ON MAPPING SEQUENCES

YASUTOSHI NOMURA

Introduction

In 1958 D. Puppe developed the theory of Abbildungsfolge and applied it to
the study of Hilton formula and his spharenidhnliche Mannigfaltigkeiten [121."
We shall be concerned here with a dual situation.

In Part I we introduce the mapping sequence and discuss some applications
of it. Let f:X- Y be a map” of one topological space to another. We as-
sociate with it the following two sequences which are homotopically equivalent
to each other (§2, Th. 2)

0 Q1 QP Q
Mr:- - >2°X f;QY f.QEf~£gX—’;gY—f»Ef—~f»X_f—>y
PSf P3f P4 P3 pP? Pf f
Bf: -+ > Epsg—> Epis —> Epss —'f’ Epy _‘j; Ery _f) Ef— X—Y,

where Pf: Ef > X is the fibering induced by f from the contractible fibre
space over Y, If the injection of the fibre to the total, and £ the loop functor.
Furthermore, it will be shown in §4 that they are homotopically invariant in
the sense that homotopically equivalent sequences are obtained when [ is
altered within its homotopy class. Mf induces for any space V an exact se-

quence

)% Sx
MFe: - >a(V, 2X) ~—f—>7t (V, 2Y) (*—fl;kn(V Ey) —ﬁ**n VvV, X)0—r(V, Y,

where #(V, X) denotes the set of homotopy classes of maps V - X. This is
reduced to the usual exact sequence of homotopy groups in case V is a sphere
and f an inclusion.

It will turn out in §5 that M/, together with its invariance, gives some
delicate informations about homotopy equivalences. For instance, we prove
that the fibre of a contractible fibering has the same homotopy type as the

Recexved May 18, 1960.
1) Numbers in square brackets refer to the papers listed at the end.
2 By the term “map” is always meant a continuous mapping.
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loop space of its base. This is a variant of a theorem of Samelson [13].

In Part II we deal with an interrelation between our mapping sequence
and Puppe’s Abbildungsfolge. For any triple ch_) Y—g—>Z such that ge f =0,
we construct the connecting diagram which is the basic machinary of our later

investigation. Using this we define, for any map f : X —» Y, suspensions

o 7(Cyr, V) - n(SEyf, V)
and
o (V, Ef) » a(V, 2Cy)

which may be regarded as an extension of usual cohomology and homotopy
suspensions. Here Cy is a mapping cone of f, and S denotes the suspension
functor.

We will prove isomorphism theorems concerning ¢* and s, (§9), as an
application of which we present a detailed exposition of the Postnikov system
in line with a treatment in [6]. Finally, it will be shown that the connecting
diagram allows us to give a direct description of functional cohomology oper-
ations.

PArRT I. MAPPING SEQUENCE AND HOMOTOPY EQUIVALENCE

1. Preliminaries

1.1. We begin with some notations and conventions to be used here.

A fixed base point will always be chosen in each space and denoted by a
subscript 0: thus %€ X, ¢ A. All maps and homotopies are to carry base
points to such. The identity map of X on itself is denoted by 1x or simply by
1. Given two maps fi, f2: X~ Y, f1 = f. means the existence of a homotopy
between them. The fact that there exists a homotopy equivalence ¢ : X-> Y
is expressed by ¢ : X=Y. Let f, f, ¢, ¢ be maps such that ¢ and ¢ are
homotopy equivalences. Suppose the following diagram is commutative up to
homotopy :

xLy

I

% N

X — Y
fl

In this case we say that f and s’ are homotopically equivalent and we denote
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by f=/".

The set of all homotopy classes of maps X - Y will be denoted by n(X, Y),
which contains the distinguished element 0, namely, the homotopy class of the
constant map 0 : X~ Y. The homotopy class of a map f : X~ Y is denoted
by [f]. Any map g: Y - Z induces a mapping g« : n(X, Y) - n(X, Z) by the
rule g.[f1=[ge° F1l

For any subspaces A and B of X we now define E4 z(X) to be the path
space {a : I- X|a(0) = A, «(1) € B} with compact open topology, where I is
the unit interval [0, 1. Euy, (X) and Ewp, (X)) are abbreviated by EX, 2X
respectively. We shall denote the constant path at a point x € X by ex. For
any path a : I—»> X let aes: 1> X (0a=<b=1) be a path defined by aq,s(s)
=ala+ (b—a)s) for 0=s=<1. Also, let a~' be the inverse of «, which is
given by a ™ (s) =a(l1—5s) for s&l. By a-f is meant the composition of « :
I- X with 8: - X such that a(1) = 8(0).

1.2. A map p: X~ B is called a fibering if it possesses the covering
homotopy property for all spaces. As indicated in W. Hurewicz [7], p : X~ B

is a fibering if, and only if, there exists a continuous function
A:{(x, a)lxe X, a < Ep,s(B), plx) =a(l) } » Ex x(X),
called a path lifting function for p, subject to the requirements pA(x, a) =a
and A(x, a) (1) =x.
By setting
Mz, a) = 4(x, a)(0),
we obtain a map
Ai{(x, a)lx€ X, a € Ep5(B), p(x) =a(l) } > X,

with the following properties:

(ii) the map x—A(x, epx), ¥ € X, is homotopic to 1y : X - X via a homo-

topy which moves points along fibres.

A is said to be a lifting function for p.>
8 It should be remarked that a map with such a 4 may fail to be a fibre map in the

sense of Serre, as shown by the retraction I\ I~ 1. But it is sufficient for later purpose
to postulate the existence of such a i.
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Now let f: X~ Y be an arbitrary map.

We define Pf: Ef—> X as fol-
lows:

Ef={(x, B)lxe X, BEEY, f(x)=4(1)},
Pf(x, B) = x.

Then (Pf)™'(m) = x0x Y. We define the injection If : Y - Ef by

If(B) = (%0, B) for B QY.

Remark. In case f is an inclusion then Ef=Ey, x(Y). For a constant
map f(X) =y, we have Ef=XXx 2Y.

Let g: B'> B be a map and let p: X > B be a fibering. It is readily veri-
fied that if we define p' : X’ > B' by

X ={(, »)|beB, xc X, glt') =p(x)},
', x) =0,

then p' : X' > B' is also a fibering. In particular, we have

Lemma 1. Pf: Ef > X is a fibering whose lifting function and path lifting
Sfunction are given as follows:

A (x, B), a) = (al0), B+ (fa)™")

for (x, B) € Eyf, a: 1~ X with a(l) =x,
A((x, B), a)(s) = (a(s), 7s)

for 0=s=1,

where vs: 1> Y is defined by

(W) swesesiye,
rs(t) =
l Fa(2(1=1)+s) for »13253 <:=1.

Also, we have

LemMMa 2. Ef—> X—>Y induces for any space V an exact sequence

P £ 3
x(V, Ef)(-—Q)*n(V, X)—f—>7t(V, Y).

Proof. Consider a family of maps #: : Ef - Y defined by h:(x, B) = (1 —1t)
for xe X, 0=t<1.

This gives rise to a homotopy between &, = f o Pf and
hi =0, and thus fo Pf>~0.
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Conversely, given g: V - X such that f,[g]l=0, we can find a homotopy
kt: VY with k=0, ki=fog  For each point v V let 8(v) be the path in
Y given by B(v)(s) = ks(v), 0=s=<1. Then if we define

k(v) = (g(v), B(v)) for ve V,

we obtain a map k: V - Ef such that Pfo k=g, which proves our assertion.

