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^-ANALOGUE OF A TWO VARIABLE INVERSE PAIR 
OF SERIES WITH APPLICATIONS TO 

BASIC DOUBLE HYPERGEOMETRIC SERIES 

CHRISTIAN KRATTENTHALER 

1. Introduction. Let 

f(zuz2) = (/i(zi,z2),/2(zi,z2)) 

be a pair of a formal series (fps) in z\ and z2 of the form 

(1.1) fi(zuz2) = Zi/%l)i{zuz2) for / = 1,2, 

where ipi(z\,z2) is an fps with ^/(0,0) ^ 0 for / = 1,2. Then there exists a 
unique pair of fps 

F(zi,z2) = (Fi(zi,z2),F2(zi,z2)) , 

which is also of the form (1.1), with 

(1.2) ft (F1(z1,z2),F2(z1,z2)) = Zi for / = 1,2. 

This pair is called the inverse of/(zi,z2). 
For k, 1 G Z2 (pairs of integers), k = (k\,k2) and 1 = (/i,/2), we adopt the 

familiar multidimensional notations, |k| = k\ + &2, k + 1 = (k\ +/i,£2 + /2), k ^ 1 
if and only if kx ^ h and k2^l2,0 = (0,0), 

Li — Z i Z'j , 

and 

fk(zuz2)=f^(zuz2)f2
k\zuz2). 

By two-variable Lagrange inversion the coefficients of F/(zi, z2) or, even more 
generally, the coefficients of integral powers of F,(zi,z2), / = 1,2, may be 
evaluated (see for example [7, (4.5) with <f>(x) = x1]): 

(1.3) (zk)F\zuz2) = (z-l)f-k(zuz2)D(f)(zhz2), 

where 

D(f)(zuz2) = V>i(zi,z2)i/;2(zi,z2) — (zuz2), 
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744 CHRISTIAN KRATTENTHALER 

with *L(z\,z2) the Jacobian of/(zi,z2). ((zk)a(zi, z2) means the coefficient of zk 

in the formal Laurent series (fLs) a(zi,z2).) 
An example of such an inverse pair is 

(1.4)(a)/0(z1,z2) = 

and 

n . _ „ , . (zx(\-z2) z 2 ( l - z i ) \ 
(1.4)(b) F0(zi,z2) = , . 

V 1 -zxz2 1 -z\z2 J 

With the help of Lagrange inversion the coefficient of zk in FQ(ZI,Z2), and, 
consequently, of 

(i - z 2 ) / i ( i - Z l y v ( i -ziz2) / i+ /% 
can be evaluated. Essentially, this was done in [6, Theorem 1] and [7, p. 190]. 
In addition, Evans et al. [6, Theorem 9] give the following ^-analogue of their 
formula, which may be written as 

(1.5) (,»)• < ^ ' g W 

= qkxh (qP-k^;q)kl-i(q
a-k^;q)k2-i 

{q\q)kx(q\q)k2 

X ( ( ^ - qa)(qk2 - qh - (1 - ^ ) ( 1 - q'2)) . 

(For definition of the symbol (a; q)p see (4.2).) They prove it by a basic hyper-
geometric transformation formula and put the question if a proof by two-variable 
^-Lagrange inversion could be given. The first approach towards multivariate 
g-Lagrange formulas was made by the author in [16]. In the present paper we 
give a new two-variable ^-Lagrange formula (Theorem 3), a special case of 
which helps to establish a proof of (1.5). As a by-product, in Theorem 5, a 
^-analogue of the inverse pair (1.4) is obtained. 

The coefficient matrices of the members of the pair which will be given in 
(4.13) of Theorem 5 are inverses of each other (with respect to matrix multipli­
cation). In [8, 10] Gessel and Stanton, using certain pairs of matrices, which are 
inverses of each other, systematically derive one-variable basic hypergeomet-
ric summations and transformations. Applying the same method to the inverse 
matrices determined by the pair in (4.13), we are able to deduce a number of 
two-variable basic hypergeometric summations and transformations, all of which 
appear to be new. (F. H. Jackson [12, 13] was the first to treat basic double 
hypergeometric series systematically. While there exists an extensive theory on 
one-variable basic hypergeometric series, until now there have not appeared 
many results on basic double series. In particular, the number of summation 

(-H ZJ-\ 
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theorems is not very large. A collection of papers dealing with basic double 
series is included in the references, although we do not claim that this list is 
complete.) 

Our paper is organized as follows. Section 2 contains a short outline of [16, 
Section 3] in order to explain how two-variable ^-Lagrange inversion should 
be understood. In Section 3 the ^-Lagrange formula is given which we need to 
prove the coefficient theorem (1.5). The proof of (1.5) is done in Section 4 by 
use of the inverse pair (4.13). Finally, Section 5 is devoted to the derivation of 
basic double hypergeometric summations and transformations. 

