m i , m 2 ) =

https://doi.org/10.1017/S1446788700026483 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026483


[ io] Cumulants and partition lattices II 43

where Sb k is the Stirling number of the second kind. To see (3.2) we simply note
that if each of the blocks of a meets both ml and m2, then this property holds for
all p > a, and it is then a consequence of known facts concerning ^(b); see for
example Aigner (1979, p. 70). Equation (3.2) is due to Fisher (1929) where it can
be found expressed in terms of differences of zero.

The results in Table 1 will be useful later. They are readily checked using the
propositions just proved. Note that our usage of (a) is almost but not quite
identical to that of Tukey (1950) and later writers.

(1)«

(1)«

(1)®

(12)'

(12).

Expansions of some

i(2)

' (23) =

' (2|3) =

8i (34) =

8 (3|4) =

®(3|4) =

= (1|2)

= (1|23)

= (1|2|3)

= (12|34)

= (12|3|4)

1

n(n -

- (1|2|3|4)

products of generalised k-statistics

+ 1(12)

+ 1(123)

n
1 !
n n — 1

+ — [(123|4) + (124|3)]n

. l(lJ|z4) + (14|23)J

n{n - 1)

|2|4) + (14|2|3) + (23|1|4) + (24|1|3

TABLE 1

The final proposition in this section is not only a useful rule for computing the
c(a; Oj,... ,ar), but it plays an important role in our proof of Fisher's theorem
given in the next section. It first appeared in James ((1958), Lemma 6.1) in that
context, but stated only for the case al = mx,... ,ar = mr (i.e. for ^-statistics and
not polykays), whilst the present more general formulation is Rule 6 of Tracy
(1968). Our proof is essentially that of Tracy (1968).

DEFINITION 3.1. A partition a = a1! • • • \ab e ^(m) is said to be blocked with
respect to the partition a = al\ • • • \ak e 9>(x) over Bh = U{m,: i' e. ah), h =
1,... ,k, if there exists a partition /? = fl1] • • • \fik e ^(b(a)) having the same
number of blocks as a such that for all h = l,...,k,

(3.3) aJ c Bh whenever^ e $h.
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44 T. P. Speed [11]

EXAMPLE. Suppose that n^ = {1,2}, m2 = {3,4}, m3 = {5,6} andm 4 = {7,8}.
Then the partition a = 13|24|57|68 is blocked with respect to the partition
a = 12|34 over B1 = {1,2} U {3,4} and B2 = {5,6} U {7,8} since B = 12|34
satisfies (3.3).

PROPOSITION 3.4. If a is blocked over {Bh}, then

c(o; a x , . . . , a r ) = Y\c{o O Bh; ax n B\... ,ar n Bh).

PROOF. We will only consider partitions a = al\a2 of r into two blocks; the
more general case follows by an obvious induction. The proof begins with the
observation that a = a n Bl\a n B2 and hence p > a if and only if p n 5 1 >
a n 5 1 and p n B 2 ^ a n 2?2. Thus we may break up the sum in Proposition 3.1
over p > a defining c(a; ax,...,ar) into three sums: Over p1 > a n 51 , over
p2 ^ a n fi2, and over p with p n B 1 = p , , p n 5 = p2. The expression inside the
summation in (3.1), which we call /(p; a1 ; . . . ,ar), almost splits over B1, £2 . With
the above observations we readily find that

(3-4) £/(p;°i , - . - .°r)= I I

y.f(p2;ox nB2,...,ornB2)S

where S = S(plt p2) is given by

<3-5) k
the sum being over all p with p C\ B1 — px, p C\ B2 = p2.

If fe(Pi) = b1 and ft(p2) = 62 then there are (b
r
l)(b

r
2)r\ partitions p with bx + b2

— r blocks satisfying p C\ Bl = pv p C\ B2 = p2, and upon substituting these into
(3.5) we find that Sip^ p2) = 1 follows from the Vandermonde identity in the
form

V / \ (bl)r(b2)r f \ / \

r

Putting this back into (3.4) we find that the proposition is proved.