2. Mapping sequence

2.1. Suppose f : X - Y is a fibering with fibre F=7""(») andleti: F-> X
be the injection. Using the lifting function A for f we shall define @ : Ef > F,
¥:Ef- F by
O(x) = (%, ey,) for x = F,

(%, B) =A%, B) for xe X, B EY with f(x) =p(1).

Then ¥ is well-defined, since f i(x, B) =y, because of the property (i) of
the lifting function 4 (cf. 1.2).

The following theorem plays a crucial role in our later development.

THEOREM 1. @ and ¥ are mutually inverse homotopy equivalences and, in

addition, the following diagram is commutative up to homotopy

F —t'-* X
; l
(plTw EE
Ey __I_’F_) X.

Proof. By definition we have ¥ o @(x) = A(x, ey,), 0o¥(x, B) = (A(x, B), ey,).
Obviously ¥ ® =~ 1, by the property (ii) of A (cf. 1.2). On the other hand,
using the path lifting function A4 for f, a homotopy

((x, B), t) = (A(x, B)(1), Bos), o=st=s1)

yields @ o ¥ = 1g,. Since Pf° @ =1, it follows at once that 7o ¥ =~ Pf, and this

concludes the proof.

2.2. We have already seen in Lemma 1 that Pf: Ef - X is a fibering for
any map f: X—- Y. This fact enables us to apply Theorem 1 to Pf instead

of f, and we obtain the homotopy commutative diagram
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2Y

If
(1) Rf| | Nf

Ers —> Er,
P
where vertical maps are homotopy equivalences and P"f (n=2) is defined
inductively to be P(P""'f). Here we may identify Ers with { (5, a)|B € EY,
ac EX, (1) = fa(1)}. Then Rf and Nf are determined by

Rf(B) = (B, ex,) for 3= Q2Y,
Nf(B, ) =B+ (fa)™? for (B, a) € Epy,

and, moreover, P*f (B3, a) = (a(1), B) for (B, a) € Esy.
Replacing f by Pf in the triangle (1), we get the following diagram

2-f
2Xz-~~—-~=---- > 2Y
IPf
(2) RPf| |NPf Rfl | Nf
Epz/ > EP/ .
Py

where Q-1 : 82X - 2Y is the map given by £2-f(a)=(fa)™' for a € 2X.
Since we have (Nf) e IPf(a) = Nf(ey, a)=ey,*(fa)”' for « =X, homotopy-
commutativity holds in (2).

Let ox: X » 2X and oy : 2Y - 2Y be involutions given by inversions of
loops. We set R-f =Rfooy, R-Pf=RPfogx. Then we have homotopy-

commutative diagrams

2
02X —f~—> 2Y
_ l
(3) R Pfl |&r
Ep:¢ _P3f_> Ery
2
2X —{——> 2Y
| p—
(4) RPfi RS
E‘sz_P:?——) E}"f

Consider the following diagram
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2'y.
Qf
MRf
v 2P 21Pf 2
QEp—> QB —> X >Q*Y.
. If
QR-P¥ ORPYf QR-Pf QRf
v OPfF v 0pP¥ QP v opy QPf of
QEpyy —> QFps —>QEpy —>QFEps ——>QE;—> 2X— QY
If
RPSf R-P5f RPYf R-PYf RPYf l -Pf lR\
v v

v
Epr > Eps > Eps >E, >E ~E, > E, >Ey.
prf por g P o Pif o Pif o Prf Py i ; f

On the lowest ladder homotopy commutativity follows from (1), (3) and (4),
as is readily seen. We note that other ladders are obtained from the lowest
one by applying the loop functor. Every vertical map is a homotopy equiva-

lence. For brevity we write

RP"f for even =,

R ={
o R_P"f for odd .

Then we see immediately that vertical equivalences are given by

Riypsf o === o Q" ?Ryf o " 'Rf : 2"Y = Epm-sy.
Rin—af © =+ - o Q" *Rif o Q" 'Rif : "X = Epun-yy,
R:m-lf° st 0 .Qn_stf O.Qn—lkgf . .QnEfEEpauf,

The results obtained above are summarized as follows.

THEOREM 2. The sequence

2P, 22 21
Mf:eee > .QzEf—“{.QzX"—J;.QZY‘—‘J‘;.QEf
QP 2 I P
B oxZov L, 2 x Ly

is homotopically equivalent to the sequence obtained by iterated construction:

Py P'f Ptf P3f
Vf: -« —>Epyg—> Eesg—> Epig—> Epay
P P P Pf _f
—>Epf—> Epsf—> Efr—> X—> Y.
We refer to the sequence R f above as the mapping sequence of f.

Combining Th. 2 with Lemma 2 gives rise to the following
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COROLLARY 2.1. The mapping sequence WM f induces for any space V an

exacl sequence

Mfle: s >alV, .QEf)——-&)n'(V 2X) —> n(V, 2Y)
(If)4 (Pf)x

——> 7(V, Ef) — n(V, X)—>N(V Y).

CoroLLARY 22. If f: X > Y is a fiberving with fibre F, and if i: F- X,
the injection, has a left homotopy inverse (e.g. F is a retract of X), then the
fibering 2f : 2X - QY admits a cross-section.

Proof. By the assumption above we have 0=Ker (Pf).=1Im (If)s, since
i=Pf by Th. 1. Thus (2f), is onto and hence £2f has a right homotopy in-

verse which may be modified into a cross-section.

3. Relative mapping sequence

3.1. It would be natural to expect that the mapping sequence may be
relativized.

h .
Let X—> YiZ be a triple with f = g° h Consider the diagram
L. 0d ol Qk d 1 k
s Q‘Eg——’gEh_')-QEf'_).QEg—_)Eh”‘_)Ef’"?Eg
|1 .QQOlT.Qg/; |1 l1 so” '1 |1

‘Z P

where the maps are set as follows:

k(x, B) = (h(x), B) for xe X, B EZ with p(1) = f(x),
(%, a) =(x, ga) for xe X, a € EY with a(1) = h(x),
dlr, B) = (%0, 1) for y€ QY, § € QEZ with gr(t) =51, t)

¢(x, B), (a, a’)) =(x, «) -for (%, B) € Ey, (a, a') € EEg with
r{x) = a(1), B(s) =a'(s, 1),
(%, a) = ((x, ga), (a, ")) for x € X, a € EY with a(1) = h(x),

in which a'' € EEZ is given by

ga(t) for s=t,

al(s, t) = {
ga(s) for s<t

It follows at once from these that Pko¢ =1, ¢po¢=1, ¢polk=d.
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Next, we shall show that ¢ o ¢ is homotopic to 1: Er > Er. . The above
definitions lead to

vo¢((x, B) (a, &)= (% ga), (a, a'")) for
h(x) =a(l), B(s) =a'(s, 1), ga(t) =a'(1, D).

Define a family of maps 7-:I° > Z(0=ct=1) by the rule

a'(min(l, s+27—27t), ¢) for s=t,
ro(s, ) =3 a'(s, t—2c+27s) for s<t, t—27r+2cs=s,
a'(min(l, 2s—t+27t—27s), s) for s<t, t—27r+27s=s,

and define B. € EZ by setting B:(s) = rz(s, 1). Then the homotopy given by
((x) B)’ (“; a'))—’((x, B‘c), (d, T‘:)) e Ep, (Og_r_g_]_),

coincides with 1: Er - Ej for r =0 and with ¢ e ¢ for v =1, which proves that
¢ is a homotopy equivalence with ¢ as a homotopy inverse, and therefore the
diagram above is commutative up to homotopy.