2. Preliminaries. Unless otherwise stated, in this paper we shall always con­
sider fps (fLs) in the indeterminates z\ and z2 of the form 

2_\a^li f° r s o m e m £ Z2, 

whose coefficients at are rational functions in the indeterminate q. 
A sequence 

/ = (A(zi,z2))k€Z2 

of fLs satisfying 

(2.1) /k(zbz2) = ^ / n k z n and /k k ^ 0 
n^k 

is called a diagonal sequence. The sequence of powers of 

f(zUZ2)= C/l(Zl,Z2),/2(zbZ2)) 

satisfying (1.1), (/k(zbz2))kGZ21 is a n example of a diagonal sequence. Given 
another sequence 

8 = ( £ i ( z b z 2 ) ) I e Z 2 , 

where 

gi(zbz2) = ]TgkiZk , 
k ^i 

the substitution of / into g is defined by 

£(f)= (Ai(zi,z2))l€Z2 

with 

h\(zuz2) = ^g k i / k ( z i , z 2 ) , 
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746 CHRISTIAN KRATTENTHALER 

or more precisely 

k(zUZ2) = ] T \^T /nkgkl Z". 
n Vn^k l̂ J 

The sequence 

7 = (Fl(2,,Z2))l€Z2 

is called inverse of / if 

i.e., if and only if 

(2.2) ^ ] /nkFn(zi, z2) - zk for all k € Z2 

or, equivalently 

(2.3) ^ Fmnfnk=ômk f o r a l l m , k e Z 2 , 

where we have set 

F1(z1,z2) = ^ F k l z k . 
tel 

(̂ mk is the Kronecker-delta.) That means, / and J are inverses of each other 
if and only if the corresponding coefficient matrices (/„k) and (Fki) are inverses 
of each other. This fact will be of importance in Section 5. Equation (2.2) is 
the analogue for (1.2) in the setting of sequences. Obviously, for any diagonal 
sequence / there exists a uniquely determined inverse sequence J. 

By analogy with (1.3), we call an identity of the form 

(2.4) (zk)Fx(zuz2) = (z-%(zuz2) 

a Lagrange formula, where the sequence of fLsf = (/k(zi? ^2)) z2 is expressed 
in terms off. Equation (2.4) immediately implies 

(2.5) /k(zi, z2) = ^2 Fklz~\ 
i^k 

and therefore 

(2.6) (z0)/k(Zi,Z2)/n(zbZ2) = 6nk. 
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In [16] the author gave a method for finding / for a given sequence / . For 
fLs A(ZI,Z2) and fr(zi,z2) we introduce a bilinear form ( , ) by 

(2.7) (a(zi, z2), *(zi, z2)> = (z°)fl(zi, z2)ft(zi, z2). 

Given any linear operator L mapping fLs into fLs, L* denotes the adjoint of L 
with respect to ( , ), meaning 

(La(zuz2),b(zuz2)) = (a(zuz2),L*b(zuz2)) 

for all a(z\, z2) and b(z\, z2). What we need is the following special case of [16, 
Theorem 1]. 

LEMMA 1. Let 

f = (A(zi,z2))kçz2 

be a diagonal sequence satisfying the system of equations 

(2.8) Ufk(zuz2) = Ci(k)VMzuz2) i = 1,2, 

where Ui and V are linear operators (acting on fLs), V being bijective and 
c,(k), / = 1,2, are functions from Z2 into the field of rational functions of q 
satisfying the property that if m ^ n there exists a j (j = 1 or 2) for which 
Cj(m) ^ Cj(n). Let 

(hk(zuz2))keZ2 

be a non-trivial solution (i.e., h^ ̂  0 for all k G Z2) of the dual system 

(2.9) U*hk(zuz2) = Ci(k)V*hk(zuz2) i = 1,2, 

then 

(2.10) fk(zuz2) = (fk(zuz2\V*hk(zuz2))-
lV*hk(zuz2). 

3. The Lagrange formula. Recall the definition of ^-powers due to Hof-
bauer [11, 15]. 

Definition 2. The fps ipa(t) in the indeterminate t, a G R (real numbers), are 
called ^-powers for a fixed fps (p(t) if (fa(0) ^ 0 for all a G R and 

(3.1) <pa(qt) = (1 + (<?* - 1)^(0) M O -

It is easy to see that for q —» 1 we have 
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748 CHRISTIAN KRATTENTHALER 

where 

$'(t)/(p(t) = <p(t). 

Let the operators ci,e2 be defined by 

6iZn = qn<zn / = 1,2. 

The next theorem gives a ̂ -analogue of the two-variable Lagrange inversion for 
that special case of/(zi,Z2) of Section 1, where in (1.1) i/>i depends only on z^ 
and ip2 only on zi. 

THEOREM 3. Let tpa(t) and <j>a(t) be q- powers for (f(t) and <f>(t), respectively. 
For the inverse sequence (F\(zx,z2))l£Z2 of (fk(zX,z2))keZ2, where 

(3.2) /k(zi,z2) = z^z!? /(pkl+\(qz2)<l>k2+n(qz\) 

with A , / i G R , w have that 

(3.3) (zk)F,(zbZ2) = (z-')(l - qx+»zx$(zx)zMz2)e^e2
l) 

X z~k(fkl+x(qz2)(l)k2+^(qzi). 

Proof By (3.1) we get 

f (1 + (qk^ - DqzuKqn)) tyfi, - qk% 

and after a short calculation 

C [(1 - qzX(f>(qzx)) ex+q<iqzX(f)(qzx)cx (l - qz2ip(qz2)) e2]fk 

= qk'(l - qX+^qz2(f(qz2)e2qzX(j)(qzx)ex)fk 

[qXqz2(f(qz2)e2 (l - qzx<j){qzx)) ex + (l - qz2(f(qz2)) e2]fk 

= qkl{\ - qx+^qz2(p(qz2)e2qzX(j)(qzx)ex)fk 

This is a system of "eigenvalue" equations in the sense of (2.8). Thus the dual 
system for the auxiliary sequence 

(hk(zuz2)) k€Z2 

reads, by use of e* = e(
 l(i = 1,2) and a(zi,z2)* = a(zi,z2) for any multiplica­

tion operator a(zi,Z2), 

( [ef1 (l - qzx<j>(qzx)) 

+ q^e2
x (1 -qz2(f(qz2)) e^lqzx<t>{qzx)]hk 

= qk] (1 - qx^eYlqzX(j>(qzx)e2
lqz2if(qz2)) hk 

[qfeï1 (1 - qzX(j)(qzx)) e2
lqz2ip(qz2) 

+ e2
l (1 - qz2(f(qz2))]hk 

= qkl (1 - qx+»eYlqzX(j>(qzx)e2
lqz2<f(qz2)) hkl 
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which is equivalent to 

J (1 + fo*2+" - DZKKZI) ) eYlhk = qk*hk 

\ (1 + (q^+x - l)z2<p(z2)) e2
lhk = qk*hk. 

