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AN ARITHMETICAL DIFFERENCE SYSTEM WITH
APPLICATION TO B.I.B. DESIGNS

KULENDRA N. MAJINDAR

1. Introduction. In this paper we have established the existence of an
arithmetical difference system by a constructive method. Our arithmetical
difference systems are a generalization of cyclic difference sets.

Let v, k, &, n, \ be positive integers, 1 < k < v. By an k-block arithmetical
difference system (mod v), with block size k£ and residue frequency \, we mean

h blocks (i.e. sets) of integers d1,, d2yy . . ., diyy t =1, 2,. .. h such that among
the hk(k — 1) differences of the formd;, — dy, (modv),7 # ¢/,4,7 = 1,2,...k,
=1, 2...h, each non-zero residue class mod v appears X\ times (necessarily

ANy — 1) = hk(k — 1)). An arithmetical difference set is merely a I-block
arithmetical difference system (equivalently called a cyclic difference set).

These arithmetical difference systems may be called supplementary cyclic
difference sets = — (v, k, \) in the terminology of J. Wallis [4]. These are also
related to the sets of differences discussed by Stanton and Sprott [5] and differ-
ence families in elementary abelian groups of Wilson [6].

If two different blocks di;, day, .. .d;, and dy,, dsy, .. .d;, are such that
there is an integer ¢ for which the residues d;,, d2y, ... dyy (mod v) equal
di,+ 1, dey+ 1, ...dy, + ¢ (mod v) in a certain order, we say that one of

the two blocks is a translate of the other and in this case the set of residues
d;, — dy, (mod v) are the same as the set of residues d;» — dyy (modv), 1,7 =
1,2 ... kin a certain order. A difference system in which no block is a translate
of another is called translate-free.

The main result of this paper is stated in the following theorem.

THEOREM. If ¢ = p™ is a prime power and n is any even integer = 4, then
there exists a tramslate-free h-block arithmetical difference system (mod v) with
block size k and residue frequemcy N where v = (¢**' — 1)/(¢ — 1), k =
(@ —=1/lg —1),h=("—1/(—-1),N= ("= 1" — 1)/
(¢ —1)(g —1).

As an example, taking ¢ = 2, n = 4, we have a 5-block arithmetical differ-
ence system (mod 31) given by

(1,2, 3, 5,12, 19, 201, [2, 3, 5, S, 20, 29, 31], [2, 3, 11, 18, 20, 23, 27],
(1,8, 12, 18, 20, 23, 311, [1, 2, 8, 19, 23, 27, 29] with b = 7, \ = 7.

The theorem has been applied to construct a series of balanced incomplete

Received May 30, 1973.
1466

https://doi.org/10.4153/CJM-1974-141-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-141-5

ARITHMETICAL DIFFERENCE SYSTEM 1467

block designs in the last section. An alternative proof of Singer’s Theorem on
difference sets has also been given in section 4.

2. Singer’s difference set. In the paper [1] (which inaugurated the interest-
ing topic of difference sets in number and group theories), James Singer proved
the following:

SINGER’S THEOREM. For ¢ = p™ a prime power and any n, there is an arith-
metic difference set (mod v) with block size k and residue frequency \ where

v=(""—-1)/(¢g—=1),k=("—-1)/(g—1),x= (¢t =1)/(qg — 1).

So far, no purely arithmetical proof of this theorem has been discovered. In
this paper we prove Singer’s theorem anew by simple arithmetical and alge-
braical arguments. This new proof led the author to the theorem of section 1.

3. Preliminaries. Let F = GF(q) be a Galois field where ¢ = p™ is a
prime power, F* = the nonzero elements of F. We extend F to a Galois field
GF(g"t') by means of a polynomial of degree #» 4 1 with coefficients in F and
irreducible in F in the usual manner. If w is a generator of the multiplicative
group of the nonzero elements of GF(¢**!), then w satisfies an equation of

the form a¢ + a1 w + asw? ... + a1 @™t = 0, a,01 # 0, a; € F and w, w?,
w3, ... w"* D where

B.1) v=(""-1)/(g—1),

are all distinct and give the nonzero elements of GF(¢**!). If a1, as, . . . a1 € F

and not all of them are 0, then there is a unique integer 7, 1 < ¢ < (¢ — 1),
such that a1 + aw + ... + a,w™ ! = w'. If ¢ € F*, and c(a1 + asw. .. +
Qpw™ 1) = w?, then 1 = 7/ (modv). Also w? € F* if and only if 4 is a multiple
of v.

