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AN ARITHMETICAL DIFFERENCE SYSTEM WITH 
APPLICATION TO B.I.B. DESIGNS 

KULENDRA N. MAJINDAR 

1. I n t r o d u c t i o n . In this paper we have established the existence of an 
ar i thmetical difference system by a construct ive method. Our ar i thmet ical 
difference systems are a generalization of cyclic difference sets. 

Let Vy k, h, n, X be positive integers, 1 < k < v. By an /z-block ar i thmetical 
difference system (mod v), with block size k and residue frequency X, we mean 
h blocks (i.e. sets) of integers dUj d2t, • . • , dku t = 1, 2 , . . . h such t h a t among 
t\\ehk{k — 1) differences of the f o r m ^ t — dt> t (modz/), i ^ i' ,i,i' = 1, 2 , . . . &, 
/ = 1, 2 . . . A, each non-zero residue class mod v appears X times (necessarily 
\(v — 1) = hk(k — 1) ) . An ar i thmetical difference set is merely a 1-block 
ari thmetical difference system (equivalently called a cyclic difference se t ) . 

These ar i thmetical difference systems may be called supplementary cyclic 
difference sets h — (y, k, X) in the terminology of J . Wallis [4]. These are also 
related to the sets of differences discussed by S tan ton and Spro t t [5] and differ­
ence families in e lementary abelian groups of Wilson [6]. 

If two different blocks dUl d2t, . . . dkt and du>, dit>, . . . dkt> are such t h a t 
there is an integer i for which the residues du>, d^, • • • dkt> (mod v) equal 
du + h d2t + i, • • • dkt + i (mod v) in a certain order, we say t h a t one of 
the two blocks is a t ransla te of the other and in this case the set of residues 
dit — di't (mod v) are the same as the set of residues dit> — di>t> (modz;), i, i' = 
1, 2 . . . k in a certain order. A difference system in which no block is a t rans la te 
of another is called translate-free. 

T h e main result of this paper is s ta ted in the following theorem. 

T H E O R E M . If q = pm is a prime power and n is any even integer ^ 4, then 
there exists a translate-free h-block arithmetical difference system (mod v) with 
block size k and residue frequency X where v = (qn+l — l)/(q — 1), k = 

(qn-i _ 1 ) / ( g _ 1)y h = (2» _ 1 ) / ( g 2 - 1) , X = (qn~* - l ) ( 2 » - i - 1 ) / 
(<Z2- l ) ( g - 1). 

As an example, taking q = 2, n = 4, we have a 5-block ar i thmetical differ­
ence system (mod 31) given by 

[1, 2, 3, 5, 12, 19, 20], [2, 3, 5, 8, 20, 29, 31], [2, 3, 11, 18, 20, 23, 27], 

[1, 8, 12, 18, 20, 23, 31], [1, 2, 8, 19, 23, 27, 29] with k = 7, X = 7. 

T h e theorem has been applied to construct a series of balanced incomplete 
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block designs in the last section. An alternative proof of Singer's Theorem on 
difference sets has also been given in section 4. 

2. Singer's difference set . In the paper [1] (which inaugurated the interest­
ing topic of difference sets in number and group theories), James Singer proved 
the following: 

SINGER'S THEOREM. For q = pm a prime power and any n, there is an arith­
metic difference set (mod v) with block size k and residue frequency X where 
v = (qn+i - i ) / ( 2 -i),k = (<f - i ) / ( 2 - i ) , x = ( g - 1 - i ) / ( s - i ) . 

So far, no purely arithmetical proof of this theorem has been discovered. In 
this paper we prove Singer's theorem anew by simple arithmetical and alge­
braical arguments. This new proof led the author to the theorem of section 1. 

3. Preliminaries. Let F = GF(q) be a Galois field where q = pm is a 
prime power, F* = the nonzero elements of F. We extend F to a Galois field 
GF(qn+l) by means of a polynomial of degree n + 1 with coefficients in F and 
irreducible in F in the usual manner. If w is a generator of the multiplicative 
group of the nonzero elements of GF(qn+1)f then w satisfies an equation of 
the form a0 + a\W + a2w

2 . . . + an+iwn+1 = 0, an+i ^ 0, af G F and w, w2, 
ws, . . . w*^^, where 

(3.1) V= ( g - + l - l ) / ( g - l ) , 

are all distinct and give the nonzero elements of GF(qn+1). If au a2, . . . an+i G F 
and not all of them are 0, then there is a unique integer i, 1 S i ^ v(q — 1), 
such that ai + a2w + . . . + anw

n~x = w\ If c G F*, and c(ai + a2w . . . + 
an-iw

n~l) = wv, then i = i' (mod A). Also wi G F* if and only if i is a multiple 
of v. 