A solution of this system is 

hk{zUZ2) = Z"k^1+A(^2)0it2+/i(^l), 

hence, by (2.10), 

(3.4) /k(zi,z2) = (1 - qX^z^(zl)z2^(z2)eil€2l) 

x z~k(pkl+x(qz2)(t>k2+n(qz\), 

which together with (2.4) proves (3.3). 

4. Inverse pairs of sequences. We use the standard notations 
oo 

(4.1) (a;*)oo = n < 1 - f l * / > ' 

for arbitrary /3 G R 

(4.2) (a; ̂  = (a; ? ) « , / W ; q)^ 

(4.3) r+1^ r 

and 

(4.4) n 

<7,z 
y=0 

( f l i ;^ )y - ( f l r+ i ;^ ) / ^ 

(buq)j--(br;q)j (q;q)/ 

au...,ar; 

b\,...,bs\ 

oo 

(bi;q)oo-"(bs',q) OO 

We shall frequently write (tf)oo or (tf)̂  instead of (a; q)^ or (a; q)$, respectively. 
That is to say, the base of such an expression is q unless otherwise stated. 

By the ^-binomial theorem [17, Appendix (IV. 11)] 

(4.5) ^ a; 
q,z 

(az; q)0 

(z; q)oc 

(which we use as an identity of fps in z; for an fps-definition of (z; q)^ see [8, 
Theorem 3.13]) we have 

oo / —8 \ 

(4.6) - ( z ; ^ = £ i i _ i i V y . 
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750 CHRISTIAN KRATTENTHALER 

Letting q —• 1 we see that (z; q)$ is a g-analogue for (1 — zf. 
We shall freely make use of the relations between expressions of the type 

(a;q)p, contained in [17, Appendix II], and the "flip q into g_1"-idea, made 
precise in [8, Theorem 3.13]. In particular, 

(4.7) (z ;^ 1 ) 0 O = \Hqz\q)oo 

and 

(4.8) (z;q-%=l/(qz;q)^. 

To obtain the promised inverse pair of sequences, we require the following 
basic double summation. 

LEMMA 4. For r\, r2 G R holds 

U2 ( ^ W 1 ) ^ feWO^iW (4.9) 5>u 
(^)ji (^>72 (Z1Z2). 

= 1 
'ri+r2+/i+/2 

/Voo/. By two-fold use of the ^-analogue of Gauss's theorem [17, Appendix 
(IV.2)] 

(4.10) 2<t> 
a,b\ 

c: 
q, c/ab 

(c/a; q)oo(c/b; q) 
o 

(c; q)oo(c/ab; q) 

(which, just as (4.5) we use in a formal sense) we evaluate 

172 

(<l)ji(<l)j2 ( z l z2)r 1 +r 2+y 1 + 7 2 

yz{2(q-)j2(zl)r2+j2(z2 

,fio (q)h(Z\22)r^r2+j2 

mr\qri\ 

zxz2q 
fi+r2+j2. 

<7,W2 

^ h ( ^ 2 ( z 1 Z 2 ) n + r 2 + 7 2 ( Z i Z 2 ^ + ^ + i 2 ) o û ( Z l ^ 2 ) o o 

(Z2), H 

( Z i Z 2 ) n 

= 1. 

2</> 
*b<7 

Z i Z 2 ^ 
<7,z2 

In (4.9) perform the substitutions r\ = k\ + A, r2 = k2 + £t, 7i 
h — n2 — k2. Multiplying the resulting identity by zk we get 

n\ — k\ and 

(4.11) ] T ^ -ki)(n2-k2) 

n ^ k 
(q)nx-kM)n2-k2 

z n ( Z 2 ) / I I + A ( Z I ) / I 2 + / X _ z k 

{z\zi) 
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After replacing z{ by zxq v and z2 by z2q
 x in (4.11), turning q into q~x leads 

to 

(4 12) V"* „fci*2-*ifl2+|n-k| W 2 ) " r ^ i W )A22-^2 

x zn fegA; ^ " ^ / H + A ^ I ^ ; g " 1 ) ^ = z k 

(ziZ2q
x+II;q-l)ni+n2+A+n 

valid for all k G Z2. By comparing this system of equations with (2.2), we 
obtain 

THEOREM 5. The sequences 

3 - (£k(zi,*2))keZ2 ûAirf £ = (Gi(zi,z2))l€Z2 

are inverses of each other where 

(4.13)(a) £k(z,, z2) = e72' (qk^zk/(qz2;?)tl+A(?2,;^) 

(4.1J)(D) ( J I ( Z I , Z 2 ) = Z r— ; 

(zxz2q
x+»\q %+12+x+v 

eX2 w //*e //«ear operator defined by 

e12z
n - ^ lW2zn. 

