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1. Introduction. The concept of acyclic coloring was introduced by Griinbaum [5]
and is a generalization of point arboricity.

A proper k -coloring of the vertices of a graph G is said to be acyclic if G contains no
two-colored cycle. The acyclic chromatic number of a graph G, denoted by a(G), is the
minimum value of k for which G has an acyclic fc-coloring. Let a(n) denote the maximum
value of the acyclic chromatic number among all graphs of genus n. In [5], Griinbaum
conjectured that a(0) = 5 and proved that a(0) < 9. The conjecture was proved by Borodin
[3] after the upper bound was improved three times in [7], [1] and [6]. In [2], we proved
that a ( l ) s a (0 ) + 3. The purpose of this paper is to prove the following:

THEOREM. Any graph of genus n>0 can be acyclically colored with 4n + 4 colors.

It is not known for any n>0 whether a(n)>H(n), the Heawood number [8].

2. Preliminaries. The proof of the theorem is by a double induction on n, the genus,
and V, the number of vertices. Since the theorem is true for n = 1 [2] and trivally true if
V ^ 4 n + 4, the induction begins. Let G be a graph with V vertices which is 2-cell
imbedded on Sn, the n-handle sphere, (i.e. every region is homeomorphic to a disc). The
inductive hypotheses will be that any such graph of genus at most n - 1 can be acyclically
colored with 4n colors and that any graph of genus n with fewer than V vertices can be
acyclically colored with 4n + 4 colors. The induction will proceed using the concept of
reducibility.

A graph H is said to be acyclically k-color reducible if, whenever a graph J contains
H as a subgraph, we can define a graph J' having fewer vertices than J and having the
property that given any acyclic k -coloring of J' we can obtain an acyclic k -coloring of J. A
graph H is said to be reducible if it is acyclically k-color reducible for every k >7 . Clearly,
showing that G contains a reducible graph would suffice to prove the theorem. We restate
a result proved in [1].

LEMMA 1. Let C be a 4-cycle enclosing a planar region. Let L be the set of vertices
interior to C. If H, the induced subgraph on the vertices of LUC, is a triangulation of the
interior of C and if L has more than one vertex, then H contains a reducible graph.

We call a cycle C^G contractible (resp. non-contractible) if it is (resp. is not)
homotopic to a point.

LEMMA 2. Let C= cuc2, • • •, cr be a non-contractible cycle in G that does not separate
Sn. Then G — C has genus at most n —1.
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Proof. Define graph G* by slitting C into two independent parallel cycles C' =
c\,... ,c'r and C* = c*,..., cf leaving all incident edges intact.

Now define graph G' by taking G* and "cutting" the surface of Sn along a simple
closed curve through the strip between C and C*. Then patch the surface by "pasting"
discs into C and C*, creating two new faces bounded by C and C*, respectively. G' is
2-cell imbedded on the new surface.

If G has V vertices, E edges and F faces, then G' has V+r vertices, E + r edges and
F+2 faces. Let n' be the genus of G'. By Euler's formula,

=V-E+F+2

= 2-2n + 2.

Thus, n' = n-l. Since G' has genus n - l , G - C = G'-(CU C*) has genus at most n-1.

LEMMA 3. Let C be a non-contractible (simple) cycle in G that separates Sn. Then
G-C is the union of two graphs, each of genus at most n-1.

Proof. When we perform the same "cut and paste" operation used in the proof of
Lemma 2 the resulting graph G' is disconnected. Say G' = Gx U G2, where G, and G2 are
2-cell imbedded on their respective surfaces with Gx having Vt vertices, Ex edges, Fj
faces, and genus n^ G2 having V2 vertices, E2 edges, F2 faces, and genus n2.

As in the proof of Lemma 2,

V1+V2=V+r, E1 + E2 = E + r and

Then

2-2n=V-E + F

= ( V + r ) - ( £ + r) + F

= (Vj + V2) - (Ex + E2) + (Ft + F 2 - 2)

= (2-2n,) + (2 -2n 2 ) -2 .

So n1 + n2= n. Since C is non-contractible neither n, nor n2 can be zero. Thus G' and,
hence, G-C=G ' - (C"UC*) is the union of two graphs each of genus at most n - 1 .

3. Proof of the Theorem. Let C = c1,...,cr be a non-contractible cycle of
minimum length in G. Depending on whether C does or does not separate Sn, we apply
Lemma 2 or Lemma 3 to show that G-C either is the disjoint union of two graphs of
genus at most n-1, or else is itself of genus at most n - 1 . In either case we can apply the
inductive hypothesis to show that G-C can be acyclically colored with An colors.

We show that if G contains no reducible subgraph then the vertices of C can be
replaced and colored with four new colors in such a fashion that G will contain no
two-colored cycle. This is done in three cases depending on r, the length of C.
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(i) If r<4 , use a new color for each point of C. No two-colored cycle can be
introduced as each of the new colors occurs only once in G.

For the next case we assume G is a triangulation. If G is not a triangulation the
addition of edges to G cannot decrease a(G). If edges cannot be added to G to make it a
triangulation then G contains a pair of vertices, say x and y, such that G-x-y has genus
less than n. The proof would then proceed as in (i), using instead of C the subgraph {x, y}.

(ii) Assume G is a triangulation and r = 5. Color cu..., c5 with four new colors
a, b, a, c, d respectively. The only two-color cycle that can be introduced is a four-cycle of
the form C = cx, p, c3, q. C must be contractible as we assumed C was a minimum length
non-contractible cycle. Thus, there can be at most one vertex interior to C". Otherwise
Lemma 1 guarantees that G contains a reducible graph.

If C" has no interior vertices, then since G is a triangulation, either cx is adjacent to
c3 or p is adjacent to q. But in the first instance C was not the shortest non-contractible
cycle and in the second instance the acyclic coloring of G' was not proper. Thus we may
assume there is exactly one point, say x, inside C".

By the minimality of C, both cu c2, c3, p and cu c2, c3, q must be contractible. But
then either c1; c2, c3, p contains x and q in its interior, or else cly c2, c3, q contains x and p
in its interior. We invoke Lemma 1 to show that G contains a reducible graph.

(iii) If r>6 , color the vertices of C according to the following prescription. Construct
the graph C2 whose vertices are the vertices of C, with edges joining two vertices of C2 if
the vertices are of distance one or two in the graph induced on the vertices of C. Since the
latter graph is regular of degree two (C can have no diagonals), C2 is regular of degree
four. Since C2 has maximum degree four and does not contain K5> Brooks' Theorem [4]
implies that C2 can be properly four-colored.

When replacing C into G, color it with four new colors according to the proper
four-coloring of C2. The only two-color cycle which can be introduced is of the form
. . . c,, p, q,..., where we assume i < j .

Since cf and Cj are colored the same they cannot be adjacent in C2; thus they must
have at least two vertices between them along C. Now consider the cycles
c-i, • • •, ch p, Cj, . . . , cr and ci; c j + 1, . . . , c,-, p. Both have length less than r, and at least one
is non-contractible since their mod 2 sum is C. Thus no two-color cycles can be introduced
and the theorem is proved.
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