AN ASYMPTOTIC EXPANSION FOR A CLASS OF
MULTIVARIATE NORMAL INTEGRALS*
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1. Introductory Discussion and Summary.

Let x= (,,%;,--+,%,) be a normal random vector with zero expectation
vector and with a variance-covariance matrix which has 1 for its diagonal
elements and p for its off-diagonal elements. Consider the quantity

(L1) I,(k p)
= (2n)~"3{1 + (n — 1)p}-V2(1 — p)—tn-Dy2 f:" . J':" Q@2 dy - - dx,,

where
0(x) = {1 + (» — 1p}1 = p)I[{L + (3 — 2)p} T ot — 2 S )
= (1 —p) X — p{l + (# — 1)p}(32.)?].

Thus I, (h; p) is the probability that each of # hormally distributed, equally
correlated and standardized random variables with common correlation p
shall not fall short of k. Clearly 1 — I (k; p) is also the distribution function
of the random variable max, x,, and this supplies one application (cf. [3]) of
I,(h; p). A second application relates to the familiar one-factor model in
factor analysis for the special case of equal weights [8]. Another situation in
which knowledge of I, (k; p) is important is in some models of test design in
psychology. Other applications will arise or probably exist at present.

In a previous paper [8] (see also [8] for further references), I,,(k; p) was
expressed as the product of the density funcion of x at the cut-off point
A= (h h,---, k) and an infinite power series in 4. In this paper it will be
shown for A > 0 that I,(h; p) can be expressed asymptotically as the
product of the density function at 4 and an infinite series in negative powers
of A. This result can be regarded as the generalization for # > 1 of the well-
known asymptotic expansion of Mill’s ratio

(1.2)

(L3) [T evAdtleNa (1 -2+ L34 — 13620 +-+) (2> 0).

1 Sponsored in part by ONR at Stanford University, July-August, 1960.
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2. The Asymptotic Development of I, (k;p)

Under the transformation

yr=1[1+ (n— 1)p]" V23 byx,,

(2.1) n =1

‘ Y= (1 —p) Y23 bz, (1=2,8,---,m),
=1

where ((b;,)),4,7=1, 2,---, n,is orthogonal with b, = #»~/2, (1.1) reduces to
(2.2) I, (h; p) = (2m)—"2 J‘ . .[ e gy - - dy,
R
with R defined by
(2:3) R:[1+4 (n—1)p]"2[n(1 —p)]7"2y, +’%bﬁy,- = (1 —p) Y2k
(t=1,2,---,n)

[8]. R is a polyhedral half-cone in y-space with vertex at the point (r,,
0,0,---,0), where

(2.4) 7o = [n/{l + (n — 1)p}1¥25,

such that the angle between any two faces of the cone is arc cos (—p); further,
the axis of the cone passes through the origin in y-space. I,,(; p) is, then,
the probability measure, under an #-dimensional spherical normal distribu-
tion with unit standard deviation in any direction, of a regular, symmetri-
cally oriented polyhedral half-cone with common dihedral angle arc cos (—p),
and with vertex at a distance 7, from the centre of the distribution. Let P be
any point within the cone distant » from the centre of the distribution, #
from the axis of the cone and # from the vertex of the cone in a direction
parallel to the axis. The probability-mass of an infinitesimal element of
volume dr at P is

(2.5)  (2m)~"Re~rV2dy = (2m) Vet 2y, (27)—(n-1/2e-1'34S,

where 4S is the measure of an infinitesimal element in the (» — 1)-flat
orthogonal to the axis of the cone and distant # from the vertex (cf. [5]).
Consider the probability-mass in that portion of the cone (an infinitesimal
“slab”) demarcated by two adjoining (» — 1)-flats orthogonal to the
axis of the cone and distant z and z 4- dx from the vertex of the cone. It is
easily shown that the intersection of the first of these two flats with the cone
is a regular (» — 1)-dimensional simplex with centroid at the foot of the
perpendicular from P to the axis of the cone and with edges of length

[2n{l + (n — L)p}/(1 — p)J¥2a.
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Let Ky(!) denote the probability measure, under an N-dimensional spherical
normal distribution with unit standard deviation in any direction, of a
regular N-dimensional simplex with centroid at the centre of the distribution
and with edges of length /. Then according to (2.5) the probability measure
of the infinitesimal slab is

(2.6) (2m)-VBe-trete’ady K, [(2”{1 '*1‘ E‘P_‘ I)P})l/ 2x:|.