Proof. By the ^-binomial theorem (4.5) we get 

Jfciit2-«ii2+|n-k| (ff 2 ) f l i -^ iW ' )/g2— 2̂ n 

n è k (q)nx-kx(q)n2-k2 

= qklk2el2
l (zk/(qz2)kl+x(qzl)k2+fl) 

= gk(zuz2). 

Using this, comparison of (2.2) and (4.12) completes the proof. 

For A = /x = 0 the sequences g and ^ are the ^-analogues of the powers of 
fo(z\,Z2) and Fo(zi,z2) respectively, given in (1.4). In fact, for À = JJL — 0, when 
q —» 1 we have 

£k(zi,z2)-> (Zl/(1 -z , ) )" 1 (z2/(l -zx))
kl 

and 

Gl(.-„zl)^(Ml^l)"(2(lzii))' 
V 1 - z i z 2 J V ! ~ z i z 2 J 
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Another formulation of Theorem 5 is 

COROLLARY 6. The sequences g and Q are inverses of each other where 

(4.14)(a) gkOi, z2) = zk/(<?z2; q)k^x{qzùq)h^ 

and 

'i+/2+A+/x 
(4.14)(b) Gi(zi,z2) = ci2 [q hl2ï— A+u. _ n  

In the proof of Theorem 5 we saw that the coefficients of z11 in gk(^i? zi) are 

(A\^\ n fcifc2-/ii»2+|n-kl(? 2 ^''(Ùnx-kxiq l \(Ùn2-k2 

Y*-lD) 5nk — H / \ / \ 
W?)ni-*iW<7)n2-*2 

Using a variation of the ^-Lagrange formula of Theorem 3, we compute the 
coefficients of Gi(zi,z2). 

THEOREM 7. The coefficient ofzk in Gi(zi,z2) is given by 

( 4 . 1 6 ) G W = 4 1 2 ——[ ZTT T 3 Ï — T T T 
(q l;q ^-i.iq l\q % - / 2 

V (1 - qk^){\ - qk'+x) J ' 

Proof It is a simple fact that the fps {z\q)a are ^-powers for —1/(1 — z). 
Hence, using (4.14)(a) and (3.4) with < (̂z) = </>(z) = —1/(1 — z), 

Ik(zi,z2) = ( l ~ ^ a , ^ _ Z 2 ) c r 1 e 2 1 ) z-k(qz2)kx+x(qz{)k2+,. 

Because of (2.6) we get, since e*2 = C12» 

gk(^i,z2) = ei2^ l f c 2 ik(zi,z2). 

Therefore the Lagrange formula (2.4) for F\ = G\, etc., reads 

(zk)G,(zi,z2) 

XZ"k(^Z 2) ik 1 +A(^l) ik2+M)-
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By the ^-binomial theorem (4.5), with q replaced by q l, the right-hand side of 
the last equation is equal to 

u2-kxk2 (q^q-X-i^^q-X-i, 

/ . ^ , ^ ( 1 - ^ - ^ ( 1 -qh~h)\ 
V (I - qk^)(\ - qki+X) J ' 

which establishes (4.16). 

The coefficient evaluation (1.5) of Evans et al. [6] is only a reformulation of 
Theorem 7. 

COROLLARY 8. For a, (5 G R we have that 

(qz2)a(qzi)[3 ^ (q)kM)k2 

X ((**» - ?*)(*** - ^ ) - (1 - qkl)d ~ qk2)) zk. 

/Votf/. By (4.13)(b) and (4.16) we have 

(z2q
x; q-^xjziq*1; q~l)i2+^ 

(ziz2q
x+^;q-l)il+i2+x+^ 

= ^ qlxl2~kxkl hh-klk2 {qk^q-l\-h(^\q-X)k2-i2 

(q-x',q-l)kx-iM~X'^~l)k2-i2 

V (i -^+")(i-<7*'+ A) y 

In this identity substitute (in order) k +1 for k, — /? — p for l2, —a — X for l\, 
z2q~x for Z2 and ziq~v for zi thus obtaining 

(z2\q~l)-a{z\;q~l)-p 
(ziz2\q-l)-a-p 

= v - klk2+ak2+0kl(<fi-(,;q-%tf'-a;<i-% 
^ (q-hq-%(q-u,q-lh2 

( kl+^a-3(i-g-k')(i-^)\ zk 
X V q (\-q^°)(l-qW))Z-

Regarding (4.8), a short calculation leads to 

(<?ziZ2;<7)«+/? = y ^ jt. *>**.**» (^~*2 w)*, (?""*' ; g)*i 
{qz2\q)a(qz\\q)p ^ (q;q)k[(q;q)k2 

( (l-<r*')(l-<r*0 \ k 
XV (1-«-*•)(!-^-*')/ ' 
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which is equivalent to (4.17). 

Remark. Our approach to the proof of (4.17) relies heavily on Gessel's [7, p. 
160] ^7= 1-proof. For example, the system of equations (4.12) is the g-analogue 
for the two equations at the top of p. 160 in [7] (for a = d = 0). 

From Corollary 8 we may deduce another identity of [6, (6.1)]. 

COROLLARY 9. For a, /? E R we have that 

( 4 i 8 ) < Z l Z 2 W-i = Y^k>^~k2)k^~kl)k2jL. 
fe)a(zi)/3 ~ (q)kx(q)k2 

Proof. In (4.17) replace z\ by z\/q and z2 by zifq. Multiplying the resulting 
identity by 

00 

(i-z1z2/^r l = ^](z1z2y^' 

and collecting the terms on the right-hand side yield (4.18). 