Now we state our results as follows.

TueorREM 3. The sequence constructed for any triple f =g°h

,., 2d o Ok d 1 k
(5) —» PE—>QEr—> RE;—> QE;——>Ey—>Es—> E;,

is homotopically equivalent to the “absolute” mapping sequence Mk of k: Ef - Eg

and thus induces for any space V an exact sequence®

d A k.
- > 2V, 9Eg) >V, Ex)— 2V, Ef)—>a(V, Eg).

The sequence (5) above is said to be the relative mapping sequence of a triple
S =go°h. Note that when Z consists of a single point the sequence (5) is
reduced to Mh.

3.2. As an illustration we shall derive some exact sequences found in [9].

Suppose (X; A, B) be a triad. Let 4: X - X x X be the diagonal map,
and let 4 : ANB -~ A x B be the map determined by 4. We denote by = the
projection A X B —» A. Then the composite = o 4’ is the injectioni: AN B - A.
Let j: Ex » E, be the inclusion.

W. S. Massey [9] defined 7.(A/B) to be the set of all homotopy classes of

1) Note that this corresponds to a sequence in [6], Prop. 2.3.
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maps (S*; E}, E?) > (AU B ; A, B), where E%, E” are northern and southern
hemispheres respectively. As is easily seen, the following natural isomorphisms
hold :
(X 5 A, B) = 2(S"7, Ej),
mn(A/B) = 2(S", En),
(X)) = 2(S"7, Ea),
mn-1(B) = 7(S"7, Ex).

Hence we have exact sequences
MNs: - -+ > 7l A/B) > mpei(X)
> ni1(X 5 A, B) » ma(A/B) - ma(X),
(MA)st -+ + > ma(A) + 7a(B) > na( A/B)
- tn-1(A N B) > an-1(A) + mu-1(B),
- > (A, AN B) > nn(B) > na(A/B)
- n(A, AN B) > mu-1(B),

where the last sequence is obtained by applying Th. 3 to the triple i=mo 4.

4. Invariance theorem

4.1. Suppose we are given the diagram

x>y
(6) 9] le
XI __}"___) Y'

which is commutative up to homotopy. Such a pair of maps (¢, ¢) will be
called a transformation of f to f'. With this transformation, together with a

fixed homotopy @ such that @y=¢ e f and @, =" ° ¢, we associate a map

Yo=E(¢, ¢ ; @) : Er > Ef,
by the rule
%(x, B) = (¢(x), B") for x€ X, = EY with f(x) = (1),
where p'e EY’ is given by
(¢B)(2s) for Oéséjf,
B'(s) =

Dy5-1(x) for%ésél .

https://doi.org/10.1017/50027763000002087 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002087

ON MAPPING SEQUENCES 121

In case (6) is strictly commutative, i.e. ® can be chosen to be constant, E(¢,
¢ ; @) is denoted simply by E(¢, ¢).

Then commutativity holds in the diagram

P,

Ey -——L—> X
| |
7604( J’gb
Ef _;’f' X

Thus, by proceeding in such a manner, we obtain a transformation (- -+, 7,
1, Lo, &, @) 2 Bf > BS, where Ln = E({n-2, In-1), n=2 and 11 =E(¢, 1o). On
the other hand, simple calculation shows that Zoo If =~ If' - 2¢. Hence this
yields a transformation (- - -, ¢, 20, %, ¢, ¢) : Mf > Mf. These two trans-

formations are related to each other, as stated in

LemMa 3. In the transformations above, Wf - MSf and Bf > V', the cor-
responding maps are homotopically equivalent to each other; more precisely,

homotopy equivalences obtained in 2.2 vield Q" o= lsn, 2" =Aan-1, "¢ = L3n-2.

4.2. Let (¢, ¢) be as before, and let (¢’, ¢') be a transformation of /' to
S with a fixed homotopy @' such that @;=¢'of" and 0, =f"o¢'. We define a
homotopy (@' @) : ¢' oo f = f"o@' o by setting

Y for0§t§~21—,
(@' 0);=
Oyi-1°o¢  for %—gtél.

Then it is readily verified that the following homotopy holds:

LEMMA 4. E(@'o¢, ¢'o¢; (@' o0)) = E(¢, ¢'; @) E(e, ¢ ; D).

LemMA 5. Let (¢, ¢) be a transformation of f to f' with a fixed homotopy
0, and let ¢ = ¢, $ =~ ¢. Then there exists a homotopy @ : ©o f =~ f'o) such
that E(o, ¢ ; @) =~ E(¢, ¢ ; 0).

The proof of Lemma 5 may be proceeded in the same manner as in [12],
25, B) and thus is omitted.
These two Lemmas yield the next result.

LemMma 6. Let (¢, ¢) be a transformation of f to f' with a fixed homotopy
O. If © and ¢ are homotopy equivalences, so is Yo=E(¢, ¢ ; @) : Ef > Ef..
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From this we can derive a invariance theorem for mapping sequences.

THEOREM 4. If in the transformation Mf— Mf' or Bf - PS' two consecu-
tive maps are homotopy equivalences, so are the following ones. In particular,

if £ =S, then each map in this transformation is a homotopy equivalence.

CoroLLary 4.1. (Invariance of mapping sequence) Let f, f': X—> Y be
homotopic. Then Mf and Pf are homotopically equivalent to M) and Bf' re-
spectively.

CoroLLARY 4.2. If f: X - Y is nullhomotopic, then WM f coincides up to

homotopy equivalences with the next sequence

o, 921 0 i P 0
o XX QLY —RX— QY —> XX Y —>X—Y,

where © and i denote the projection and injection respectively; especially, if f :
X > Y is an inessential fibering with fibre F, then F= XX QY.

CoroLLARY 4.3. If f : X Y is homotopically equivalent to 2f : 2X' - 2Y'
for some f! : X' > Y', then Ef= QFEjy..

Proof. It follows from Th. 2 that f = 2/ = P?f". Hence the above Lemma
6 gives homotopy equivalence Ef= Epss. Thus, again in view of Th. 2, we
have the desired conclusion Ey= QEy., since Ep:5. = QEy..

5. Applications to homotopy equivalences

5.1. The following relations between f:X-Y and fy:n(V, X) > 7n (V,
Y) are used freely.

(i) f is nullhomotopic if and only if fi vanishes for every space V.

(ii) f has a right homotopy inverse if and only if f, is onto for each V.

(iii) If f has a left homotopy inverse, then Ker f, =0 for any V.

(iv) (a partial converse to (iii)). If £, has kernel zero for every V, then
2f admits a left homotopy inverse.

Proof of (iv). Our hypothesis, together with the exactness of (IMf),
implies that Pf=~0. Accordingly, Cor. 4.2 asserts that M Pf is equivalent to
the sequence

0 ] 0
> QE;—> QX —> Ef x 92X —> Ef— X,
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where ¢ and = are the injection and projection respectively. Hence we see
from Th. 2 that i=IPf= P’Pf=P%=gf This shows that 2f, like 4, has a
left homotopy inverse.