Consequently, the probability measure of the cone is

2n{l + (n — 1)p})wx] .

Lok p) = f " (@n)ire-tmierng, | [(
0

1—
@2.7) - P
— (27;)—1/25".’,/3 J' g—"o® . g—"/3 K, .(Az)dz,
0
where
A= 2
(2.8) n(P)

= [20{1 + (2 — p}/(1 — p) "

and 7, is given by (2.4). Formula (2.7) which is of considerable intrinsic
interest may be used also to develop the required asymptotic expansion of
I,(h; p) for h > 0. From here on we shall then assume that 4 > 01

The K-functions are closely related to Godwin’s G-function [1], [2]
introduced in connection with the distribution of the absolute mean deviation
in normal samples, and some further statistical applications of the functions
have been discussed in [4] and [5]. Clearly, Ky(z) is bounded by 1. Again,
it has been shown elsewhere [7] that Ky(z) has a power series expansion
with infinite radius of convergence. Consequently, Watson’s lemma [10]
(p. 236) may be used to obtain a valid asymptotic expansion for the integral
in (2.7) by expanding exp(— «%/2)K,_,(Az) in its Taylor series at £ = 0 and
integrating term by term. In fact, let

[- <]
(2.9) Y (2) = 'pﬂ—l(x; i) = el K, (z) = ‘z-ocn—l,ix‘/i!’

where the c,,_, , are functions of 4 (and therefore of p). Then (2.7) gives with
the aid of Watson’s lemma,

1 The centre of the distribution is interior or exterior to the halfcone according as to whether
h < Oor h > 0. The integral formula for I(k; p) in (2.7) is valid for all A, but for the asymp-
totic expansion developed subsequently (equ. (2.22)) > 0. {I,(0; p) is known to be equal to
the normed measure of a regular (s —1)-dimensional spherical simplex with common dihedral
angle arc cos (—p). The reader is referred to [9] where tables of such normed measures are
provided for » = 1(1) 51 — s and p = 1§, ¢ = 1(1) 12.)
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(2.10) L(k; p) ~ (20) VB2 S ¢, 7o),

=0
This is the required formula. It should be noted that the probability density
in the original distribution at the point (h, 4,---, A) is
(2.11) (27)="A{L + (1 — L)p}1A(L — p)-tr-Dize=e,

thereby justifying the assertion at the end of the introductory Section.

It now remains to determine the coefficients c,_,, in (2.10) (¢, =
»,(0)). On differentiating (2.9) 5 times at z = 0 we obtain after some
simplification

k 14 2%)!
Cn—1,n—1+2k =Zo (_“-2L (T_"‘s')‘,— Anlig 1420 (B=0,1,--2),

(2.12) Cpym =0 m=0,1,2---,n—2),

Cp—t,nt2r = 0 (r =01,-- ')’

where the a’s are defined by

Ky(z) = ,zoaN,,x’ (N=0,1,2,--)
(ay.; = K$(0)/j!). In the derivation of (2.12) use has been made of the
fact that
=0 [ =0,1,2,--+,N—1
(2‘13) aN,J (7 0; ) &y :N )’
a1 =0 r=01,2---).

Formula (2.13) in its turn derives by induction from the following recursion
relationship between the a’s proved elsewhere [7]:

[(s—1)/2])

(2.14) o= E)HO + 1)/ @m)a 3 - AN+ DI ey alg!

s=1,2,:--),

[(s — 1)/2] denoting, as usual, the integral part of (s — 1)/2. Though (2.14)
may be exploited to derive explicit expressions for the non-zero a’s these
are more easily obtained recursively by repeated a.pphcatlon of (2.14) on
noting that, trivially,

ay; =0 G=12--),
(2.15) i

=1

This yields for the first there non-zero a,_,;,
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nl/2 1

(2.16) Bpip1 = ’

, 201 7(n—1)/2 (n — 1)!
217 B nl/2 n—1 1
(2.17) b1n1 = T aTi ez 4 (n+ 1)

nl/2 (n — 1)(n2 + Tn — 6) 1
(2.18) @, yuis= 9n—1 Z(n—1)/2

p 32n (n + 3)!

((2.14) shows that the non-zero a’s oscillate in sign).