Just as the pair (4.13) corresponds to the identity (4.17), there exists an inverse 
pair of sequences corresponding to (4.18), which we will state without proof. 

THEOREM 10. The sequence o/fLs 

(4.19)(a) e\l (V'*2(l " ^H - qk^zx)- *- ) 

is the inverse of the sequence 

(4.19)(b) / z ^ A ~ ^ ~ V A ( z i ^ r t 2 + ^ 
(ziz2q

x+^'1; q-l)h+i2+x+^+\ 

5. Transformations and summations. Suppose that the infinite lower-
triangular matrices (/nk)n,kez2 and (Fki)k,iez2 are inverses of each other. Then 
the "inverse relations" 

(5.1) bn = Y, /nktfk, n E Z 2 

n^k^O 

and 

(5.2) ak = Y, F"b*i k e Z l 

k^l^O 
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are equivalent, where (ak) = (ajf}) and (6„) = (b^) are sequences of rational 
functions in q. For the choice 

/nk = ̂ f e + " ^ - l - k | g n k and 

by (4.15) and (4.16) the equations (5.1) and (5.2) may be written in the form 

(5.3) ba = <ËM*k Y(-if\q»<^-ÙH1) 

w (fig"1 )t2^, w h.-fefr-'" )t, (<r"% 
X Civ 

(A)kl{B)k2 

and 

(5.4) ak = ( - i ) W ^ ) ^ m ^ - t , ) * . C V ^ 
(<?)*, (<?)*2 

( 1 - A ^ ) ( 1 - ^ 2 ) ( 1 - A ^ - ^ ) ( 1 -Bqk2-ki) 

(q-kl)iM~k2X q% 

A £ ( l - ^ ) ( 1 -V 2 ) 

x V ( ^ 1 + 1) /1(^ 2 + 1) /2 ,„ 
1^0 

(^2-*l + 15)/1(^l-*2 + 1 A)/ 2 

where we have set A = #A and B = q^. Setting 

(q'kx)iM'k2)h 

** = £ 1^0 
(^2-*'+15)/1(^-*2 + 1 A)/ 2 

^"Iftl, 

(5.4) becomes a recursion for Xk, namely, 

(_i)iVG')-(S) ((?M<?)*2 

Afl(l-V»)(l-g**)v 
Ak ( i - V ) ( i - ¥ ) 

#k 
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where e = (1,1). The solution of this recursion is 

Y = / _ u W (g)*i(?)*2  
A k * l> (qh-^xB)kMkMA)k2 

x^^(V)-(V)(AByak_.e? 

consequently, 

= , n N (9)*i(9)*2 

Multiplication of (5.1) (where/nk = q-M2+ni+n2-\n-k\g^ b y zn a n d s u m m i n g 

up both sides with respect to n, by use of (4.13)(a) and (4.15), yield the trans­
formation 

(5.6) y bnz{z2
z = > ak . 

^ (Zl)oofe)oo ^ (AZ2)^(BZ1)^2 

Equation (5.6) holds if (5.3) or (5.4) is satisfied. Similarly, multiplying (5.2) 
(where F w = <7*»*2~/l/2""lk-ilGkl) by q~k{k2zk and summing with respect to k, we 
get by (4.13)(b) and (4.16) 

o 

= (Bzi/q;q~l)00(Az2/q\q~l)oo(ziZ2/q
2;q~~l)o 

(zi/q; q-x)oo{z2lq\ q-l)oo(ABzxz2/q
2; q~l)oo 

^ (z{z2/q
2;q-\+l2 

After replacing z\ by qz\, z2 by gz2 and q by <7~\ we obtain the transformation 

(5.7) £ > k\h-k\-k2a(\ Jq)zkx zk2 
k ^1 ^2 

(J5zi)00(Az2)oo(2l22) oo 

(Zl)oofe)oo(ABz1Z2) oo 
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Again, (5.7) holds if (5.3) or (5.4) is satisfied. Different choices of (ak) and (bn) 
which satisfy (5.3) or (5.4) yield basic double hypergeometric summations and 
transformations when substituted into (5.5), (5.6) or (5.7). 

First take 

(5.8) ak = qk^Aki(A)kl{C)k\ 
iq)kl(q)k2 

By two-fold use of the g-Vandermonde summation [17, Appendix (IV. 1)] 

(5.9) 2</>i a,q 

b\ 
q,q 

(b/a; q)n a
n 

Q>\q)n ' 

we have by (5.3) and a bit of manipulation 

bn = 
(B)ni(A)n2s^(q-n2)k2(q

niB)k2(C)k 

(nx~n2 (q)nM)n2 ^ (qx^lA)k2(B)k2(q)k2 

Xqk* 291 

(f2-k2A,q-ni\ 

U 
\-nx-k. IB; 

q,q 

= (B)nt(A)ni y , (q-»i)kl{q^B)kl(C)h ki 

iq)nM)n, £?0 {q^/A)kl{B)h{q)h
q 

x (<? -"i~"2 /AS) f f i f „ ? - ^ ) ^ w , 

(<7 \-n\-k2 /*)», 

(q)ni(q)n2 

= (-ABT>q"'n2+^ ( A )"- ( < ? ' '" '" i 2 /A g )"' 
(q)nM)n2 

(q^/AC)n 
X (q^/A)„2

 C ' 

W~"2/A; 
q,q 

and finally 

(5.10) bn = 
(qn^AB)ni(AC)n 

(q)ni(q)n2 
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The resulting evaluation (5.3) reads 