Vectors everywhere below have their components in F. The coefficients of 
any polynomial in w belong to F. 

A ^-vector (ai, #2 , . . . a») is said to be equivalent to the vector (a\, a'2, • • • a/) 
if and only if (ai, #2 • • • av) = c(a'i, a'2 . . . a/) for some c in i7*. Clearly this 
is an equivalence relation. 

If 5 is any vector space of ^-vectors and is of rank a, then the (qa — 1) 
nonnull vectors of 5 can be classified by means of the above equivalence rela­
tion into (q* — l)/(q — 1) equivalence classes C*. Each class d determines 
uniquely a residue class dt (mod v), 1 ^ d{ ^ v by 

(3.2) wdi = ai + a2w + . . . + anw
n~l with (ai, a 2 . . . an) G C* 

These (ga — l)/(q — 1) distinct integers dt make up a set to be denoted by 
[5]. Let 

(3.3) U = the vector space of all n-vectors, 

(3.4) [U] = [du d2l... dt] with k = (qn - 1)/(<Z - 1). 
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Amongst the k(k — 1) differences d^ — dt (mod v) du dt> G [U], dt ^ dx>, 
let there be e distinct residue classes (mod v) and j , 1 ^ j ^ v — 1, be one of 
the residue classes. So j = dt> — dt (mod v), dt> ̂  du and there exist at least 
one pair of nontrivial polynomials ax + a2w + . . . + anw

n~l, bi + b2w + . . . 
+ bnw

n~l connected by wj(ai + a2w + . . . + anw
n-1) = 6i + b2w + . . . + 

bnw
n~l. Till the end of this section, j is fixed. 

We now define an important subspace V of U. (ai, a2, . . . , an) G V if and 
only if there exists a polynomial bi + b2w + . . . + bnw

n~l such that 

(3.5) wj(ai + a2w + . . . + anw
n-1) = bx + b2w + . . . + bnw

n-\ 

By the definition of j , V contains non-null vectors. Also if d G [V] then 
j -\- d = some d' of [IT] (mod «;). 

Let W be the collection of w-vectors not belongong to V. Thus 
(ci, c2, . . . cn) G IF if and only if 

(3.6) ?£>;(ci + c2w + . . . + cnw
n~l) = a polynomial in w with degree n. 

This implies that if d G [£/] but not to [F], then j + d ^ any integer of 
[U] (mod v). 

We show that W is not empty. If T^ is empty, then all w-vectors belong to V. 
Using (3.5), we get 

H wJ(ai + a2w + . . . + anw
n~l) = f j Q>i + b2w . . . + bnW71'1) 

where (ai, a2, . . . aw), (&i, b2 . . . bn) run through all non-null ^-vectors. By 
cancellation, we infer that YLwj = 1, i.e., wj{an~l) = 1 which implies j(qn — 1) 
is divisible by ^ + 1 - 1. But qn+1 - 1 = (qn - l)q + q - 1 so that the 
greatest common divisor of qn+1 — 1 and qn — 1 is q — 1. So j is divisible by 
(gw+1 - l ) / (g - 1) = v of (3.1), a contradiction. 

If 5i, b2 G W, then, because of (3.6), a linear combination Cibi + c2ô2 with 
Ci, c2 G ^*, is in V. From this, 

(3.7) rank V = n - 1. 

Thus [F] consists of a subset of (gw_1 — 1)/(<Z — 1) integers of [U]. More­
over j + d = dr (mod v) with d, d' G [£/] holds if and only if d G [V]. So 
among all the differences dt- — d^ (mod v) dt 9^ d^y du dt' G [U] the residue 
class j (mod v) appears X = (q71'1 — l)/(q — 1) times, a number independent 
of j . 