Vectors everywhere below have their components in F. The coefficients of
any polynomial in w belong to F.

A v-vector (ay,as, .. .a,) issaid to be equivalent to the vector (a’y, a’s, . . . a)')
if and only if (a1, a2 ... a,) = c(a’y, a’s ... a,)) for some ¢ in F*. Clearly this
is an equivalence relation.

If S is any vector space of n-vectors and is of rank «, then the (¢* — 1)
nonnull vectors of S can be classified by means of the above equivalence rela-
tion into (¢= — 1)/(¢ — 1) equivalence classes C;. Each class C; determines
uniquely a residue class d; (mod v),1 = d; < v by

3.2) w%=a+aw+ ...+ aw ! with (a1,a:...a,) € C;

These (¢ — 1)/(g — 1) distinct integers d; make up a set to be denoted by
[S]. Let

(3.3) U = the vector space of all n-vectors,

(3.4) [U] =[d,ds...de] withk = (¢" —1)/(g — 1).
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Amongst the k(k — 1) differences dy — d; (mod v) d,;, d € [U], d; # dy,
let there be e distinct residue classes (mod v) and j, 1 £ j < v — 1, be one of
the residue classes. So j = dy — d; (mod v), d+ # d;, and there exist at least
one pair of nontrivial polynomials a; + asw + ... + a,w" !, by + bsw + . ..
+ b,w"™' connected by w/(a; +aw + ...+ ") =by +baw+ ...+
b,w™ 1. Till the end of this section, j is fixed.

We now define an important subspace V of U. (a1, az, ..., a,) € V if and
only if there exists a polynomial b; + bsw + ... 4+ b,w"! such that

3.5) wi(lai+ aw-+ ...+ aw™t) =by + bow + ...+ bwL.

By the definition of j, V contains non-null vectors. Also if d € [V] then
j + d = some d’ of [U] (mod v).

Let W be the collection of #n-vectors not belongong to V. Thus
(c1, €2y - . . ¢z) € Wif and only if

3.6) wi(ci+ cow+ ...+ c,w"!) = a polynomial in w with degree .

This implies that if d € [U] but not to [V], then j + d # any integer of
[U] (mod v).

We show that W is not empty. If W is empty, then all n-vectors belong to V.
Using (3.5), we get

1 @ +aw+...+a2"") =] Gr+bw...+bw"")

where (a1, as, . ..ay,), (b1, b2 ...b,) run through all non-null n-vectors. By
cancellation, we infer that IIw? = 1, i.e., /@D = 1 which implies j(¢* — 1)
is divisible by ¢*** — 1. But ¢"t' — 1 = (¢" — 1)g + ¢ — 1 so that the
greatest common divisor of ¢"t1 — 1 and ¢" — 1 is ¢ — 1. So j is divisible by
(¢"t* — 1)/(¢g — 1) = v of (3.1), a contradiction.

If 61, 62 € W, then, because of (3.6), a linear combination ¢;6; + ¢28> with
c1, ¢2 € F* isin V. From this,

3.7) rank V=n —1.

Thus [ V] consists of a subset of (¢"~' — 1)/(¢ — 1) integers of [U]. More-
over j +d = d’ (mod v) with d, &’ € [U] holds if and only if d € [V]. So
among all the differences d; — d» (mod v) d; # dy, dy, dy € [U] the residue
class j (mod v) appears A\ = (¢"~! — 1)/(¢ — 1) times, a number independent
of 7.