(fi<f%_*, (A^)t,-t2(C) t 2(?-" ' )*, (<Tn% 
(5.11) £ 

kSO (B)k2{q)kt(q)k2 

X qkikl~(^)~(1) (_6<7"' )*• (-Aqnï f1 

(q"iAB)ni(AOn2 

For B = C we get the symmetric formula 

(5-12) Y, 
kSO 

W ) t2_ t l (A«^ )*,_*,(«-"' )kl(q~"2)h 

(q)kl(q)k2 

l ^ ) « i + n 2 

(B)„,(A)„2 

A standard notation for a g-Appell type basic double hypergeometric series is 

(5.13) « S 

£ 

e i , . . . , e p : a i , . . . , a r ; c i , . . . , c M ; 

,/b-«-Jm • ̂ b - . . ,£v,di , . . . ,dv ; 

y=i 7=1 7=1 

< ? ; z b z 2 

-zV2 

7 = 1 7 = 1 7 = 1 

The dual evaluation (5.5) for the above choice of (a^) and (b„) can be written 
as 

1:1;2 (5.14) < ^ 
AB:<7_tl; AC,q~h; 

- : tfi-WB; AB,q*-*2+lA k\-ki+\ A . q\ q, q 

1 U * (e<7^'+ 1)*,(A<7^-+% 

* 3 < / > 2 

X3<fc 

r<t\<t\<Tx\ 
q-\q~X 

\_qk*~XA,qk^XC; 

?- t , ,9-*2 

W-k,/A,ql-k*/C; 

(Bqk2-k,+i)ki(Aqk,-k2+i)k2 

q,q/AC\ 
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By (5.6) we get the transformation 

(5.15) rtJÛâËkmz.^ 
nSO 

O J2qklk2BklAk2 

(^l)oofeX^ . > A k^O 

^ (A)kl(C)k2 z^z"? 

(<ÙkM)k2 (Az2)kx(Bz\)kl 

The special case B — C 

(5-16) Y.Tvfr'T^ 

O 

(^i)oofe)oo ~ 
k^O 

(q)k{(q)k2 (Az2)kl(Bzi)k2 

turns out to be a ^-analogue of 

( i - Z l -z 2 r^ = ( i - Z i r
/ ? ( i - z 2 r( i - -^- ) ( i - Z2 

i — z2y v i - 2 

when setting A = qa ,b — qh and letting q —> 1. 
Finally, the dual transformation (5.7) reads 

~ ( < 7 x\q x)kM x\q % 

_ (^1)00(^2)00(^1^2)00 y -^ hh-u-h 

{zx)oo{z2)OQ{ABzxzi) 
00 , ^ „ 

(«y-faAg ;(?-'),, (AC ;g-')/2 

^- 1 ;^- ' ) / , (^ l ;<?- , ) / 2 

X z , , z / 2 (z2) / , (z l ) / 2 

(Z\Zl)h+h 
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The left-hand side can be summed by the g-binomial theorem (4.5). In basic 
hypergeometric notation we obtain after a short calculation 

/ 1:1;2 

01:O;1 

l/AB :z 2 ; l /AC,z i ; 

q\zuz2 z\z2 : —; l/AB; 

ABz{z2,zuz2\ 
i 

z\z2,ABz\,ACz2; 

or, after setting F — l/AB and E = l/AC, 

n 

(5.17) <!>[$ 

=n 

F :z 2 ;E ,z i ; 
<?;zi,z2 

ziz2 : - ; F; 

Z!Z2/F,zbz2; 1 

ziz2 ,zi/F,z2 /F; J 

As the cases zi = 0 and z2 = 0, respectively, show, this is a generalization of 
the g-binomial theorem (4.5). 

Another choice is 

(5.18) ak -okxklq ^2^ L . 
IS- hi \qhx 

By the g-Gauss sum (4.10) we obtain from (5.3) 

/c i r*\ L ( )ni+ri2 (B)n](A)n2 

(5.19) bn = . 
(C)„,(C)W2(^)ni(^)W2 

By (5.5) we get 

'C:B,q-k>; A,q'k*\ 
(5.20) <^ : j 

— S^C 

X 3 02 

:C,^2"* I + 1f i ;C,^-*2 + 1A; 
( l - A ) ( l - f f ) 

( 1 - ^ A ) ( 1 - ^ B ) ( C ) , , 

<?;<2S<7 

( l - A ) d - B ) (?)*, 

q-'^q^lC,* 

q^/A.q^/B; 
q,q 

For the special case C = <?A# the Pfaff-Saalschiitz summation [17, Appendix 
(IV.4)] 

(5.21) 3<fc 
a,b,q n; 

c,d\ q,q 
(c/a\q)n{c/b\q)n 

{c\q)n{c/ab\q\ ' 
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provided cd = abq1 \ can be applied to find 

qAB :B,q~k{; 
(5.22) (t>Q%}> 

A,q-k2l 

:qAB,t 

•Sk[k2(ABt {qX 

- * i+ i B\ qAB,qK^Kl+{A\ 
q\q,<i 

(qAB)k] 

Another example is when B — C and the right-hand side of (5.20) may be 
summed. This time by the g-Vandermonde summation (5.9) 

1:1;2 (5.23) ( ^ 
B.q- A,<T*2; 

f>k,k,B 

•.^-ki+xB\B,qk'-h+xA; 

(«7)*, 

?;?)? 