4. Proof of Singer's Theorem. [U] of (3.4) is a difference set (mod*/). 
For, each of e possible residue sets (mod v) can be represented as d — d' 
(mod v) with d ^ df, d, d' G [U] in X possible ways. So 0X = &(& — 1) whence 
e = v — 1. In other words, each non-zero residue (mod v) can be represented 
as d — dr (mod v) with d, df G [£/] in X possible ways. This completes the proof. 
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5. Some vector spaces associated with subspaces of V. U, V, W are 
as in (3.4), (3.5), (3.6). If S is a collection of z>-vectors and 7 is a ^-vector then 
let 7 + 5 = {7 + s : s Ç S}. Associated with each nontrivial subspace T 
(i.e., rank T > 1) of F, we define two useful vector spaces T, T'. Let j , 1 ^ 

j ^ v — 1 be an integer. There exist polynomials a,\ + a2w + . . . + anw
n~l and 

bi + b2w + . . . bnw
n-1 connected by wj(ai + a2w + . . . + anw

n-1) = b\ + 
b2w + . . . + bnw

n~l as seen in the proof of Singer's Theorem. Fix j in this 
section, rj everywhere is a non-null w-vector. Let 

(5.1) T = {(&!, fa...bH): wtfa + a2w + . . . anw
n~l) = 

&i + &2w + . . . bnw
n-1 with (ai, a2 . . . a«) G r } . 

Since T is a subspace of F, f is well defined. Note that (<2i, a2 . . . an) and the 
corresponding (61, b2. . . 6J are inequivalent. T is a vector space and 

(5.2) rank T = rank T. 

Let 

(5.3) V = {(au a2 . . . an> bu b2 . . . bn) : w ;(ai + a2w + . . . a ^ " 1 ) = 

61 + &2W + • . . M>w_1 with (ai, a2 . . . an) G JT}. 

Note that if (ai, a2, . . . an, ôi, b2f . . . ôw) Ç 7"' then (ax, a2 . . . an) is not equi­
valent to (61, b2, . . . frn). Clearly J1' is a vector space and 

(5.4) rank T' = rank 7\ 

We establish now a few lemmas relating to T and T'. 

LEMMA 1. If T = f awd rank r = a ^ l then (a, n + 1), i.e. //*£ greatest 
common division of a and n + 1 is greater than 1. 

Proof. Any vector (ai, a2, . . . an) of !T uniquely determines a vector 
(61, &2, . . . bn) of r by the relation wj(ai + a2w + . . . + anw

n~l) = 
bi + &2w + . . . + bnw

n~l. Since 7" = 7\ as in section 3 we infer that wj{qa~l) = 
1 whence the divisibility of j(qa — 1) by qn+1 — 1. 

If a divides n + 1 the lemma holds. So suppose a does not divide n + 1. 
We now show by the familiar Euclid's algorithm for finding the greatest 
common divisor that (qa — 1, qn+l — 1) = qh — 1 where & = (a, n + 1). This 
result is known. For the sake of completeness, we give the proof. 

Let n + 1 = ati + Wi, 1 ^ Wi < a. If a, & are integers we know (a, 6) = 
(a, b — a) and (a, c£) = (a, fr) if £ is relatively prime to a. Thus 

(qa - 1, gn+1 - 1) = (g" - 1, qn+1 - qa) = ( f - 1, qn~a+1 - 1) = 

( f - 1, g n - + 1 - qa) = (qa - 1, qn~2a+l - 1) = . . . = (qa - 1, qmi - 1) 

If mi divides a, then (a, w + 1) = mi and ( f — 1, qmi — 1) = gmi — 1, and 
the result holds. 
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Suppose mi does not divide a, and a = m it 2 + ^ 2 , 1 ^ w 2 < mi, then, 
as before (qa — 1, gmi — 1) = (q™2 — 1, gmi — 1). Proceeding thus , we see t h a t 
(q* - 1, qn+1 - 1) = qh - 1. 

As gn + 1 — 1 divides j(qa — 1), it follows t h a t j is divisible by 
(g«+i _ i ) / ( g » - i ) . If ft = l , j would be divisible by (qn+l - \)/{q - 1), 
a contradict ion. This completes the proof. 

COROLLARY 1. If r ank T = a and (a, « + 1) = 1, £ften ? contains at least 
one vector not belonging to T. 

COROLLARY 2. If n is even, then V contains at least one vector not belonging to V. 
This is because rank V = n — 1 and (n — 1, n + 1) = (w — 1, 2) = 1. 