4. Proof of Singer’s Theorem. [U] of (3.4) is a difference set (mod v).
For, each of e possible residue sets (mod ) can be represented as d — d’
(mod v) with d # d’, d,d’ € [U] in X possible ways. So ex = k(k — 1) whence
e = v — 1. In other words, each non-zero residue (mod v) can be represented
asd — d’ (mod v) withd,d’ € [U]in X possible ways. This completes the proof.
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5. Some vector spaces associated with subspaces of V. U, V, W are
asin (3.4), (3.5), (3.6). If Sis a collection of »-vectors and v is a v-vector then
let v+ S ={y+s:s€S}. Associated with each nontrivial subspace T
(i.e., rank T > 1) of V, we define two useful vector spaces T, T’. Let j, 1 <

j £ v — 1 bean integer. There exist polynomials a; + axw + . .. + a,w™ ! and
by + bow + . ..bw" ! connected by wi(a; + axw + ...+ e,w*t) = b, +
bow + ...+ b,w"! as seen in the proof of Singer’s Theorem. Fix j in this

section. 7 everywhere is a non-null z-vector. Let
(5.1) T ={(b1,by...b):wi(a;+ aw + ...aw1) =
by + bow + ... bt with (a1, as...a,) € T}.

Since T is a subspace of V, T is well defined. Note that (a1, as . . . a,) and the
corresponding (b1, b2 . .. b,) are inequivalent. T is a vector space and

(5.2) rank T = rank T.

Let

5.3) T'={(a,as...a,b,bs...b,):w(a;+ axw+ ...aquw"?) =
by + bow + . .. bt with (ay, as...a,) € T}.

Note that if (a1, ae, - . . @y, b1, bs, ... b,) € T’ then (ay, az. .. a,) is not equi-
valent to (by, bs, . .. b,). Clearly T” is a vector space and

(5.4) rank T’ = rank 7.

We establish now a few lemmas relating to 7 and 7”.

LEmMMA 1. If T = T and rank T = « # 1 then (a, n + 1), i.e. the greatest
common diwision of a and n + 1 1is greater than 1.

Proof. Any vector (ai, as, ... a,) of T uniquely determines a vector
(b1, by, ... b,) of T by the relation w/(a; + asw + ... + aw" 1) =
by 4 bew + ...+ bw1.Since T = T, as in section 3 we infer that w?(®*-D =

1 whence the divisibility of j(¢* — 1) by ¢"+! — 1.

If « divides n + 1 the lemma holds. So suppose a does not divide #» + 1.
We now show by the familiar Euclid’s algorithm for finding the greatest
common divisor that (¢ — 1, ¢**' — 1) = ¢" — 1 where 2 = (a, n 4+ 1). This
result is known. For the sake of completeness, we give the proof.

Let n +1 = at; + m,1 < m; <a. If a, b are integers we know (a, b) =
(a, b — a) and (a, ¢b) = (a, b) if ¢ is relatively prime to a. Thus

(@ — 1, —1) = (¢ — 1,¢" — ¢) = (" — 1, "+ — 1) =
(@=-1,¢"—¢)=(-Lg*H =1 =...=(¢-1L¢m -1

If m, divides «, then (o, n + 1) = m; and (¢ — 1, ¢"* — 1) = g™ — 1, and
the result holds.
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Suppose m; does not divide «, and a = mits + ms, 1 < my < m,, then,
as before (¢ — 1,¢™ — 1) = (¢™* — 1, ¢™* — 1). Proceeding thus, we see that
@ —1L,¢H—1)=¢ —1.

As ¢*t! — 1 divides j(¢» — 1), it follows that j is divisible by
(¢t — 1)/(¢" — 1). If b = 1, j would be divisible by (¢**! — 1)/(q — 1),
a contradiction. This completes the proof.

COROLLARY 1. If rank T = a and (a, n + 1) = 1, then T contains at least
one vector not belonging to T.

COROLLARY 2. If n is even, then V contains at least one vector not belonging to V.
This is becauserank V=n —land (n — 1, + 1) = (n — 1,2) = 1.

Ifn=(cr,e2...¢c,) and & = (ay, a2. .. ay, by, by, ... D,), we say that one of
them is totally or partially orthogonal to the other according as

n n

Z ac;=0= Z bic; or
i=1 i=1

n n

Z ac; = O # E bici

i=1 i=1
For a given n-vector 7, let

U(n) = the vector space of all n-vectors orthogonal to 7,
V(n) = the vector space of all vectors in V orthogonal to 7,

(5.5)

(5.6) V*(5) = the vector space of all 2n-vectors in V' totally
orthogonal to n(where V' is defined by (5.3) with T replaced by V).