4. Generalised moments and cumulants

In this section we will apply the combinatorial reesults of Section 3 to arrays
X = (Xt: / e n ) of random vectors Xt whose joint moments satisfy certain
symmetry constraints. As we will be extending some of the results derived below
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[12] Cumulants and partition lattices II 45

to multi-indexed random vectors it is convenient to begin with a definition
somewhat more general than is needed for our present purposes.

Let G be a group acting on an index set I and suppose that I = (X,: i e l ) is
an array of random vectors Xt = (X^ l ) , . . . ,X^m) ) ' indexed by I.

DEFINITION 4.1. The array X is said to have G-invariant moments of order
q > m if for all t < q, ix,...,/,

 G I, l\, • ••,/, ^ m, and g e G we have

(4.1) E{Xii(ll) • • • *,.(/,)} = E{xi.(l1) • • • Xif(l,)}.

Here i8 is the image of / e I under g e 6 .

EXAMPLE 4.1. If m = 2, I = n and G = Sn, the full symmetric group on n
symbols, and if for convenience we put Xt(l) = Xt, Xt{2) = Yt, i e N, then the
array ((X^ Y,)': i e n) has 5n-invariant moments of order at most 2 if and only if
for all i, y e n and g e Sn, E{X,} = E{Xjg}, E{Yt} = E{J%}, ^{XtXj) =
E { ^ ^ } , E{^yy} = E{YlSYJg} andE{XlYJ) = E{XltYJt).

Our concern in the present section is solely with I = n and G = Sn, and such
arrays of random vectors whose joint moments satisfy Definition 4.1 will be
described as having symmetric moments. There are two important ways in which
they may arise: (i) when the component vectors Xt are mutually independent and
identically distributed with some joint distribution F on the Borel subsets of U m;
and (ii) when there exists an N > n, an array X = (Xf: / e N) of vectors
Xj = (Xr(l),.. .,Xj(m)y of real numbers called the population, such that the n
labels of X = (Xt: i e N) are chosen with w-symmetric inclusion probabilities, i.e.
for every subset iv...,im of n consisting of m distinct labels and every
{Iv...,Im} c N we have

if K / i . - - - > /
m } l = '";

\ 0 otherwise.

We describe this second situation as simple random sampling without replace-
ment (abbreviated srswor), although it is in fact somewhat more general.

Now let us suppose that X — (X^. i e n) is a random array of m-vectors whose
moments of order m are symmetric. Under this assumption the following defini-
tion makes sense.

DEFINITION 4.2. The generalised mth moment of X corresponding to a e ^(m)
is defined by ya = E{ A^(1)(l) • • • Xh(m^(m)} where h: m —» n is any map with
ker h = a. The generalised mth cumulant of X corresponding to a e ^"(m) is
defined by/o = Ep/i(p, a)yp.
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COROLLARY. If the components of X are iid, then ya = \i'a and fa = Ka, where n'a
and Ka are defined as in Speed (1983).

PROOF. The result for ya is easy for if a = al\ • • • \ab, then the sets {{(Xh(l)(l):
/ S o " ) } : a = l , . . . , i } of random variables are mutually independent. Then the
result for/, follows from Speed (1983), equation (3.2).

This corollary justifies our use of the terms generalised moments and cumu-
lants. For the remainder of this section it is convenient to view our array
X = (Xf. i e n) of m-tuples as an array (A^l),...,X(m)) of m n-tuples, and we
let X = X(l) 0 • • • 0 X(m).

PROPOSITION 4.1. If X is an array with symmetric moments of order m then
E{ X) = Lo yaAa = LpfpR,, where the sums are over&>(m).

PROOF. This is an immediate consequence of the definition of the generalised
moments {ya}, the tensors {Aa}, and of Lemma 2.1. Indeed if we view functions
on nm as mn X 1 vectors indexed lexicographically, then it is not hard to see that
Aa is the characteristic or indicator function of the orbit 0a, a e ^(m). The
corresponding relations for generalised cumulants follow from their definitions
and those of the tensors {Rp}.