On applying (2.16), (2.17) and (2.18) in (2.12), the first there non-zero ¢’s
are obtained:
Cnin—1 = (”’ - 1) Ian-1 An—1,n-1

(2.19) = n1/22-(n=1) g—(n—1)/2 jn—1

(2.20) Cntni1 = (# + 1) {— %‘1"—1“”—1,”-1 + l“+lan—l,n+l}
= _nl/z2—(n—1)n—(n-—1)/2{12~n(n 4+ 1)Am1 4 1(n — 1)An+1},

Cnotnis = (n 4+ 3)1FA A,y 0y — $amn Bpinir T A" 045}

= n1/22-‘”-1)n“”-1’/2{%n(n + 1)(n + 2)(n + 3)An1

(2.21) +3(n—1)(n+2)(n+ 3)An+H

n—1)(n247m—6
rat Mn ) jnss,

Thus from (2.10),

I.(h; p) ~ (2n)-V/2 e—"o/2 {Cntna?s™ F Cot mpa?e ™+
+ Cn, n+3’(7("+4) + - '},
where the first three coefficients in the asymptotic expansion are given by

(2.19), (2.20) and (2.21) (further coefficients may be obtained in the manner
shown). A slightly more convenient form of (2.22) is

(2.22)

L(h; p) ~ (3n)3m—"12e~"y2 (t[rg) " 17,
(2.23) x[1 — (#); + (n — 1)3)r,2
+{EB)s+3(n+2)s(n—1) 243 (n— 1) (n2+ Tn— 8) 2t} 4— -],
where

=1,(p) = 42
= (4{1 + (1 — Dp}/2(1 — p)]1
and (»),, denotesn(n + 1) - - - (n 4+ m — 1). It will be noted that the present

asymptotic expansion is particularly suitable for large 4 (i.e., the cut-off
point is not near the centre of the distribution) and algebraically small p.

(2.24)
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Finally, observe that for » = 1 (2.22) reduces to (1.3), since y,(z) =
= exp(— #?/2) and

(2-25) co,2s = (— ) (2) 15",
(The polyhedral half-cone is here the interval [, ©).) For # = 2, (2.22)
reduces to

(2.26) I (h;p)~ate—r¥3(t[rd) [1— (3+#2)rg® + (16 + 1042 + 3t8)ryd — -]

This agrees with a formula obtained previously [6] for the probability meas-
ure, W(ry; ), 7o > 0, under a standardized circular normal distribution, of
a sector of angle «, vertex at a distance 7, from the centre of the distribution
and with one arm of the sector passing through the latter point. The rela-
tionship between I, and W is

(2.27). Iy(h; p) = 2W (rg; 6/2)

where 8 = 2 arc tan #,(p) = 2 arc tan{(1 + p)/(1 — p)}*'%. It has been shown
in [6] that the bivariate normal integral for arbitrary cut-off point may be
expressed in terms of the difference of two W-functions (and therefore of two
I,-functions).

3. The Accuracy of the Asymptotic Expansion

In this section we obtain upper bounds to the error induced by taking the
first m terms of the asymptotic expansion as an approximation to I,,(%; p).

Let ¢ be the angle between the axis of the half-cone and the line joining
P and the vertex of the cone, and let £ be the distance of P from this vertex.
Then (using the notation of Section 2)

7 =173 4 £2 4 27,8 cos ¢,

and the probability-mass of an infinitesimal volume-element of content dr
at P is
(2m)~1 exp[— 3r2ldr =

(3.1) (2m) -/ exp[—%(rg + £ 4 2r,& cos ¢))Em1dE dw,

where dw is the solid angle subtended at the vertex of the cone by the
volume-element (or, equivalently, the surface-content of an infinitesimal
element on the surface of a unit sphere whose centre coincides with the
vertex of the cone). Thus the probability-mass of the half-cone is

(3.2) I, (h; p) = (2n)—"3e~"/3 J' :° J' Rl $)E g1 8342 doo,
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where 2 is the (» — 1)-dimensional regular spherical simplex (with common
dihedral angle arc cos (—p) formed by the intersection of the half-cone and
the surface of the unit sphere. Again, if