The mapping sequence provides a useful tool for establishing various homo-

topy equivalences, as will be shown in what follows.
5.2, Let us consider the injection 7: XV Y - X x Y, whose mapping se-
quence is written
2 Ii Pi i
- UAXVY) o 2AXXY)=2XX QY—E—XVY—>XXY.
First of all, we note
LemMma 7. Ii = 0.

Proof. Let us introduce the following subspaces of 2X and 2Y :
2x={acoxla([0, 5 |)=x}.
ov-{searia([4.1]) -

Then injections £X - £X and QY - 2Y are evidently homotopy equivalences
with homotopy inverses « - ey« and B~ (+ey, respectively. Consider now

the commutative diagram

IXx Y —— ox x oy

o |5

E(X \Y Y) —_— Ei - E(xo,yo),XVY(X X Y),

where ¢ is given by o(a, 8) =a X B8, the product path of « and B, and the
other maps are all injections. Since E(X V Y) is contractible, it follows from
commutativity that Iie 7= 0. j, as the product of homotopy equivalences, is a

homotopy equivalence. Therefore, it follows Ii = 0, as we wish to prove.

Combining this lemma with Cor. 4.2 we obtain an equivalence E;; = 2X X
QY x QF;, while by virtue of Th. 2 we see that Ii = P%, Epi = 2(XVY).

Combining these results we conclude
ProrosiTION 1. (X VY)=0XX QY X QE 2, yy,xvr( XX Y).

This may be regarded as a.result dual to Hilton formula ([12], Th. 15),
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5.3. The following is, in a sense, a substitute for Sugawara’s Lemma ([16],
p. 118) in case X is not a CW-complex.

Prorosition 2. Let X be an H-space with H-siructure p: XX X—- X and
let f, g: X% X—> X be defined by

f(x1, x3) = (M(X}, xz), xl)
for x;, x. € X.
g (%1, %) = (1 (X, %), %2)

Then 2f and 2g are both homotopy equivalences. In particular, if X is a CW-

complex such that X X X is also ¢ CW-complex, then f and g are homotoDy
equivalences.

Proof. Let m;, m 1 X X X - X be projections onto the first and second factors
respectively. Since n;° f =m, Th. 3 yields the sequence

Qk k
(7) <+ > QEp~> QEn—~> Ef—> Eg,— En,,

where & is given by E((xi, %2), ) = ((u(x1, %), %), a) for x, x€ X, a € EX
with «(1) = x;.

Let P : E., - E., be defined by &' ((x:, #2), a) = ((n(%0, %), %), €x,). Then
k is homotopic to &' via a homotopy defined by

((x1, xz), a) - ((ﬂ(tt(l“ t), xz), a(l— t)), C(o,l—t), 0=t

Consider now the following commutative diagram

!

E’M I E"‘:

d b
X — X,

where the maps are set as follows,

E((%1, %), a) = %3, for x;, x:€ X, a, B EX with
a(l) =, B(1) = %,
7((%1, %2), B) = %1,
E'(x) = p(x, x)  for xe X.

We see that ¢ and » are both homotopy equivalences and that %" is homo-
topic to 1x by the condition imposed upon H-structure, so that 2 and 2k are
homotopy equivalences. It follows from exactness of the sequence induced by
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(7) that n(V, Er) =0 for each space V. This implies that Es is contractible
to a point. Upon examination of MM f one sees that £/ is a homotopy equiva-
lence ; similarly for g

The latter statement of the proposition follows at once by application of
a well-known theorem of J.H.C. Whitehead [17] to the first assertion.

It is readily verified that if the above map f: Xx X— X has a right
homotopy inverse, then X admits a right homotopy inversion. Thus the fol-

lowing is an immediate conclusion.

CoroLLaRrY. (Sugawara [16]) Let X be an H-space which is a CW-complex
and let X X X be also a CW-complex. Then X has right and left homotopy

inversions.

5.4. In the sequel we shall establish various equivalences related to fiber-
ings. To this end we need the following lemma which is dual to Lemma 8 of
D. Puppe ([12], 3.4).

LemMma 8. Let f: X —> Y be any map such that Pf: Er > X admits a left
homotepy inverse 1: X - Er. Let ¢ : X > Y X Er be determined by [ and l, i.e.
o(x) = (f(x), (%)) for x€X. Then 2¢: 2X - 2Y x QEy is a homotopy equiva-

lence.

Proof. 1t is clear from the definition of ¢ that the square

x—L oy
4
YXEf———n_—) Y

is commutative. Here 7 denotes the projection on the first factor. Thus it
induces a transformation of s to M=. Observe that the projection o : E, =
Es x EY - Er is a homotopy equivalence since EY is contractible.

Consider the map
Zo=EQy, ¢) : Er> E.= Ef x EY,

whose definition leads to the following calculation
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(0o 7o) (x, B) =p(¢(x), B+erx) for x€ X, 3 EY with
f(x) =p(1),
=po(l(x), B*efux)
= 1I(x)
=10 Pf(x, B).

Therefore, our assumption implies p© % =~ 1gs. It follows from the previous
remark that %, is a homotopy equivalence. Hence the transformation Mf > M~
contains two consecutive maps X, and 21y = 1oy both of which are homotopy
equivalences. Thus, in view of Th. 4, we see that 2¢ : 2X - 2(Y x Ey) is also
a homotopy equivalence. This completes the proof.

Combining this Lemma with Th. 1 then gives

ProrosiTion 3. (cf. LM. James and J.H.C. Whitehead [8]) Let f : X > Y be
a fibering with fibre F, and let F be a retract of X. Let r : X > F be a retrac-
tion. Then the map ¢ : X > Y X F defined by ¢(x)=(f(%), 7(%)) induces a
homotopy equivalence Q¢ : 2X=2(Y x F). In particular, if X and Y are
Dbathwise connected spaces dominated by CW-complexes, then ¢ is a homotopy

equivalence.

ProprosITION 4. Let f: X > Y be a fibering which admits a cross-section,
and let F be its fibre. Then QX = Q%Y x F).

Proof. Since 2f : 2X - 2Y also admits a cross-section, the exactness of
(M), implies Ker (Pf),=0. By virtue of (iv) in 5.1, it results that 2Pf
admits a left homotopy inverse. Since QPf= P°Pf= P‘f= P(P%) by Th. 2,
we can apply Lemma 8 to P’f: Eps— Eps. Then we have QFEps= Q(Eps x
Epsiy). We note that Eps= QEr= QF, Epr= 92X, Erf=2Y on account of Th. 1
and 2. We thus see that 2°X=0%Y x F).

Following Peterson and Thomas [11], we shall say that a fibering f : X> Y

with fibre F is principal if there exist maps
piFxX X=X, h:{(x, XX X|f(x)=f(x)}>F
satisfying the conditions:

(1) S o n(x1, %) =f(x2) for e F, x,€ X,
(ii) #|F x F gives an H-structure of F,

(iil) (%1, %2) » 2 (h(x%, %), %) is homotopic to (xi, %) - % via a homotopy
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which moves image-points along fibers.”

Then we can strengthen Prop. 4 for principal fiberings as follows.

ProrosiTiON 5. Suppose that f : X - Y is a principal fibering with fibre F

and that it admits a cross-section. Then there exists a commutative triangle

&
X——YXF

N/

such that 2¢ : 2X=2(Y x F), where = is the projection.

Proof. We denote by s: Y -» X a cross-section, and let z, 2 be as above.
We now define £: X - F by

&(x) = u(h(so f(x), x), %) for x= X.