The transformation (5.6) is 

C :£;A; 
(5.24) 4{;} 

:C;C; 

C 

(^ l )oo fe)oo 

<?;^i^2 

kl-knk 'C 
(A)k(B)k (ziz2)* 
(C)*fo)* (Az2)t(Bz,)t 

The special case A = B = C 

(5.25) ^ (A)w ,+n 2 „«i 

n^O (?)/i,(<7)/i2 

:1 *2 

(Azi)oo(AZ2)o 

• £ • 
A2-*,*^)* fo^r M-

( ^ l ) o o f e ) o o ~ (<?)* (Az2)jt(Azi)ifc 

is a ^-analogue of 

(i-z1-z2r^(i-z1r
fl(i-z2r i - zxz2 

( l - z , ) ( l ~ z 2 ) 

By (5.7) the dual transformation is 

(A;rt(£;rt 
<7 

(C;«-,)*(9-,;?-,)< 
(Cz,z2)

A' 

E^ , / 2" , r (flz1)oo( '4Z2)0o(ZlZ2) O 

o 

xz[]zl
2
: (z2)/,(zi)/2 

(2lZ2)/,+/2 ' 
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which after setting E — 1/A, D = 1/J5, F — 1/C is transformed into 

(5.26) L 1:2;2 

n 

F \D,z2\E,z\\ 

z\z2 : F\F\ 

z\,z2,z\z2/DE\ 

q\z\/D,z2/E 

D,E\ 

Z\/D,Z2/E,Z\Z2\ J 
291 q,z{z2/DE 

If D = F the 2<£i reduces to a i</>o, which is summable by the g-binomial 
theorem (4.5), thus arriving at (5.17) a second time. For D — E — F, again by 
(4.5), we deduce from (5.26) 

(5.27) <f>\^ 

n 

D : z2\z\\ 
q\zxjD,z2\D 

z\z2 : —;—; 
zi,z2,ziz2/D; 

z\\D,z2\D,z\z2\ 

This is a ^-analogue of 

z 2 ( l - z i ) z i ( l - z 2 ) 
\-Z\Z2 \-Z\Z2 

- Zxy\\ - Zly\\ - z 

Also of interest is the limiting case F —-> oo in (5.26), 

= (\-z{r
d(\-z2r

d(\-zxz2)
d. 

(5.28) ^ ^ ^ ^ ^ ( Z l / D y K z 2 / £ ) f e ^ ^ 

z\,z2,ziz2/DE\ 1 

z\jD,z2jE,z\z2\ J 

it is a ^-analogue of 

1^0 

=n 

1 -
zi(l - z 2 ) 
1 - z i z 2 

22(1-20 
1 - z i z 2 

= (i-z1rd(i-z2re(i-z1z2)« 
Equations (5.27) and (5.28) could also be obtained as limiting cases of Al-
Salam's [1] g-Saalschiitzian double series theorems. 

We have only proved (5.26) in a formal sense. But it is easy to deduce that 
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(5.26) remains valid for \q\ < 1, \z\\ < \D\ and \zi\ < |£|, when it is interpreted 
as an identity for basic hypergeometric functions. Setting z\ = qa, zi — qb', 
D — qd, E — qe, F = cf and letting q —> 1, the resulting iF\ on the right-hand 
side of (5.26) is summable by ordinary Gauss-summation [17, Appendix (III.3)], 
which leads to 

(5.29) F,1:}:? 
/ :d,b\e,a\ 

1,1 

a — d,b — e,a + b,f,f — d — e 

a,h,a + b — d — ej — dj — e 

subject to suitable restrictions on a,b,d,e,f such that convergence is provided. 
This identity is due to Carlitz [5, (1.7)]. 

Of course it is possible first to choose (bn) and, by (5.4), compute the a^s. 
If we take 

(5.30) bn 
(C)ni(D)n 

(q)nM)n2 

two-fold application of g-Vandermonde summation (5.9) yields 

(5.31) ak = (-lt^)<^ 

(qk^+lB/C)kl(q
k^+lA/D)k2 

x CklDk2 ( 1 

(<7)*i (<7)*2 

AB (\-qki)(\-qk2) 

CD (1 - qk2B/C)(\ - q^A/D) 

The evaluation (5.3) becomes 

„n i k i +n2 k2 Q k i Q k2 

(B)ni(A)« k^O V 

(B<fi ) k 2 - k l {Aqn- \ _kl (q
k^+lB jC\ 

{B)h{A)k] 

(qk^+lA/D)k2(q~^)kl(q-^)k2 

(<?)*, (q)k2 

AB 
CD 

k\+n2k2£kl£jk2 

{B(f%-kl(.A(f*)k,-k2{<ik>-k>+lB/C)kl-li<f<-*'+1A/D)k2-

(B)*2(A)tl 

(<7)*,-l(<7)*2-l 
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Let the first of the two sums on the right-hand side of this identity be abbre­
viated by Y0(A,B,C,D). Thus we may rewrite it as 

(Ont(D)n2 

{B)ni(A)n2 

= Y„(A,B,C,D) 

( l - A ) d - B ) 

The solution of this recursive relation is 

(C)„,(0)„2 

ABYn-e(qA,qB,qC,qD). 