Unbiased estimation of generalised cumulants
We have already introduced the abbreviation (a) for Fo; the corresponding one

for Aa is (a ) = (n)~1Aa; see Tukey (1950). Let us also use the abbreviation
aa = [Aa\X] — (n)a[(o)\X] and ka = [(a)\X] for the corresponding symmetric
functions of the elements of our random array X.

PROPOSITION 4.2. / / the moments of order m of X are symmetric, then for all
a e 0>(m) we have

E{(n);laa}=ya and E{ko} = /„.

PROOF. For any h: m -» n with ker h = owe have

[h\x] = [ 8"V 0 • • • 0 a*<")|A-(l) 0 • • • 0 X(m)] = Xh(1)(l) • • • Xh(m)(m)

whence E[A|A"] = ya. This extends by linearity to give the first assertion of the
proposition and the second follows from the definitions.

Thus we have proved that the generalised Jfc-statistics give unbiased estimates of
generalised cumulants. Now it is well known that, in a sense to be made precise,

https://doi.org/10.1017/S1446788700026483 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026483


[14] Cumulants and partition lattices II 47

"symmetric" functions have minimum variance amongst unbiased estimators of
their expectation. We are unable to provide a reference to this result in the form
we need it, although other forms are very familiar, see e.g. Pitman (1939), and so
we include it as a lemma.

LEMMA 4.1. / / a group G acting on a finite set I has orbits I1,12,... say, and
Y = (Yt)ieJ is a linearly independent array of real random variables indexed by I
with G-invariant moments of order 2, then the minimum variance unbiased estimator

cX) isiLffL^Y,, where cP= \I>\-%ei>Ci,P = 1,2,....

PROOF. It follows from the G-in variance of E { Y} that E, e , c, Yt and Ep c/'E, e ,P Yt

have the same expectation, and by our linear independence assumption the latter
is the unique linear combination of the (Yt) with this property whose coefficients
are constant over the orbits of G. The result will be proved once we show that
{EieiciYi} > Var{E/,c/T,e/, Yt}, and this will follow from the fact that
T.pT.ieip(Ci — cP)Yt is uncorrelated with every contrast Y,p dpT.ieJp Yt whose coeffi-
cients are constant over the orbits of G. To see this we compute

E (C, - c.)Y,, Zd" I Y,) = £ E E E (c, - cP)d"ya(iJ)
p i^Ip q jell I p q i(=I' je.Ii

where ?„(,,,) is the covariance between / e Ip andy e Iq. Now the subsets /* are
orbits of G on / and so for every ; G Ip the sum Lye/, Ya(,,y) has the same value.
But then we can sum over / e Ip and obtain zero.

The application of this result to our situation gives the following proposition. It
is related to but not derivable from results in Halmos (1946) for iid random
variables.

PROPOSITION 4.3. If X is an array whose moments of order 1m are symmetric,
then (n)~xaa and ka have minimum variance amongst all polynomials of degree m in

i G n, / e m} which are unbiased estimators ofya andfa, respectively.

EXAMPLE 4.1 (continued). If m = 2 and a = 12, then it follows that kl2 =
(n - l)~1L"_1Ef_1(^, - X.\Yt - Y.) is the best quadratic unbiased estimator of
/12 = EX/Yf — EXjYj (i ¥= j) whenever ((Xt, Y,): i e n) has invariant moments of
order 4. When the (Xit Yt) are iid this proves that the usual unbiased estimates of
covariatvces (and variances^ ate best amongst <\uadratic estimates.

Cumulants or ^-statistics in sampling
The familiar difficulty of whether to divide the sum of the squared deviations

about the mean of a quantity associated with each member of a finite population
of size N by N or N - 1 arises in this context in the following form: the
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Ac-statistics (of order greater than unity) and, more generally, the generalised
Ac-statistics computed for the whole of a finite population do not coincide with the
corresponding cumulants or generalised cumulants of the random variables
naturally defined by srswor. For example, if X = (Xx,...,Xn)' is an n-tuple of
values sampled in the manner described from X = (Xl,...,XN)', and E srs denotes
the average over all (^) samples, taken with equal probability then for any / e n

K = E { x } = - T x = 1 = k
i=i

i N i N

„. — Var f y ] L V f v _ v \2 ^ V f y _ y \2 — 1-
K2 — \aTsrs{ A-i) — jj L \AI A-) * ft _ I Z^ \AI •A-> — K2'

where ~kx and ~k2 are the first and second Ac-statistics computed for the whole
population. Classical (generalised) Ac-statistics provide unbiased estimates of
(products of) classical (generalised) cumulants under iid sampling, but when we
turn to srswor from finite populations it is the generalised cumulants of the array,
which coincide with the generalised Ac-statistics evaluated for the whole popula-
tion array, which seem to be the appropriate population summary statistics, not
the (generalised) cumulants of the individual random variables.

