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PLANE CURVES AND p-ADIC ROOTS OF UNITY

Jost FELIPE VOLOCH

We prove the following result: Let f(z,y) be a polynomial of degree d in two
variables whose coefficents are integers in an unramified extension of Q,. Assume
that the reduction of f modulo p is irreducible of degree d and not a binomial.
Assume also that p > d? 4+ 2. Then the number of solutions of the inequality
|£(¢1,¢2)] < p~*, with (1,2 roots of unity in Q, or zero, is at most pd?.

Let C, be the completion of the algebraic closure of Q, with its usual norm
extending that of Q,. In [5], a result which implies the following statement was proved.
If f(z,y) € Cplz,y] there exists a positive constant ¢ such that, for any roots of unity
(1,€2, either f(¢1,{2) =0 or If((l,Cg)I 2 ¢. (A similar result holds for polynomials
with an arbitrary number of variables.) In general, however, there is little information
about the value of ¢. In the case that f is linear and its coefficients are units in an
unramified extension of Q,, it was proved in [5] that the inequality | f (¢, §2)| <p?
had at most p solutions (j,{2 roots of unity or zero. The purpose of this note is to
obtain a similar result for more general polynomials in two variables. Recall that a
binomial is a polynomial with (at most) two non-zero coefficients. Qur main result is
then:

THEOREM. Let f(z,y) be a polynomial of degree d in two variables whose coef-
ficents are integers in an unramified extension of Q,. Assume that the reduction of f
modulo p is irreducible of degree d and not a binomial. Assume also that p > d? + 2.
Then the number of solutions of the inequality |f(§1,C2)| < p~1, with (4,(, roots of
unity in Q,, or zero, is at most pd?.

ProoOF: We shall first prove the theorem under the additional condition that we
are dealing with roots of unity of order prime to p. The inequality then translates into
f(¢1,¢2) = 0(mod p?) . The ring of integers of the completion of the maximal unramified
extension of Q, can be viewed as the ring of Witt vectors over the algebraic closure
of F, and, since we are interested only in the situation modulo p?, we can work in
the Witt vectors of length two over the algebraic closure of F,. We are thus interested
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in the solutions of the equation f((z,0), (y, 0)) = (0,0). This equation translates into
the system fo(z,y) = g(z,y) = 0, where fy is the reduction of f modulo p and the
polynomial g is the reduction modulo p of the polynomial (f?(zP,y?) — f(z,y)’ )/p
and o is the Frobenius automorphism of the ring of Witt vectors. Clearly g has degree
at most pd and, since fp is assumed irreducible of degree d, the result we want follows
from Bézout’s theorem unless fo divides g, which we proceed to show cannot happen.

Let X be the irreducible plane curve defined by fo(z,y) = 0. We shall derive
a contradiction from the assumption that g vanishes identically on X. If ¢ = 0 on
X then, by differentiating g(z,y) = 0 we obtain g, + g,dy/dz = 0 and, from the
definition of g we have g, = f2(z?,y?)zP"! — f(z,y)* ' fo = f2.zP~! on X. Likewise
gy = fé’yy”‘1 on X. Since fy is of degree less than p and is not a binomial, we
have that foz, fo, are non-zero. Using that dy/dx = — fo./ fo,, we obtain the identity
fg;lz”‘l = f(’)’;lyp‘l, on X. This gives zfo; = cyfo, for some ¢ € F,. The lemma
below ensures that this cannot hold under the assumptions that p > d* and f, is not
a binomial and this will complete the proof in the case the roots of unity are of order
prime to p.