If 77 = (ci, £2 • • • cn) and £ = (&i, # 2 . . . an, 61, 62, . . . 6W), we say t h a t one of 
them is total ly or part ial ly orthogonal to the other according as 

n n 

X) atCi = 0 = 22 ôjCi or 
(5.5) n n 

For a given w-vector 77, let 
2/(77) = the vector space of all ?z-vectors orthogonal to 77, 
V(JI) = the vector space of all vectors in V orthogonal to 77, 

(5.6) V*(TJ) = the vector space of all 2w-vectors in V total ly 

orthogonal to 77(where V is defined by (5.3) with T replaced by V). 

i = (au a2, . . . an, bu b2, . . . bn) G V*(rj) if and only if 

(5.7) (au aif . . . a»), (61, b2j . . . 6n) G 1/(17) and 

w ' ( a i + a 2 ^ + . . . + anw
n~l) = 61 + b2w + . . . -f bnw

n~l. 

This implies t h a t 

(5.8) j + dt = dv (mod v) with d*, ^ G [U(ri)] 

where [U(rj)] contains (qn~l — 1)/(<Z — 1) integers. 
Exact ly as in the case of Singer's Theorem, we easily establish the following 

lemma. 

L E M M A 2. Amongst the residue classes dt — d? (mod v),i^ i', du dt> 6 [U(rj)] 
the nonzero residue class j (mod v) appears (qa — l)/(q — 1) times where 
a = rank V*(ri). 

As rank V = n — 1 there is an w-vector, call i t specially 770, such t h a t all 
vectors orthogonal to it make up V. No te t h a t 770 depends on j . Easily 

(5.9) rank V(rj) = n — 1 if 77 is equivalent to 770, 

= n — 2 if 77 is inequivalent to 770. 
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If £, £1, are 2w-vectors, each partially orthogonal to 77, then a suitable combi­
nation c£ + £1, c G F* is totally orthogonal to 77. Consequently the collection 
V (r)) of all partially orthogonal vectors can be expressed as c% + V*(ri) where 
J is a part icular vector, partially orthogonal to 77 and c varies over F*. If all 
2^-vectors of V are totally orthogonal to 77, then rank V*(r]) = rank V(rj); 
otherwise rank V*(rj) = rank V(rj) — 1. So 

(5.10) rank V*(ri) = rank V(rj) or rank V(rj) - 1. 

T h u s V*(r)o) = n — 2 or n — 1. We have the following lemma. 

LEMMA 3. If n is even, rank V*(rjo) = n — 2. 

Proof. If possible, let rank V*(rjo) = n — 1. As rank V = n — 1 we have 
F ' = F*(r7o). This means all vectors in V are orthogonal to 770. As rank V = 
rank V = n — 1, we must have V = V, contradicting Corollary 2 of Lemma 1, 
n being even. Hence the lemma. 

By (5.10), rank V*(rj) can be n — 3 or n — 2. Call a vector rj ( inequivalent 
to rjo) to be of type 1 or type 2 according as rank V*(rj) = n — 3 or n — 2. 
T h u s 77 is of type 1 or type 2 according as V has a vector partially orthogonal 
to 77 or not. Note t ha t the type of a given 77 depends on j . 

We shall now count the number of type 1 vectors. This number will be 
shown to be q2(qn~2 — l)/(q — 1), as s tated in the following lemma. 

LEMMA 4. If V 7^ V, then the number of type 1 vectors (no two equivalent) 
is equal to q2(qn~2 — l)/(q — 1) and the number of type 2 vectors (no two 
equivalent) is equal to q. 

Proof. As V 9^ V, there is a vector in V not orthogonal to 770 and so V has 
a vector part ial ly orthogonal to 770. 

Let 1 (̂770) be the collection of vectors in V, partially orthogonal to 770. 
Then as rank V = n — 1 and rank F*(T7O) = n — 2, V (rjo) contains 
((<ZW_1 — 1) ~~ (<r -2 — l ) ) / ( ^ — 1) = qn~2 vectors, no two equivalent. Let 
$ = (ai, a2, . . . a„, &i, 62, . . . 6n)-

Case I. I $ 1^(770): We can find a non-null vector 77 = (ci, c2, . . . cw) which 
is part ial ly orthogonal to §, since we have merely to choose the c / s so as to 
have X) #*£* = 0» Z) ^ * = 1- This is possible, as (ai, a2, . . . a j and 
(61, &2, . • . M are inequivalent, ? being in V'. There are qn~2 such vectors 77, 
automatical ly no two equivalent. None of these is equivalent to 770 as £ g V (770) 

Case I I . £ G F'(i/o): As in case I, we get qn~2 vectors, no two equivalent and 
each partial ly orthogonal to £. Bu t one of these vectors is equivalent to 770. 