5. Fisher's theorem

This theorem gives an expression for the joint cumulant under iid sampling of a
set of r ^-statistics in terms products of cumulants of the common underlying
distribution. Our proof is a streamlined form of that of James (1958) except that,
with no extra effort, we can formulate it for generalised ^-statistics (i.e. polykays).
Because the main source for this result is Kendall and Stuart (1969) where the
statement and proof are spread over many pages in two chapters of the book, we
would like to emphasize the simplicity and accessability of the result given
Mobius inversion on ^(m) . We need only (i) the definition of joint cumulant; (ii)
the definition, equation (2.9), of generalised ^-statistic; (iii) Proposition 3.1 on
products of generalised Ac-statistics, and (iv) Proposition 3.4 giving a product rule
for the coefficients in the expansions of products of generalised ^-statistics. (Of
course Propositions 3.2 and 3.3 are invaluable aids when one comes to apply the
theorem.) The notation and general framework is that of Section 3 above, except
that we write k(o) instead of ka. The expression # ( • , . . . , • ) , which is used in the
statement of the theorem and defined in the proof, is explained in greater detail in
Speed (1983).
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THEOREM 5.1 (Fisher (1929)). / / {X{. i G n} are iid with generalised cumulants
(K(CT)} then

V{k(o1),...,k{°r)}=L*c(o;o1,...,or)K(<>)
a

where E* denotes the sum over all partitions a e ^ (m) which are not blocked with
respect to any partition ofr.

PROOF (cf. James (1958), Theorem 6.1). By definition

the sum being over all a G 0>(r). If we write Ul, = ® / e m X(l), then

= Ic (a(a) ;{a , : /G«"})f (a (a) ) | <g> U,
a(a) L <e«°

this sum being over all a{a) G ^"(Ufm,: / G a"}). Thus

Tlk(ol)) = ni.c(a(a))K(o(a))

{"(a)} a a

by Proposition 3.4, where La denotes the sum over all a e ^"(m) which are
blocked with respect to « G ^"(r). The final step in the proof is identical to that of
Proposition 4.3 of Speed (1983): we break up the sum L" into a sum over /? < a
of those terms which are blocked with respect to /? but no finer partition, and
then find by Mobius inversion that

(a; a 1 , . . . , a r ) K ( a ) = £ * c(a; o1,...,or)ic(o).

REMARK. When at = m,, / = \,...,r, the coefficients c(a; ml,...,mr) depend
only on the pattern of the intersections of the blocks of a with the m,, i.e. on the
b X r pattern matrix M = (wo l) where

11 i f a a n m, # 0 ;
mai = < '

10 otherwise.
Thus it is possible to compute the coefficients from the pattern; see Fisher (1929),
Fisher and Wishart (1931), and Kendall (1940 a, b, c, 1942). It is also not hard to
see that this is not possible in our more general formulation.
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Even when the components (Xt: i e n) of X are not iid, it is still possible to
derive expressions for the cumulants of generalised ^-statistics. Indeed this
appears to be Tukey's (1950) motivation for introducing the polykay generalisa-
tion. For example, the formulae,

(•) (12) ®(34) = -(1234) +(12|34) + -^-r{(13|24) +(14|23)}
n n — 1

given in Section 3 above quickly leads us to a result apparently first derived by
Neyman (1923, 1925). We derive it in stages, starting off with a finite population
of size N and four quantities (W,, X,, Y,, Z,) associated with the unit labelled
/ G N. From (*) we can read off