If ¢1,(2 are arbitrary roots of unity satisfying the inequality | f (¢, (2)| <p ! we
can write {; = A\;7;, @ = 1,2 where the ); are of order prime to p and the 7; are of
p-power order and are not both equal to one. We shall show that this inequality has no
such solution. By a harmless change of coordinates we may assume that \; = 1, i = 1, 2.
Further, perhaps after switching = and y if necessary, we may assume that n; = ] for
some integer . We write 71 = 1 + 7 and notice that the inequality |f(¢1,¢2)| < p?
implies f(1 + 7, (1 +)") = 0(modnP~'). On the other hand if O is the ring of
integers of the field F(m;), where F is a unramified extension of Q, containing the
coefficients of f, then O/nP~! is isomorphic to k[t]/tP~1, where k is the residue field of
F. Therefore we obtain fo(1+1¢,(1+t)") = 0(modt?~!). This implies, with notation
as above, that y/z" — 1 has a zero of order at least p — 1 at some place of X centred
at (1,1), so the differential dy/y — rdz/z has a zero of order at least p - 2 at that
same place. However, this differential has at most 3d poles counted with multiplicity,
so at most 3d + 2g — 2 zeros, where g is the genus of X unless it is identically zero.
Now, 3d +2g — 2 < 3d + d(d — 3) = d® < p — 2, by hypothesis, so the differential is
identically zero, which, using that dy/dz = —fo,/ foy, leads to a contradiction with the
lemma below. 1]

It remains only to prove:

LEMMA. Let f(z,y) =0 define an irreducible plane curve X of degree d over an
algebraically closed field k of characteristic p satisfying p > d*. If zf, = cyf, on X
for some c in k then f is a binomial.

PROOF: The hypothesis means an identity zf; — cyf, = bf for some b in k. If
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f(z,y) = T aijz'y?’ we get aij(i —cj—b) = 0 for all 4,5. Suppose first that b = 0.
For any ¢, 5,4/, ' with both a;;,a;;» non-zero, we get i —cj = ¢’ —cj’ = 0 which implies
that 45’ — '3 = (t — ¢j)j’ — (¢ — ¢j')j = 0 in k, which means that p divides ij’ —i'j,
but under our assuption that p > d?, this implies that ij’ = 4’5 and this implies that
the value of i/j is constant for all 4,5 with a;; # 0. So f(z,y) = 3 @rmrnz™™y™

which can be written as a constant multiple of a product of terms of therform ™y" -«
and, since f is irreducible, we conclude that f is a binomial.

Assume now that b is not zero. First of all, if f is a polynomial in just one variable
and is irreducible, then it is a binomial and we are done. Therefore, we may assume that
there exists i, j1 with agj,,ai,0 both non-zero and we get that ¢; = b and c¢j; = -b,
so ¢ is not zero and ¢ = —i;/jy. If 4,5 are such that a;; # 0 then i+ jiy/j; —i; =0 in
k so ij1 + 741 = t171(mod p). But ¢1,51 < d, i+ 7 < d, therefore 0 < 151 + 741, 1171 €
d? < p so ij1 + ji1 = i1j1. Let & = (41,51), 41 = mé, j1 = nd, (m,n) = 1. We get
in + jm = mnd, so m|i, n|j and writing i = mu, j = mv we get u+v = 6. Thus
flz,y) = Zamu,n(g_u)z"‘“y"(‘s‘“) which can be written as a constant multiple of a

v
product of terms of the form ™ — ay™ and, since f is irreducible, we conclude that f
is a binomial. 0

REMARKS. (i) If X is a projective curve of genus bigger than one embedded in an
Abelian variety A, all defined over an unramified extension of Qp, then Raynaud [4]
proved that there are only finitely many torsion points of A of order prime to p which
are in X modulo p? and Buium [1] gave an explicit bound for the number of those
points. Perhaps the techniques of Coleman [2] could be used to extend this result to
the full torsion and obtain an Abelian analogue of the above result.

(i1) A special case of Lang’s extension of the Manin-Mumford conjecture, proved
by Ihara, Serre and Tate (see [3, Chapter 8, Theorem 6.1]) states that if f(z,y) is an
irreducible polynomial, not a binomial, over a field of characteristic zero, then there are
only finitely many roots of unity (1,¢2 with f({;,{2) = 0. This follows from the above
theorem by choosing p large enough such that the field generated by the coefficents of
f embeds in Q, and such that the hypotheses of the theorem hold.
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