£ = (ai, as, - .. Qy b1, be, ... b,) € V*(y) if and only if
5.7) (a1, as, ... ay), (b1, b2, ...b,) € U(y) and
wi(ar+ asw+ ...+ awt) = by + baw + ...+ bl
This implies that
5.8) j+d,=dy (modv) with d,, d» € [U(n)]

where [U(n)] contains (¢"~! — 1)/(¢ — 1) integers.
Exactly as in the case of Singer’s Theorem, we easily establish the following
lemma.

LeEMMA 2. Amongst the residue classes d; — dy (mod v), 1% 1, di, dy € [U(n)]
the nonzero residue class j (mod v) appears (¢ — 1)/(qg — 1) times where
a = rank V*(g).

As rank V = n — 1 there is an n-vector, call it specially 7, such that all
vectors orthogonal to it make up V. Note that 5, depends on j. Easily

(5.9) rank V(y) = n — 1if 5 is equivalent to 7,
= n — 2 if 5 is inequivalent to 7.
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If &, &, are 2n-vectors, each partially orthogonal to 5, then a suitable combi-
nation ¢£ + £, ¢ € F* is totally orthogonal to 5. Consequently the collection
V' (n) of all partially orthogonal vectors can be expressed as ct + V*(y) where
£ is a particular vector, partially orthogonal to % and ¢ varies over F*. If all
2n-vectors of V’ are totally orthogonal to 5, then rank V*(y) = rank V(y);
otherwise rank V*(5) = rank V(y) — 1. So

(5.10) rank V*(y) = rank V(y) or rank V() — 1.
Thus V*(npo) = n — 2 or  — 1. We have the following lemma.
LEMMA 3. If n is even, rank V*(n) = n — 2.

Proof. If possible, let rank V*(p) = n — 1. As rank V' = n — 1 we have
V' = V*(ne). This means all vectors in V are orthogonal to no. As rank ¥ =
rank V = n — 1, we must have V = 7, contradicting Corollary 2 of Lemma 1,
n being even. Hence the lemma.

By (5.10), rank V*(9) can be n — 3 or n — 2. Call a vector 7 (inequivalent
to 7o) to be of type 1 or type 2 according as rank V*(y) =n — 3 or n — 2.
Thus 7 is of type 1 or type 2 according as V' has a vector partially orthogonal
to g or not. Note that the type of a given 5 depends on j.

We shall now count the number of type 1 vectors. This number will be
shown to be ¢2(¢"~% — 1)/(¢ — 1), as stated in the following lemma.

LeEMMA 4. If V 5 V, then the number of type 1 vectors (no two equivalent)
is equal to ¢*(¢"% — 1)/(q¢ — 1) and the number of type 2 vectors (no two
equivalent) s equal to q.

Proof. As V # T, there is a vector in V not orthogonal to 7o and so V’ has
a vector partially orthogonal to 7.

Let V’(n0) be the collection of vectors in V', partially orthogonal to 7.
Then as rank V' =#n — 1 and rank V*(p) = n — 2, V’'(5) contains
(gt —1) — (¢=* —1))/(g — 1) = ¢"* vectors, no two equivalent. Let
S = (al, as, . .. Qy, bl, bz, e bn)

Case 1. £ ¢ V'(n0): We can find a non-null vector n = (cy, ¢s, . . . ¢,) which
is partially orthogonal to £, since we have merely to choose the ¢;'s so as to
have Y ax; =0, X by, = 1. This is possible, as (a1, a2, ... a,) and
(b1, bs, . .. b,) are inequivalent, ¢ being in V’. There are ¢"~2 such vectors 7,
automatically no two equivalent. None of these is equivalent tonoas & ¢ V7 (x)

Case I1. £ € V'(no): As in case I, we get ¢"—2 vectors, no two equivalent and
each partially orthogonal to £. But one of these vectors is equivalent to 7.