Since &(x) = u(h(xy, x), %) for x € F, it follows from the condition (iii) of
principal fiberings that £ : X~ F is a left homotopy inverse of the injection
F- X. It follows from Th. 1 that Pf: Er- X also admits a left homotopy
inverse. This fact enables us to apply Lemma 8. Indeed, if we define ¢ :
X-> Y X F by ¢(x) = (f(x), &(x)), we see that 24 is a homotopy equivalence,
which proves our assertion.

Finally we shall prove

ProrosiTiON 6. Let f: X~ Y be a fibering such that the fibre F is con-
tractible to a point in X. Then QY =F x 2X.

Proof. Since F=Eys by Th. 1, our assumption implies that Pf: Ey » X is
nullhomotopic. Therefore, we see from Cor. 4.2 that Epr=Erx 2X. With
reference to Th. 1 and 2 we have Ef=F and Epr=QY, which lead to the
desired conclusion.

Upon examination, one sees easily that homotopy equivalences of Prop. 6
p:Fx 2X-> 2Y, k: QY >Fx 82X
are given, using a contraction @ : F - X such that #;=0, by

% This condition is more restrictive than the one given in [11].
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S o 0s(x) for Ogsgfélﬂ,
ﬂ(xr a) =

fa(2-2s)  for 2 =s=1,
2

£(B) = (A(x, B), a'),

where a' € 2X is determined by

Alw, B) (1-25),  0Ssso,
a'(s) =
D2s-1A (%0, ),

Here we denote a lifting function and path lifting function for f by 1, 4 re-

spectively.

CoroLLARY (cf. Spanier and J.H.C. Whitehead [151). Under the same situ-

ation as in Proposition 6, the fibre F is an H-space.

CoroLLARY. If f: X~ Y is a fibering with the contractible total X, then
n: F QY defined by [9(x)1(s) = fo@(x) for x€F, 0=s=1 is a (strict)
homotopy equivalence, where Os denotes a contraction of X.

The latter corollary is a variant of a result due to H. Samelson [13].

PaArT II. MAPPING SEQUENCES AND SUSPENSIONS
6. Preliminaries

6.1. We start by recalling all the basic definitions and results stated in
[12] in so far as they are necessary for the application we have in view.

Given a map f : XY, let Cy be the mapping cone of f, the space ob-
tained from CXU Y by identifying (x, 1) with f(x), where CX denotes the
cone over X. We denote by S the reduced suspension functor. With these
notations, it is known that the sequence

f Pf Qf Sf SPf
NfF: X—>Y—>Cs—>SX—>SY—>SCs~> -

has the same properties as M/, where the maps involved are defined in the

following fashion:
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Pf(y)=ye Y CCy for yeYy,
Qf (%, s) =(x, s) for (x, s)eCX, Qf(») = (x, 1)
for ye Y.

Next, given a transformation from f: X->Y to f/: X' > Y

x— >y
2 I
XI e 4

i Y

with a fixed homotopy @ such that @, = ¢°f, @, =f"° ¢, we construct the map

%i=C(g, ¢;0):Csr—>Crp

by setting
Zi(y) =o(y) for ye YCCy,
(¢(%), 25) for xeX,ogsgé_,
Zi(x, s) =
D2-55(x) for x€ X, —;— =s<1.

Then we have (D. Puppe [12], Lemma 7)
Lemma 9. If ¢ and ¢ are both homotopy equivalences, so is /L.

6.2. Following Eckmann and Hilton [4], we shall say that f: X-> Y is a
cofibering if it has the homotopy lowering property for all spaces, ie., if, for
g:X->Z G:Y - Z with g=Go° f, each homotopy of g can be obtained by
composing f with some homotopy of G. The quotient space Y/f(X) is called
the cofibre of f. Then we shall prove

Lemma 10. Let f: X - Y be a map and let My be its mapping cylinder.
In order that f be a cofibering, it is necessary and sufficiant that there exist a
map A : Y x I - My such that A'(f(x), 1) =(x, ), Ay, 1) =y for x€ X, y€Y,

0=t=1

Proof. Suppose f is a cofibering. We define a map Y X 1> Myr by (¥, 1)
- 9. Then the homotopy X X I - M;y given by (x, ) - (x, ) can be lowered
to a homotopy A': Y x I > My which is a desired function.

Conversely, let G: Y - Z, g : X Z be such that G(f(x)) = gi(x) for x€ X,
where 0 =¢=1. Using the above 4/, we define a homotopy
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God:YXI->2Z

where G' : Mys ~> Z is given by taking G'(y) = G(¥), G'(x, s) = gs(x) for y€ Y,
x€ X, 0=<s=1. This proves the sufficiency.

We see from the above lemma that if f is a cofibering then f is necessarily
univalent, so that from now on we consider only inclusion cofiberings. With A’
above, define A’ : Y - My by

A(y)=A(y, 0) for yeY.
Then this 4, called a extension function for f, has the following properties:
(i) 2'(x) = (x, 0) for x€ X,
(ii) the composition 7 o A’ with the retraction 7 : My - Y is homotopic to

the identity 1y of Y via a homotopy which sends X into X.
Consider the diagram

PI
Y“—'f—> Cyr
llT 14
1 ¥
Y~p—>Y/X,

where p is the natural projection, @' the map Cr— Cs/CX= Y/X obtained by
pinching CX to a point and ?’ the map induced by 4': Y- My. Then we have

LEMMA 11. @' and ¥' are mutually inverse homotopy equivalences and, fur-
thermore, the above diagram is commutalive up to homotopy. (Puppe [12])

Proof. 1t follows from (ii) that @' o %' =~ 1. On the other hand, the homo-
topy given by

(%, s) - A'(x, st), for 0=t<1, (%, s)e X x I,
y-> Ay, t) for 0st<1, €Y

yields a homotopy connecting ¥’ o @' with 1c,. It is obvious that p =@’ P'f,
so our assertion is proved.

The following is easily read from the proof of Puppe’s Lemma 6 [12].
LEmMMA 12. P'f: Y - Cy is a cofibering, whose ' and A' are given by
(%, 2s) e Cy, ossgé—, (%, s)eCX,

AM(x, s) =
(f(x), 2-2s) e YXI, %ésél, (%, s) € CX,
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¥ =(y, 00€YxI yeY CCy,

(F(x), 2—2s+1), l’z*—tésgL

A((x, s), t) =

Ay, 1) =(y, 1)

Finally we state the following well known lemma which makes it possible

to convert any map into a map of simpler type.

Lemma 13 ([3] or [1]). Any map is equivalent to a fibering (or a cofiber-
ing).

Proof. Giveh any map f : X Y, let My be the mapping cylinder of f

and we set

Zi={(x, B)lx€ X, B€ Eyrx(Y), f(x) = B(1)}.

Let p: Zr—-Y, i: X~ My be defined by setting p(x, B) =p(0), i(x) = (x, 0).
Then we see at once that p is a fibering with fibre Ey and that 7 is a cofiber-

ing with cofibre Cy, both of which are clearly equivalent to f respectively.

6.3. Let f:X— Y be a map. We shall define left operations (cf. [12],
4.3)

n: QY X Ef - Ey, # Csr—>SXV Cy
as follows.

wlo, (x, B)) = (%, w+p) for e Y, x€ X, BEEY,
w(y)=y for ye YCCy,

(x, 2s) € SX, sé—;
u(x%, s) = for (x, ) €CXCCy

(x,2s—1)ecx,s;~§1»

These induce natural H- and H'-structures (cf.[4]) 2Y X 2Y - 2Y,SX - SX V
SX which are also denoted by 4, #/. We have several properties about them.