Gor(§) = §71e83,

then the derivatives of G,_, (&) at the origin, G{2,(0), are given by

(n—1+z¢) — (" — 14 2! ;o e

(0) = (— 1)¢ — (=012--")
with all other derivatives vanishing. Therefore, repeated integration by
parts yields

o m-1 (n — 1+ 20)! 1
—(rocosd)é (3 dE = — 1)¢
(3.3) fo e )= 2 (—1) 251 (rg c0S §) "
1 Ra(rs cos ¢),

where

Rp(rg cos ¢) = (ry cos p)=tr+am—2 f: e=trocosd)t GnEAm—) (£)dg
(3.4)
= (rp COS $)—{nt2m-1) f :’ e—(roco8d)E G'(:b_-fizm—l) (&)dz,

after a further single integration by parts. On using (3.3) and (3.4) in (3.2),

1,0k p) = (2m)"ery :"‘z‘l T Gl ) L SO

{ n, i 7
(3.5) i=o 244l i
+ f R,,(ry cos ¢)dw,
o
where
(3.6) Oy s = fg sec"t¥ ¢ dw.

In (3.5), the remainder after m terms is
(3.7) E, = (21)~"2e=V3 [ R,,(r, cos $)dw.

An upper bound to | E,,| can be obtained from an upper bound to R,, (7, cos ¢)
in (3.4). The latter upper bound is itself obtained by deriving first an upper
bound to GV (£) for & = 0. If, then,

(3.8) IGE N E) < Aps, 2

(3.4) gives
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(3.9) [Ro (7o cOS ¢)| < A,y gm(rg COS )—t2m),
whence by (3.7)
(3.10) Bl < (27) /262 Ay 3m [, (7o COS )"+ deo
= A, om(27)"/? e—To/2 %, 5 I,

which is proportional to the (m -+ 1)th term of the series

(3.11) (2r)-"2erh - 3 (— 1) (—1+2)t

7;("+2‘).
=0 2¢4!

n, §

Consequently, (3.11) is a valid asymptotic expansion when 7, > 0 of

I,(h; p). Moreover, the series (3.11) must be identical with the series (2.22),

since a given function determines uniquely (if at all) a series of the form

> ¢,/r}, so that (3.10) provides an upper bound to the error in using (2.22).
We now proceed to determine a value? for A4, , ,,. Let

(3'12) gl = .Bn-l,oHo(f) + ﬂn—1,1H1(5) +-0+ ﬂn—l.n—lHn—l(é)r

where H,(£) are the Tchebycheff-Hemite polynomials orthogonal to the
weight function exp (—&%/2) and normalized so that the coefficient of
& in H,(£) is 1. On multiplying (3.12) by H,(¢) exp(—£&%/2), and integrating
over the real line, we find

(813)  Bumy, = [ EH, () Erdg] [ HIE)eE L.

The value of the denominator in (3.13) is well-known to be v/(2x);!. In order
to evaluate the numerator, define

Vo1, = f:o §n—1Hj(£)e"£’/2d§ G=01,---,n—1).
Integration by parts gives the recursion relationship
(3.14) Vn-1,5= (# — 1)?’7.—2.;-1,
and on successive application of (3.14)

Va,s = —1)(n —2) (B —§)Vn140
=Mm—1)(n—2) - (n—7) f_: gn—1-1 =2 4E

whence

3 That A, sm < o0 is evident from the fact that all derivatives of G,, (§) are products of
polynomials in & and exp (— £3/2).
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Pa-1,8 = (B — 1)(n — 2) - - (n — )22 (}(n — 7))

(3.15) (n — 1 — g4 even),

=0 (» —1—7 odd).

On substituting (3.15) and (3.13) and using the duplication formula for the
gamma function, we obtain

; B (n —_ l)! (
n—1, § 2(»—1—1)/2(%(71 —1— f)) i!
o (n — 1 —4 odd).
Reverting to (3.12),

G"_l ( 5) = g1 e_p 2
n—1

=!zo ﬂn_l. sH; (5)3_‘”2»

—1—9q
(3.16) " ] even),

and therefore
n—1

(8.17) GS."_‘R“"" (&) = (— 1= 120 »Bn-l, iH o 11si0m (& )e"'/ 2

on recalling that

dp et =

(3.18) o

(— 1P H, @)t .
An upper bound to |H, 3, s.(&)lexp(— £2/2) in (3.17) is readily deduced
from the well-known identity

e €' = [ g2 . (2m)- 120" 2,

Hence, on applying (3.18),
(— 1P H,E)e€r = [* (im)rette - (2m)2e"2dx,
from which we obtain (for & real),
H,€)le€7 < (2n)12 [ |alrerrda
= 1232?30 (§(p + 1)).
Thus, from (3.16), (3.17) and (3.19),