T o get the number of type 1 vectors we proceed as follows. Take a vector 
£ of V. Find all vectors 77, no two equivalent and none equivalent to 770 and 
each partial ly orthogonal to J. Let t ing £ va ry over the (qn~1 — l ) / ( g — 1) 
inequivalent vectors in V, we get in all gn~2((gn""1 — l)/(q — 1) —qn~2) 
+ qn~2(qn~2 — 1) vectors none equivalent to 770, the first summand corresponds 
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to Case I and the second to Case I I . These qn~1(qn~2 — 1)/ (q — 1) vectors are 
not all dist inct. 

In the above procedure, each vector 77 of type 1 arises from qn~z inequivalent 
vectors in V, namely from £ + V*(rj) where £ is a part icular vector in V, 
partial ly orthogonal to this 77. Tak ing this into consideration, we get the 
number of type 1 vectors, no two equivalent . 

T h e number of type 2 vectors, no two equivalent , is therefore ((qn — 1) — 
q2(qn~2 — l))/(q — 1) — 1 = q. Th i s completes the proof. 

6. Proof of t h e t h e o r e m i n s e c t i o n 1. W e take n even, n ^ 4. Corre­
sponding to each of the h! = (qn — 1)/ (q — 1) w-vectors (no two of which are 
equivalent) , we have a vector space U(r}t) of vectors orthogonal to rjt and so 
a block, 

(5.11) [U(rjt)] = [dlud2tj...dkt] 

of k = (qn~l — 1)/(<Z — 1) dist inct integers dit, 1 ^ dit ^ v. W e get hf such 
blocks in all. 

Case I. 77z equivalent to 770 or of type 2: Now rank V*(rjt) = n — 2. By 
Lemma 2, the residue class j (mod v) appears (qn~2 — l)/(q — 1) amongst the 
residue classes dit — d ^ ( m o d v), i ^ i', diu dit> G [U(rjt)]-

Case I I . 771 of type 1: Now rank V*(r)t) = n — 3. By Lemma 2, this residue 
class j (mod v) occurs (qn~d — l)/(q — 1) t imes amongst the residue classes 
dtt - di>t(modv),i ^ i', diu dVt G [U(r]t)]. 

By Lemma 4, the number of type 1 vectors rjt is q2(qn~2 — l)/(q — 1) and 
the number of type 2 vectors is q. So the h'k(k — 1) d i f f e r e n c e s ^ — ^ ^ ( m o d y ) , 
i 7^ i', i, i' = 1, 2 . . . k, t = 1, 2, . . . h' contain the residue class j ( m ° d v) 
X' t imes, where 

X' = ( g - * - l ) / ( g - 1) + g ( g - 2 _ l)/(q _ 1) + g2((2»-2 _ j ) 

( g -« - l ) / ( g - l ) 2 = (g""1 - l ) (g" - 2 - l ) / ( g - l ) 2 . 

As j is a rb i t ra ry and X' is free of j , we conclude t h a t the above hf blocks form 
an h! — block difference system (mod v). As yet , the difference system is not 
translate-free. 

We show next t h a t the above hf blocks can be broken up into h = hf'/' (q + 1) 
families, each consisting of q + 1 blocks such t h a t of any two blocks in it, one 
is a t ransla te of the other. 

Given [U(rj)]} we now find its t ranslates . Wi th this end in view, we proceed 
as follows. For any given nonnull 77 and integer i > 0, let Q(r), i) = the vector 
space of all (n + 1) — vectors 

(5.12) (61, 62, • • • 6»+i) where bx + b2w . . . + bn+1w
n = 

wl(ai + a2w + . . . + anW71'1) with (au a2, . . . an) <E t/(i?). 

Ço(77, i) = the subspace of <2(r7, i) consisting of all vectors of 

the form (bi, b2, . . . bn, 0 ) . 
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Note t ha t rank Q(>q, i) = rank U(rj) = n - 1 and Qb, i) = Q(y, i') if 
i = i' (mod v). Moreover Q(r), i) ^ Q(r), ir) if i ?é i' (mod *;) ; for Q{y\, i) = 
Q(?7, if) implies (as seen by forming product as in section 3) t h a t 
(i — i') {(f-1 — 1) is divisible by qn+1 — 1 and as n is even this means (i — ir) 
is divisible by (q71-1 — l)/(q — 1), i.e., v. 