For example,

a) The diagrams
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QY x By “>E, Y ——>SXVY

1 fol |er P'fl ilVP’f

Y x X ——>X Cf—‘uj—‘)SXVCf

are commutative
1xp ¢
b) QY X QY X Ef——>Q2Y X Ef Cr —> SXVCr

#Xli lﬂ ﬂ'l l/-"Vl
QY x Ef *‘7“-‘-? Ef SXVCf"l*‘\’/?SXV SXV Cyr

are homotopy-commutative.

Moreover Ey has a principal structure as mentioned in 5.4. Let Ef be the
reciprocal image of the diagonal under P/ x Pf: Ef X Ef > X x X. If we define
h: Ef - QY by taking

h((x, B), (x, B)) =B,

we obtain a homotopy commutative diagram

hXp1
Ef———— QY xEy
P2 7

Ey

where p; : Ef » Ey are defined by pi(zi, 22) =2, i=1, 2, zz€ Er. This homo-
topy u#°(h X p1) = p: can be chosen so as to move image-points along fibres.

7. Connecting diagram®

. foo . .
7.1. We shall call a triple X—Y —g—>Z nullhomotopic if and only if the
composition geo f is homotopic to the constant. Given such a triple with a
definite homotopy H:: X — Z such that H=g¢° f, H =0, we form the connect-

f
ing diagram of X—> Y—'>Z which is written as follows.

9, I P, Q SP
--—f>5zY—f»Ef—J;X 4 Y~+cf~f+sx—>sy—’;- .-

‘; 'flfal ffyl H 0 i”'fa “

!ZY —>!2Z"—>Eg—> Y—; Z'—*Cg 0z SY—9 :

® This construction was inspired from a discussion in [5].
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in which the maps exhibited are defined by setting

gr.a(x) = (f(x), 1), v(s) = Hi-s(x) for xe X, 0<s=1,

Hi_»s(x) for 05s< %, (%, B) € Ey,
Wf.g(xr B) =

gh(2—=25s) for >-=s=1, (x, B) € Ey,

|

$2(9) =8(9), & g(x, s) = Hi_o(x) for ye v, (% s) eCX,

His(x)eZ for 0s< —;—,

7, e(%, §) = .
(f(x),2-2s)eCY for ?ésél.

Here, to simplify notations we omit all mention of a nullhomotopy H:. With
these definitions we assert

THEOREM 5. The connecting diagram above is commutative up to homotopy.

Proof. Let G-(0<7t<1) bea homotopfi Ef - E, given by

G-(x, B) = (B(7), r=) for xe X, B EY, f(x) =p(1),

where

Hi-ssizya+a-1(%), 0=s<1+4+7/2

r:(s):{
gBh(2—2s+7) 1+7/2=5s=1.

Since Golx, B) = (30, 1£,6(% B)), Gi(x, B) =E5¢(x), it follows that Igoys g~
£f.g° Pf.
Similarly, if we consider a homotopy G : Cr > Cg (0 <t =1) defined by

G:(y) = (y, 7)
Hi-2547 a+rn-1(%), 0=s=(1+1)/2

Giis ) ={
% <) (f(x),2-2s+71), (14+7)/25s<1,

then we see that 77,,°Qf =~ P'go%f . The other verifications are straight-
forward.

&7, &f, g, etc. will be called connecting maps in the sequel.

7.2. Next we shall determine to what extent the connecting maps are
altered by the choice of nullhomotopies of g f or by alterations of f, g within
their homotopy classes.
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Let Zf.4, &f, 4, etc. be the connecting maps which are constructed by using
another nullhomotopy H: of geo f. It is clear that the correspondence

Hias(x), 0ss= g
(x’ S) -
Hal®), 5Sssl

determines two maps £(H, H) : X - 2Z, /(H, H) : SX- Z. It is readily veri-
fied that

wole(H, H) X §f,¢} = Ef, g pole(H, H) X 7f,g} = T, g
{'(H, H) N &5y ot = Bf,  A'(H, H)Voypghon =70

where g and ¢/ are left operations in Eg, C,; as defined in the previous section.

Secondly, when 7 = f, we shall construct £7,,, etc. by using the nullhomo-
topy g f: followed by H;, where f: is a homotopy connecting 7 with f. Then
we see at once that £7,¢ = §r,¢, 77,6 = 77, g and that the diagrams

E(1,15f) C(1, 1; 1)
Eps— Ef Cys—¢C5
07‘.\ /7 f.0 €0 §'70

oz y4

are homotopy commutative, where each horizontal map is a homotopy equiva-

lence (cf. Lemmas 6,9). Similarly for g ~g. Thus we have established

TueoreM 6. The effect of changing a nullhomotopy of ge° f upon connect-
ing maps is described in terms of the left operation of some element in n(X,
R7) or »(SX, Z). When f and g are altered with their homotopy classes, the

resulting connecting maps are equivalent to the initial ones.

7.3. In case go f is just a constant, we may simplify the definition of

connecting maps to some degree, i.e., in that case we set

gr,e(x) = (f(%), e), 72(x, B)=(gB)7",
263 =8(9), &ho(% s) =20, 7%, 5) = (f(x), 1—35).

We shall now prove a result corresponding to excision theorems dues to
Eckmann and Hilton [4]

THeEOREM 7. 1) If g is a fibering with fibre X, then £f,¢ and vr,¢ are homo-
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topy equivalences. ii) Let f be a cofibering with cofibre Z. Then we have homo-
topy equivalences &,z and 0 g

Proof. The first halves of each assertion are just restatements of Th. 1
and Lemma 11. Therefore it remains to prove that %r . and 77}, ¢ are equiva-
lences.

That 75,¢ is homotopic to the composite map

E(1,&1,0) N,
Ey I—U’EPg £ > 2Z,

where Ng is a map as defined in 2.2, follows from the next computation

Ngo E(1, &1,0) (%, B) = Ng(&s,5(x), B)
= Ng((%, ez), B)
= Ng(eig’ B) = eZo * (gB)_l'
Since, by 2.2 and Lemma 6, E(1, &7,z) and Ng are homotopy equivalences, so

is 77,g, which proves (i).

As regards 7/, ¢, consider the composite map

% (1, &,0)
Sx Cris 2% Con

where 1’ is the map determined by 4’ : Cs - Mpys in Lemma 12. It is easy to
show

2EZ, Oésgé,
C(, &.0) o M(x, s)=
(%, 2—2s)eCY, %ésél,

so that it is homotopic to 77}, gz One sees from Lemmas 9 and 11 that 7f.g is a

equivalence. This concludes our proof.