Yn(A,B,C,D) = ]ry-;(Afiy 
(8)„,(A)„2 ,50 

(^";r ' ) / fw') j 
(CW)7(DW)y ' 

consequently we obtain the transformation 
1 * 2 (5.32) Y^\qn'kl+n2klCk{Dk 

(Bq"i)k2-kl(A<ln2)kl-k2(q
k2-kt+[B/C)k 

(A)kl(B)k2 

(qk^-+lA/D)k2(q-'")k,(q-^)k2 

{q)kM)k2 

(Q«,(-P)«2 

(e)„,(A)„ -392 
<?-"', <r" 2 w; 

C,D; 
<7W rni+«2 A£ 

The transformation (5.6) becomes 

^ (<?)«, (<?)„2 ' 2 

(fiZl)oo(Az2) OO 

(^l)oofe)o (-irq KAMI) 

(qk^k'+[B/C)kl(q
k^+lA/D)k 

Ck'Dk2[l 

<,q)kM)h 

AB (1 -qk')(\ -qkl) 
~ CD (I- qk^B/C)(\ - q^A/D) )(Az2)kl(B: (Bz,)t2 

The left-hand side is summable by the g-binomial theorem (4.5). Replacing z\ by 
z\/B, Z2 by Z2/A, C' JB by £ and D/A by F, we obtain after some manipulation 

(5.33) 
O 

(Zl)oo(Z2)oO 

« ( -

, M 2 ^ 2 £ ) ^ ^ ' F ^ 

(1 
( l -9 -*^) ( l -« -* 'F) > / ( z2) t 1 (z 1 ) t 2 

zV2 
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In view of (4.17), this identity is a ^-analogue for 

\ 1 _ 7 , 1 _ 7, / 
(l-zl)-

e(l-z2)-
f = 

i-^-Yli Zl ' ' ' 
1 — Z2 J \ 1 — Z\ 

Setting 

^ (q)kx(q)k2 fe)*,(zi)*2 

(5.33) may be rewritten as 

(Ezi)QO(Fz2) 
/ w x = R(z^z2) ~ 7J 77] -R(qziqz2). 

Thus, we have 

R(zuz2) = > ^ y , 
(^i)oofe)oo ^ri (Ezi)j(Fz2)j 

hence, 

-k2F\, (n~k\F\, 7k^7kl 

(5.34) yq2k.kM-k2E)kM^F)k2 z?z? 
~ (q)kl(q)k2 fe)*,(zi)*2 

_ ( ^ 1 ) 0 0 ( ^ 2 ) 0 0 y \ / 2 - / ( z i z 2 ) y 

0?l)oofe)oo ^ (Ezi)j(Fz2)j' 

From (4.18) we see that this is a ^-analogue of 

j *1 *2 % 

1 — Z2 1 — Zj 

. . - ' 
. • ) ( - ï ^ ) 

•0 

1 - 2 2 , 

n _ 7,W71 -
( 1 - Z , ) ( 1 - Z 2 ) , 

= a _ Z i r ( 1 _ Z 2 ) - / ! £i£i 
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Finally, we turn to the dual transformation (5.7), 

E 
k^O 

(-DiVMVRV) 

(<? . - * 2 + * l - l B/C;q-\(q~k'+k^A/D-q-{)k 

(q-l;<r%{<rl;q-l)kl 

C * ' D t 2 ( l -
AB (\ - q~h)(\ - q~ki) 

CD (1 - q-kiB/C)(\ - q~k'A/D) 

(fiz1)00(Az2)oo(ZlZ2) OO 

(Zl)oo(Z2)oû(ABziZ2) OO 

y\j^-U-l, (C',q-%(D-q-% 

1̂ 0 

zV2 
Z l Z2 

(q-x\<rx)hi<rl\<rx)h 

x z ^ 2 (Z2)/i(Zl)/2 

(ZlZ2)/i+/2 

or, equivalently, 

(5.35) ^ J-\k 2
(q-^B/C)kl(q-k'A/D)k 

AB (l-<rt2)U-<rt') 
CD (1 - q-k*B/C)(\ - q-^AjD) 

x(Cz,)*1(Dz2)*
i 

£< x > ,4' 
1̂ 0 

(Bzi)00(Az2)oo(ziz2) o 
(Zl)oofe)oo(ABziZ2) o 

; , / ?(l/C) ; ,(l /P)/2 

x C C z O ' ^ D z ^ ^ ^ . 
(ZlZ2)/!+/2 

By use of (4.18), the left-hand side turns out to be equal to 

(CDziz2)00(Az2)0O(Bzi)o 

(q-{ABzxz1)OQ(Czx)OQ(Dz1)c 

therefore from (5.35) we derive 

- ( l - ^ 1 ABz 1 z 2 ) , 

(5.37) ^ ^ , / 2 ( 1 / ^ ( / { D ) f a t C ^ / , ^ ) f a 7 
(<?)/l(^)/2 

(Cz1)00(Dz2)00(ziz2) 
o 

(Zl)oofe)oo(CDziZ2) o 

(Z2)/!(Zl)/2 

(2122)/, +/2 
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This identity appeared before in (5.28). Another identity, which was proved "en 
passant" by (5.36) is 

(5 3 g . (CDziZ2)oo(Az2)oo(BZi)00 _ yy 

(ABzlZ2)0o(Czl)00(Dz2)oo ~ ^ L 

^kl(^B/C)kt(q-k'A/D)tl 

x l -

( t f ) * , (<?)<t2 

AB a-?-*')( i-<r*2) 

CD (1 -q-^B/C)(\ -q~k'A/D) 

x(Czi)'<(Dz2t 

After replacing zt by zi/C, Z2 by Z2/Z), B/C by (7" and A/D by q13, we get by 
(4.2) 

(ziz2)a+/3 _ ^ / , , (<7«^+1 ),,_,(/"*'+l), <-> ^ - g ( ^ ' ^ 2 - 1 

k^0 v (q)kM)h 

X ((1 - ^a-*2)(l - <f~kx)- qa+P(\ - ?-*')( 1 - q~k2))\ 

which also appears in [6, Theorem 10]. 
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