If Q(rj, i) contains a vector (61, b2j . . . bn+\) with bn+i ^ 0, then as Q(r], i) = 
c(bi, b2, . . . 6w+i) + c'Q0(r), i) c, c' varying over F, we see t ha t 

(5.13) the number of (n + 1) — vectors in Q(r}, i) with last component 

nonzero = qn~2(q — 1), 
and we have 

(5.14) 61, + b2vw + . . . + bn+ijVwn = w\aiv + a2vw + . . . + anvw
n), 

v = 1,2, . . . qn~2(q - 1), 

with (au, a2v, . . . anv) G U(t]) and bn+lv 9^ 0. 

For some i's, 1 ^ i ^ v, Q(T), i) = Qo(y, i). We need the number of such i. 
T o get this number, we use the following procedure assuming t h a t the non-null 
vectors of U(r)) have been arranged into k = (qn~1 — l)/(q — 1) equivalence 
classes. 

Take a vector (61, b2, . . . bn+i) with bn+i 9^ 0. Determine the unique integer i, 
1 ^ i < v such tha t bi + 62w + . . . + bn+iWn = wi(a\ + a2w + . . . + a w ^ _ 1 ) 
for some vector (ai, a2, . . . aw) in the first equivalence class of U(rj). Corre­
sponding to this i, we get a vector space Q(r], i) (containing by (5.13), qn~2 

vectors with last component nonzero and no two equivalent) . 
Next determine the unique integer i', 1 ^ i' < v such t h a t b± + b2w + 

. . . + bn+1w
n = wv' (a,\ + a2w + . . . + anw

n~l) for some vector (ai, a2, . . . aw) 
in the second equivalence class. Note t ha t i 9^ i''. Corresponding to i', we get 

Q(v,i') *Q(n,i). 
Proceeding thus with the same (61, b2, . . . bn+i), we get (qn~l — I)/(q — 1) 

dist inct integers and t h a t many distinct Q(rj, i)'s. 
Varying (61, b2, . . . bn+i) over the qn (n + 1) — vectors, no two equivalent 

and having their last components nonzero, we get qn(qn~1 — l)/(q — 1) integers 
i, 1 ^ i < v bu t not all of them distinct. 

Each such i arises qn~2 t imes in the above procedure as seen from (5.14). 
Consequently we get qn(qn~1 - l)/((q - l)qn~2) = q2{qn~l - l)/(q - 1) dis­
t inct i's and t h a t many distinct vector spaces Q(rj, i) each containing vectors 
with last components nonzero. 

Hence there are precisely v — q2(qn~1 — 1)/(<Z ~ 1)» i-e-> <Z + 1 integers i, 
1 ^ i < v such t ha t all vectors in Q(rj, i) have their last components zero. 
Le t these be Q{T\, ix), Q(r), i2), . . . Q(rj, iq+i). 

Omitt ing the last zero in each vector in Q(r], iv) we get a vector space Tiv of 
rank n — 1 and containing ^-vectors and so Tiv = U(r]iv) for some w-vector 
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7]iv. The vectors (biy b2, . . . bn) in U(r)iv) are connected with the vectors 

(au a2, . . . an) in U(r)) by bi + b2w + . . . + bnw
n-x = 

wiv{ai + a2w + . . . + anw
n~l). 

This immediately implies that [U(rjiv)] is a translate of [U(YJ)], obtained by 
adding iv to the integers in [U(r])] then reducing (mod v). 

We have thus shown that given a block [U(r))]y there are q other blocks 
[U(rj, iv)] forming a family such that all these are translates of [U(T])] and 
hence of one another. [U(rj)] has no other translate. 

If we take one block from each such family, we get h = hf/(q + 1 ) blocks 
[du, d2u . . • dkt], t = 1, 2, . . . h. Any nonzero residue class (mod v) appears 
X = XV(q + 1 ) times amongst the differences dit — di> t(mod v). The number 
of blocks now is h''/'(q + 1), i.e., (qn — l)/(q2 — 1). This completes the proof. 

7. Construction of a series of balanced incomplete block designs. 
Given a difference system, it is well-known [2; 3] how to construct a balanced 
incomplete block design by "developing" the initial blocks of the difference 
system. So from our translate-free difference system, we get a balanced in­
complete block design (with no two blocks identical) with parameters. 

V = (q2n+i _ Xy(q __ ^ b = V(q2n _ ^ / ( ^ _ X ) 

r = k{q™ - l ) / ( 2 ' - 1), k = (g2""1 - l ) / (g - 1) 
X = (q2n-2 _ 1 ) ( g 2 W - l _ 1 ) / ( ( 2 2 _ 1 } (q _ 1 ) } 

where g is any prime lower and n ^ 2. 
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