8. Suspensions

8.1. We shall give here a definition of suspensions for an arbitrary map
f + X - Y which is substantially a generalization of usual ones, as mentioned
in Remarks of 8.1 and 8.2

Before doing so we make a convention. #(SX, Y) and n(X, 2Y) are in
1—1 correspondence with each other by the rule {7(x)}(s)=s(x, s) for F:
X QY, f:SX~ Y. In this case we use the notation [F1<[f1.
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Let v : Cr—> Z be given, then we set #=wvo° P/f. Note that X—{—> Y-z

P .
and Ef—f‘;X’i) Y are nullhomotopic triples. Thus we may consider the dia-

gram
P, P'Pf QPf
Ey —L-> X-——> Cps —— SEy
| [ ‘ ' ié'pj,/\P iﬂ’Pj,j
P f 'f
Ey - ! X Y > Cr
7y, ui lff, u : ‘ iv
QZ ——>Eu >Y —> Z
lu Pu u

We define the Ejlenberg-MacLane suspension for f
¢ : 2(Cy, Z) » n(SEy, Z)
by taking o*([v]) = [v o npr,s]. We also define
a*: 7(Cy, Z) » n(Ey, 2Z)

by "([v]) =[9r,4]. f =Pu-&s, may be called the Postnikov factorization of
f with respect to v. ‘

Since we have

uB(2s), 0§S§—%v
vone,r((x, B), §) =
oz 2-25),  +=ss1,
vz 25), 0<s<-L,
{n7.u(%, B)}(s) = N
uz—2s), 5 sssl,

we obtain

Lemma 14. 7 ([v]) < — *([v]).

Remark. In case f is a fibering with fibre F, we shall call

(ks 7°S®)* : n(Cs, Z) - n(SF, Z)

the suspension of the fibering f, where @ : F -» Ef is an equivalence given in
Th. 1. In particular, let f be the Serre fibering EY - Y defined by g - p(1)
and let #: Y —Z be given; then we set v(y) = u(y), v(B, sy =up(s) for ye Y,
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BEEY, 0<s=<1, obtaining a map v : Cr > Z. We see then that 7r,,°0 = Qu :
2Y » QZ, where 0 : QY - Er is an equivalence.

8.2. Given a map v':Z- Ey, we set w' = Pfcv' and we proceed in a dual

fashion. Consider the diagram

z o x T, Yosz
| I
b Pk Ly P
A R
2Cy \JP_,}_)EPff‘"‘ISﬁ}—) Y——P?“}Cf

S =&, 5o P'4' may be said to be the Moore factorization of f with respect to v'.
We define the Freudenthal suspension for f

ox : m(Z, Ef) » n(Z, 2Cy)
by setting s, (Lv']) =[5s,rr22']. We define also
G« . n(Z, Ef) > n(SZ, Cy)

by 7+([v'D) =7k 1. As in the case of the Eilenberg-MacLane suspension, we
may obtain
"~ Lemma 14. 7.([v']) © — . ([v']).

Remark. In case in which f is a cofibering with cofibre Y/X, then we

have a natural equivalence @ : Cr—~ Y/X. (Lemma 11). We say that
(20 onf,pf)s : w(Z, Ef) > n(Z, 2(Y/X))

is the suspension of the cofibering f. In particular consider f : X - CX which
is the injection. Given #' : Z - X, we define v' : Z - Er by v'(2) = (#/(2), ')
where B’ : I -» CX is defined by p'(s) = (#/(2), s), 0<s=<1. It follows at once

that @' o 95, f = Su/, where @' : Cs > SX is a natural equivalence.

8.3. We shall now establish naturality of suspensions. Let

x—1oy

2 le

XI — Y!
f/ ¥
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be a transformation as in 6.1. It will be reasonable to consider the diagrams

SE(?, ¢; @) E ¢;®
SE ,4,_(,,“ ¢ SEf. Ef ——" ¢ ,._)_) Ey,
(7 ey, /l lW’P ¥ s, P’fl l’i/' P
r e eim O ¢ gai,

2C(g, ¢:0) 2Cs.

The following lemma is readily deduced from the definitions involved.
LemMma 15. The above diagrams (7) are homotopy commutative.
Next, given maps 7 : Cr. > Z, D : Z-> Ey, we set

v=0.C(¢, ¢; P), u=00oPf,

u =v° P,
V=FE(¢, ¢;0)°0, #=Pfos, u=Pfov
Consider the diagrams
5 E, ¢:9) By, Sz
(8) n,\ / 3 :;, / P, g
oZ Cr oo

Observing that =% ¢, ' = ¢ o #, we easily verify

LemMa 16. The diagrams (8) are homotopy commutative.

9. Suspension theorems

9.1. We are now in a position to prove an important property concerning
suspensions, which is an extension of usual suspension theorems.

In the rest
of this paper we assume that the spaces to be considered are 1-connected.

Tueorem 8. Let f : X > Y be any map and suppose Y is r-connected, Ey
s-connected. Then

" HY(Cy) » H(SEyf) = H" '(Ey)
is an isomorphism for q=r+s+1 and a monomorphism for q=r-+s+2.

Proof. In view of Lemmas 13, 15, 6, 9, we may restrict our attention to

the case in which f : X~ Y is an inclusion cofibering. In this case

Ef = Ey, x(Y), Cr=CXUY,
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and 7bs, 7 is given by

B2s) ey, 0sss, BEEy,
7er, F(B, s) = .
(B(1), 2—25) & CX, »é—gsgl, B Ey.

We shall form a diagram

Q: .
SEf¢—— Ci= EYUCEf——>(Ci, CEf)s—(EY, Ey)

|

SEf 77[ 0![ vlll p

W’I’N

Cy (Cr, CXye——(Y, X),

where o is the involution determined by inversion of suspension parameter;
i: Ef » EY the inclusion; %' the composite ks, s° w° Q¢ ; %" the map given by
7"(B) = B(1) for B EY, 7'(5, s) = (B(1), s) for (B, s)=CEs; #" is induced
by #'; p the map defined by p(B8) =g(1) for B EY; other horizontal maps
are all inclusions.

Define G/(0<¢<=1) to be the homotopy such that

G:{(B) = () for B EY,

2s 1+1¢
(B(l), I—Ff)’ 0=s= 5 B_EEf,
Gi(B, s) =
gz-2s+8), ‘Flss=1 peEs

Since Go =7, G1=7", we have 7 ~ »". We see at once that the diagram above
is commutative.

By passing to cohomolgy it is clear that all horizontal maps, @7 and o
induce isomorphisms. Note that p is a fibre map. Since QY is (#—1)-con-
nected and (Y, X) is (s+1)-connected, it follows from a well known theorem
([14], Th. 1.B) that p" : HUY, X) - HY(EY, Ef) is isomorphic for g=r+s+1
and monomorphic for ¢ =74 s+ 2, so that the same is true for o*= (9/pr, )%

which is what we wanted to prove.

TaeoreMm 8. Let f: X —> Y be any map, and let X and Ey be r- and s-con-
nected respectively. Then
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gy ¢ ﬂ'q(Ef) - n'q(.QCf) = 77.'q+1(cf)

is an tsomorphism for q<r+s and an epimorphism for q=7r+s+ 1.

Proof. As before we may assume that f is an inclusion. We consider the

diagram
ﬂ'q+2(Cf ; CX, Y)
a l
(Bf) e&——n P
T\ L2f - 7fq+1(EY, Ef)'—-——> 7rq+1( Y, X)
(T, prg) = =
Tl i

~

nq(QCf)———)ah ﬂ'q(.QCf)-—>(Il) no(Ey,, cx(C/))<——; na+1(ECy, Ey,,cx(c,e))—»~ g+1(Cr, CX)
*
'

7Tq+1(cf ’ CXy Y);

where o is the involution induced by inverting loops; %= (If) o wo %s,ps, i:
CX > Cy the inclusion; p and g are fibre maps defined by taking the terminal
point of paths; other vertical maps are induced by injections.