To get the number of type 1 vectors we proceed as follows. Take a vector
¢ of V. Find all vectors 5, no two equivalent and none equivalent to 5o and
each partially orthogonal to £ Letting & vary over the (¢"' — 1)/(g — 1)
inequivalent vectors in V', we get in all ¢"2((¢"' — 1)/(g — 1) —¢™2)
+ ¢2(¢"? — 1) vectors none equivalent to 7o, the first summand corresponds
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to Case I and the second to Case II. These ¢"~'(¢"~? — 1)/(q — 1) vectors are
not all distinct.

In the above procedure, each vector 7 of type 1 arises from ¢"3 inequivalent
vectors in V’, namely from & + V*(y) where { is a particular vector in V7,
partially orthogonal to this 5. Taking this into consideration, we get the
number of type 1 vectors, no two equivalent.

The number of type 2 vectors, no two equivalent, is therefore ((¢* — 1) —
q*(¢"* — 1))/(g — 1) — 1 = q. This completes the proof.

6. Proof of the theorem in section 1. We take # even, # = 4. Corre-
sponding to each of the A" = (¢* — 1)/(¢ — 1) n-vectors (no two of which are
equivalent), we have a vector space U(xn,) of vectors orthogonal to 5, and so
a block,

(5~11) [U<"7t)] = [dlt, day, - .. dkz]

of B = (¢! — 1)/(¢ — 1) distinct integers d;;, 1 < d;;, < v. We get &’ such
blocks in all.

Case 1. 5, equivalent to 79 or of type 2: Now rank V*(y,) = n — 2. By
Lemma 2, the residue class j (mod v) appears (¢"* — 1)/(q — 1) amongst the
residue classes d;, — dy,(mod v), 1 # v, d;,, dip € [U(n,)].

Case I1. n, of type 1: Now rank V*(9,) = # — 3. By Lemma 2, this residue
class j (mod v) occurs (g% — 1)/(¢ — 1) times amongst the residue classes
dy — dy(modv), s # 7', dyy, dvy € [U(n,)].

By Lemma 4, the number of type 1 vectors n,is ¢*(¢"% — 1)/(¢ — 1) and
the number of type 2 vectorsisg. So the A’k (k — 1) differencesd;, — d;,(modv),
1#£4,1,¢7 =1,2...k t=1,2, ...k contain the residue class j(mod v)
N\ times, where

N=(@?=-1/(¢g=1)+q@*=1)/(¢—1) +¢@¢*—1)
(= 1D/(g =1 = (¢ — D(g> = 1)/(g — 1~

Asjis arbitrary and N’ is free of j, we conclude that the above &’ blocks form
an &’ — block difference system (mod v). As yet, the difference system is not
translate-free.

We show next that the above &’ blocks can be broken up into 2 = 4'/(¢ + 1)
families, each consisting of ¢ 4+ 1 blocks such that of any two blocks in it, one
is a translate of the other.

Given [U(n)], we now find its translates. With this end in view, we proceed
as follows. For any given nonnull  and integer ¢ > 0, let Q(», 2) = the vector
space of all (n 4+ 1) — vectors

(5.12) (b1, ba, . . . byt1) where by + bow . . . + b w" =
wi(as + asw + . .. + awt) with (a1, as, . .. a,) € U(y).
Qo(n, 1) = the subspace of Q(n, 2) consisting of all vectors of
the form (by, bs, . .. b,, 0).

https://doi.org/10.4153/CJM-1974-141-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-141-5

ARITHMETICAL DIFFERENCE SYSTEM 1473

Note that rank Q(y, ) = rank U(g) = n — 1 and Q(y, 2) = Q(y, 7') if
1 = 1" (mod v). Moreover Q(g, 7) # Q(y, ') if 2 2 ¢’ (mod v); for Q(y, i) =
Q(n, ¢') implies (as seen by forming product as in section 3) that
(¢ — 7')(¢"* — 1) is divisible by ¢"*! — 1 and as = is even this means (7 — 1)
is divisible by (¢"=! — 1)/(q¢ — 1), i.e., v.