(3.19)

(n = 1!
2(1»—1—1)/2(1(')1. —1 - 7)) '7'
2m+u+n—1)/21’(m + i‘(’ +M))’

a0 [T @ISR
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Y denoting summation over all non-negative integral § < » — 1 such that
#n—1—7is even.
If n is odd, set j = 27 in (3.20). Then

et 7S gt
i = Lo 20-1-2073(k(n — 1) — 4)1(24)!

. gmHiHA-1/2 [y + § + 1n) mn=13,---),

and, on using the gamma duplication formula in the form
a0 (m + i+ %n) = (@m 4+ n— 1 + 20)!/{(m + 2(n — 1) 4- 1) 122 +n-1426},

the latter inequality simplifies to

. (n— 1)1 o2 (2m +n— 1+ 2%)!

(n—1+4+2m)

IGST N = o S m+imn—1)+0)1(2)! (3 n—1) —)!
m=1,3,---).

(3.21)

Similarly if » is even, set § = 24 + 1 in (3.20). Then

lG(n—l+2m) (5)[ < -1/ (0—22)12 (n — 1)!
(3.22) " = S0 2m-2203(L(n —2)— 20)1(20 4+ 1)!
AL+ i+ 34+ 1)  (r=24,000),

and, on using the gamma duplication formula in the form
a120(m + i +% (n + 1)) = (2m + n + 2)1/{(m +% n + ¢)122miniz}

the last inequality reduces to

—: (n — 1)' (n—2)/2 (2m +n+ 21’)!

G(n 1-+2m) <
(3.23) =m0 = T 4 (m + En +49)1(2 + 1) 1(} (n—2) —i)!
(n=24,-").

Formula (3.21) and (3.23) provide the required inequalities in the sense
that their right-hand members (refer to (3.8)) may be substituted for
A, 3 2m in (3.10) to supply the desired upper bound for the error after m
terms. A weaker (but at the same time simpler) upper bound may be obtained
by noting that in (3.21)

(n—1)1(2m+n—1+20)!/(20)!=(n—1)1(26 4+ 1) (25 +2) - (2m+n—1+27)
= (2n — 2 4 2m)!,

whence
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148 (2n — 2 + 2m) ! v D2 1
(Go1Hm ()| < Py DO P W P y S Y1 Yy gy
(21 — 2 + 2m)! (w08 1
- 2m+n—1 -t (m+n—1—s)ls!
(3.24) @1 — 2 + 2m)! [I\™+r1ODB 1y 1 g
- (n—1+m)l'(5) P ( s )
n=13,---).

Similarly, for # even, observe that in (3.23)

(n—1)1@m+n+-2)1[(2i+1)! = (n—1)!(24-2)(24-3) - - - (2mt-n+2)
< (2n — 2 + 2m)!,

whence
(n—1+2m) (2"’ — 2+ 2m)! 22 1

GRS (€)] = ——s S m+in+i)l(Em—2)—i)!
_ (@n—2+ 2m)lan 1

(3.25) - om4n—1 50 (m +n — 1— S) Is!
_(en—242m)l (1 me-l (v B2 (n —l+m
T =1+ m! 5) P s )

(”=2)4’..-)'

The inequalities (3.24) and (3.25) may be combined in the following single
inequality valid for all » (odd or even):

(2n—2+2m)!.(1 min—1 U"-zl"z] (n—1+m
(n — 1 + m)! _) s )

|GEE (8)] < >
(n=12---).

(3.26)

#==0

Thus an upper bound to the (# — 1 + 2m)th derivative of G,_;(§) is
provided by the product of (2# — 2 + 2m)!/(n — 1 4+ m)! and the cumu-
lative sum of the first (or last) [(» 4+ 1)/2] probabilities in a binomial distri-
bution with index # — 1 4 m and parameter 1/2. (The latter cumulative sum
is, of course, readily available from various statistical tables.) This upper
bound may now be substituted for 4, ; ., in (3.10) to give the desired
simplified upper bound to the error after m terms in the asymptotic expan-
sion as a multiple of the (m 4 1)th term.
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