By proceeding as in the previous theorem, we see that » and j are homo-
topic to each other. Since (CX, X) is (#+1)-connected and (Y, X) (s+1)-
connected, we have

ng+2(Csr; CX, Y) =0 for g<r+s

by the triad theorem [2]. Hence it follows that ¢4« = (y7,#r)s is isomorphic
for g<7+s and onto for g=7+ s+ 1. This completes the proof.

10. Postnikov decomposition

Let f : X— Y be any map such that m,(Es) =0 for g<n—1. We abbrevi-
ate n,(Ef) by 7. By a convention made in 9.1 we have m(Y) =0, so that
Th. 8 asserts that 7 : HY(Cy) » H* '(Ey) is isomorphic for g<n+1. There-
fore we can find a map

v:Cr—-> K(rry, n+1)

such that ™([v]) =[ys,.1€n(Er, 2K(nn, n+1)) = H(Ef) < Hom(H, (Ef), ©a)
is the inverse of Hurewicz isomorphism, in which we set # = v o Pf.
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We have the maps

P, P’

Ey i—> X f—-? Y £—> Cy
0];“\}( lé/,u ‘ lv
9K(zn, n+1)—=>E, —>Y—>K(mn, n+1).
Tu Pu u

Since the relative mapping sequence for the triple f = Puo &y, is written
QFy -g}i QFEpy —> By, , — E¥ —f* Epy
i I
K(rw, n—1) K(mn, n),

it follows from Th. 3 that n,(E:, ) = nq(Es) for g = n, n—1. A simple com-

putation shows that 7r, . coincides with the composite
Ef - LI Epy Ni—) QK(mw, n+1),
where N, is an equivalence constructed in 2.2, and thus we have
Byt wn(Ef) T au(Epu), (2B)y @ wn-1(REf) X mn-1(2Epy).
These results show that

(o) { mq(Exyu) =0 for g=n
nq(Eff,u) = ﬂq(Ef) for (]Zn +1

On the other hand, we obtain quickly from (ME&y ). that

(Efu)s : TI'q(X) = ﬂq(Eu) for q=n,

(10) {
(Eru)s: Tn+e1(X) > mne1(Ey) onto.

Furthermore we have
(11) (Pu)* : ﬂq(Ezt):ﬁq( Y) for (]#1’14‘1, n.

This construction is essenfially due to Eckmann and Hilton [6]. They call
it the homotopy decomposition of f.

In case f is a fibering then, by Th. 1, Er is equivalent to the fibre of f,
and thus we see from (9) that we have the Moore-Postnikov system for f
([1], p.911). In particular, when Y is a point we obtain the Postnikov system
for the space X

It X is a point then Ef =Y, so that Py : E, > Y is a fibering in which
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the fibre is K(mn+:1(Y), ») and moreover Pu is (n+ 1)-connective by (10), (11).
This is nothing but the Cartan-Serre-Whitehead technique for killing homotopy
groups [3].

11. Functional operations

11.1. In this section we try to make an explicit deduction of the formulas
stated in [10], without making use of the universal example.
. f h 0
Suppose given a quadruple L—> K—> X—> Y such that 2o f ~0,0h =0

which are realized by homotopies H:, G: respectively. Using the diagram

L Lk
\ H

Ern \

Ih Ph h
QX— FEpn — K— X
‘5 Wh,ei iEh,e k:

2X Q—_b) .QY-'I*G—) Ey ?,f? X—‘;* Y

we shall define the functional 0-operation 05 by
07(h) =[nn00 Er,nl

This must be considered as an element of the set of equivalence classes by
left operation of f*z(K, 2Y) and right operation of (20).=(L, 2X).

Alternatively we consider the maps

P/ S-
PRI it Cfg)SL~——f)SK

e ey

h Ph Qh
K— X —Cp—>SK
|

X—0‘>Y

l‘f’h, 0

and we set
07(h) =[&h, 0o7f, 1],

which is regared as an element of n(SL, Y) classified by right operation of
(SA*n(SK, Y) and left operation of 6*z(SL, X).

The following gives a relationship between the above two definitions.

ProposiTiON 7. O7(h)© —6s(k) (cf. Th. 5.1 in [10])
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Proof. By a direct calculation based on the definition of connecting maps

we have

G1-2s(f(x)), 0§S§79 ¥xeL,
{nm,00 &7, 0(2)}(s) =
0H23—1(x),

0H,»5(x), 0<s<
(&h 0o np, 1) (%, §) = )
Garg-1(f(x)), 5 =s=1, xeL.

Our assettion follows from these.

11.2. Let f, h, 0 be as above and let ¢ : E—~ Z be given; then we set
0'=¢o (1) : 2Y - Z. Note that 6' > 20 =~ 0 by the exactness of (M0G),.

Following Peterson [10] we shall define the secondary G-operation @, de-
termined by ¢ as follows:

Oy(h) = [¢> ° $h,o].

which is regarded as an element of »(K, Z) classified by ¢-image of left oper-
ation of n(K, 2Y). Thus, in order to describe @ completely, we need more
explicit information about ¢ ° », where u : QY X Eo ~ E, is left operation.

From the above definitions we see that
0 oqpocbrn=0p°(I0)ogneolr,n=0°Ek,° 1.
Therefore we have proved

ProrositioN 8. (cf. Th. 7.1 in [10]) 6'(G(h)) = f*@e(k) mod 0'f*n(K, 2Y)
+7*¢ (left operation of n(K, 2Y)).

11.3. Next, let f : L - K be a fibering with fibre F, and let ¢: F—> L be
the inclusion. Suppose #: K— X is such that o f =0 by a homotopy H;
(0<t=<1),andlet ¢ : X-> Y be a map with ¢ o2 =0. Then we have the
diagram
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F—>L

o | -

b Ls kP,
Wf, hl 5/, hl I ; lv

Ih Phn h
RX—>Epn—K-—>

| ”ﬁ’*l l 5":‘“”
—> 0V —F,—> X—
9XQ.~</JQY Iy Ey Py X ¢ Y,

where @ is a natural equivalence (cf. Th. 1) and v is defined by

v(k) = h(k) for k€ K,
v(l, s) = Hi-s(1) for leL, 0<s< 1.

Since 7" ([v]) =[ns,s° @1 in the fibering f (cf. 8.1, Remark), it follows from

the homotopy commutativity of the diagram

PropostTion 9. (cf. [10], Lemma 62) i*¢s(h) = —(2¢)a"([v]) mod
(2¢)sn(L, 2X).

f h 0 .
114. Let L—5K—X—> Y—¢—>Z be maps such that there exist homo-
topies Hi:0ohof =0, Ge: ¢ =0(0=t=<1). Then we can easily verify
that both 7,4 © §hor,0 and yeon,y © £/ 00n are given by

Grss(hf (1)), 0555 5L,

(x, s) -»
1

¢ Hyg-1(x), ?ésély xe L.

Hence we have shown

PRrOPOSITION 10. gnof(8) = ¢ s(6° k).

In case 7 : n(Cy, Z) » n(Ey, 2Z) is onto, then there existsamap¢ : Y > Z
such that [7,,] =[¢] for.any ¢ : Es > 2Z, and then we have (16)*[¢p1= —[2¢].
We deduce from Prop. 10.

CorROLLARY. @glho f)=¢0°h) mod (2¢)en(L, 2Y)+f*n(K, 9Z) (cf.
[10]1, Th. 6.3).
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