If Q(n, z) contains a vector (by, b, . . . byy1) With 0,44 % 0, then as Q(n, 7) =
¢(by, b2, ... byr1) + ¢Qo(n, 1) ¢, ¢’ varying over F, we see that

(5.13) the number of (n 4+ 1) — vectors in Q(y, 1) with last component
nonzero = ¢"~2(q — 1),
and we have
(5.14) by, + bow + ...+ bpy1 " = wiay, + 0w + ...+ @, W),
v=1,2,...¢"2(¢q— 1),
with (a1, @24, . . . ayy) € U(n) and b,y 1, # 0.

For some ¢'s, 1 =7 = 9, Q(n, 2) = Qo(n, 7). We need the number of such z.

To get this number, we use the following procedure assuming that the non-null
vectors of U(yn) have been arranged into 2 = (¢"~' — 1)/(¢ — 1) equivalence

classes.

Take a vector (b1, bs, . . . byy1) With b,y 5% 0. Determine the unique integer z,
1 =4 <wvsuch thatby + bew + ... + 0,1 @" = wi(a1 + asw + ... + a,w™ 1)
for some vector (ai, as, . .. a,) in the first equivalence class of U(y). Corre-

sponding to this 7z, we get a vector space Q(, 7) (containing by (5.13), ¢"—?
vectors with last component nonzero and no two equivalent).

Next determine the unique integer 7/, 1 < ¢ < v such that &; + bsw +
coe F bpw™ = w¥ (a1 + axw + . .. + a,w" ) for some vector (ay, as, . . . @)
in the second equivalence class. Note that ¢ # ¢/. Corresponding to ¢/, we get
Qn, ") #= Q(n, 7).

Proceeding thus with the same (by, b, . . . byy1), we get (¢" — 1)/(¢ — 1)
distinct integers and that many distinct Q(y, ¢)’s.

Varying (b1, bs, . .. byr1) over the ¢" (n + 1) — vectors, no two equivalent
and having their last components nonzero, we get ¢*(¢"~! — 1)/(q — 1) integers
1, 1 = 72 < but not all of them distinct.

Each such ¢ arises ¢" 2 times in the above procedure as seen from (5.14).
Consequently we get ¢"(¢"* — 1)/((¢ — 1)g"?) = ¢*(¢"* — 1)/(¢ — 1) dis-
tinct 7’s and that many distinct vector spaces Q(n, 7) each containing vectors
with last components nonzero.

Hence there are precisely v — ¢%(¢" ! — 1)/(¢ — 1), i.e., ¢ + 1 integers 4,
1 £ 1 < v such that all vectors in Q(», 7) have their last components zero.
Let these be Q(n, 71), O(n, 2), . . . Q(n, 2441)-

Omitting the last zero in each vector in Q(, 2,) we get a vector space T, of
rank # — 1 and containing n-vectors and so T';, = U(y,,) for some n-vector
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ni,- The vectors (by, bs, ... b,) in U(n;,) are connected with the vectors

(a1, as, ... ay,) in U(n) by by + bsw + ... 4+ bw™ ! =
w(a + aw + ... + aw"t).

This immediately implies that [U(n;,)] is a translate of [U(y)], obtained by
adding 1, to the integers in [U(n)] then reducing (mod v).

We have thus shown that given a block [U(y)], there are g other blocks
[U(n, 4,)] forming a family such that all these are translates of [U(y)] and
hence of one another. [U(n)] has no other translate.

If we take one block from each such family, we get & = h’/(q 4+ 1) blocks
[d1y, doyy - .- diy), t =1, 2, ... h. Any nonzero residue class (mod v) appears
N = )\/(g 4+ 1) times amongst the differences d;, — dy;(mod v). The number
of blocks now is #'/(q + 1), i.e., (¢ — 1)/(q* — 1). This completes the proof.

7. Construction of a series of balanced incomplete block designs.
Given a difference system, it is well-known [2; 3] how to construct a balanced
incomplete block design by ‘‘developing” the initial blocks of the difference
system. So from our translate-free difference system, we get a balanced in-
complete block design (with no two blocks identical) with parameters.

(¢ —=1)/(g—1),b =v(@” —1)/(¢* — 1)
r=k(@—1)/(¢*—=1),k = (¢ —1)/(¢g — 1)
A= (@ -1 *—-1)/{(¢2—=1)(¢—1))

where ¢ is any prime lower and # = 2.

Il

v
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