Similarly

(I 1 \ T IX 1 \ f 7 T 1
( I K I I I I K i K I

" . AT ^1234 "•" „ _ 1 i r _ i I ^13124 T ^14123 / •
\ n i»/ \ n i JV i /

and so

covsrs(k12, k

Putting w = X, Y = Z gives us an expression for the covariance of two variances;
putting W = Y and X — Z gives us an expression for the variance of a covari-
ance, . . . , and finally, putting W = X = Y = Z gives us the variance of the
sample variance (divisor n — 1) in terms of the generalised ^-statistics of the finite
population. A comparison of this formula with Neyman's will confirm that
Tukey's invention of polykays certainly did simplify sampling!

Letting N -» oo we obtain the "infinite population" result

Thus can be compared with the covariance of two covariance under iid sampling,
obtainable from Fisher's theorem as

COViid\'i12'> ^34) = ~K1234 "*" n — \ 'K13|24 +

6. Generalised Ac-statistics as reversed martingales

We will now suppose that our array {Xt: i e n) is a subarray of a larger array
(A1,: i G N), N < 00, and that X = (Xt: i <E N) has a symmetric joint distribution,
with finite moments of order m, where symmetry here refers either to the full
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symmetric group SN over N if N < oo, or the restricted infinite symmetric group
Sx of all finitary permutations of oo when TV = oo. In the latter case we are
dealing with a symmetry which is normally termed (de Finetti) exchangeability.

It is well known that under such assumptions the sample average kx = kn{\) =
n^EJ'A', is a reversed martingale with respect to the sequence !Fn = a(kp(l):
p ^ n) of a-fields, and it is also known that kn{\2) = (n - iy1L"(Xi - X.)1 is a
reversed martingale with respect to a similar sequence of a-fields; see Chow and
Teicher (1978). We will see that these facts are special cases of a more general one
of the same kind, a conclusion which could also be obtained by viewing our
functions as (/-statistics; see Eagleson and Weber (1978).

For a given a e ^(m) let us write an(o) and kn(o) for the (augmented)
monomial symmetric function and generalised ^-statistic, respectively,
corresponding to a and based on X = {Xf. i e n}, and let J^(a) = a(ap(o):
n </> < N), andS?n(a) = V{J^(p): p < a}, 1 < n < N.

L E M M A 6.2 . {(n)~lan(p), ^ n ( a ) : l^n<N}isa reversed martingale if p < a .

PROOF. For hx,h2'- m -» n with kerh1 = ker/i2 = p, a standard argument
using the fact that h1 = h\ for some g e SN, that &n(o) consists of elements
invariant under every g e SN, and the invariance of the joint distribution of X
implies

E{ hx{X)\<$n{o)} = E{ h2(X)\9n(a)} a.s.,

where we write Ji(X) = [h\X] for simplicity. It follows that

(n);xaH(p) = E{ {nyp
lan{ppn(o)} = E{ h(X)\9tt(a)}

where h: m —» n is any map with ker h = a.

C O R O L L A R Y ( t o t h e p r o o f ) . { k n { a ) , @n(o): l^n<N}isa reversed m a r t i n g a l e .

PROOF. The argument just given applies when we replace the n in the last step
by Ep j^(p, a)Jip where hp has kernel p.

PROPOSITION 6.5. Suppose that X = (A',: / e oo) has a symmetric joint distribu-
tion with finite moments of order m. Then

(i) for every a e ^"(m), kn(a) converges a.s and in L1 to a limit k(a) as n f oo.
Furthermore, if X has finite moments of order 2m, then

(ii) kn(a) also converges in L2 to k(a), and
(iii) k(o) is a.s. constant if and only iff(a\a) = / (a)2 .
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PROOF. Assertions (i) and (ii) are immediate consequences of known results
concerning reversed martingales and submartingales, respectively. The final asser-
tion is a consequence of the easily established fact that E{(kn(o))2} =
E{kn(a\a)} + O(l/n) as n -> oo whence limnVar{A:n(a)} = Var{lim kn{a)} =

COROLLARY. / / the components of (Xt: i e oo) are iid, then the generalised
k-statis tics kn(o) converges a.s to the product KO of cumulants.
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