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1. Introduction and statement of results. We supposc that

{X{l’ Xy -1 {321,)_(2, ...} are increasing sequences of consecutive

zeros of non-trivial solutions y(x), y(x), of the differential equation

(1) y" +f(x)y = 0
on an open interval I, and define, for any fixed X > -1,

Met1

M= f ly(o)|Max (k= 1,2,...)

Then, with the usual notation for forward differences, i.e.

0 n n-1
ATy =B Apy = py Ly "B A pk—A(A pk) (n=2,3,...),(k=1,2,...),

we have the following result:
2 2
THEOREM. Let p(x) = vy (x) +y2 (x), where Y’l(x) and yz(x,)

are linearly independent solutions of (1) over the closure I* of I,
and suppose that

(n)

"

0% > 0 (n=01),
()

0 > 00 (@

N

2,...,N),

th . . . .
where the N derivative exists in the open interval I and the lower
order derivatives are continuous in I¥, Then

(3) (—1)nAan>0 m=0,...,N; k=1,2,...),

so that, in particular (on taking X = 0),

(4) (-1)“An“xk>o (n=0,...,N; k=1,2,...).
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Moreover, if x1 >:_c1, then

(5) (—1)nAn(;ﬁ{-;k)>O m=0,....,N; k=41,2,...).

The theorem remains true if the factor (—1)n
from (2), (3), (4) and (5).

is deleted simultaneously

L. Lorch and P. Szego[1, Theorem 2.1] prove these results
with the slightly stronger assvmptions

(6) (—1)np(n)(x) >0 (n=0,1,...,N),

instead of (2).

In §3, we give some examples to which the present theorem,
though not that of [1], is applicable. We apply the theorem with the
modification noted in its last sentence, i.e., with the factor

(—1)1’1 deleted. The applications of Theorem 2.4 [1] made in [1] and
[2], were all to cases where the (-1)" factor is retained. We cannot
weaken (2) further by replacing p'(x) < 0 by p'(x) < 0, as the example

f(x) =1, y'i(x) = gin x, yz(x) = cos x shows. Strict positivity of p(x)

is also necessary [1, p.70, Remark 1. Asin [1], all quantities
considered here are real.

2. Proof of the theorem. Only minor changes are required in
the proof of Theorem 2.1, as given in [1] It is shown there that (3)
and (5) depend on the inequalities

(n)

(7) (-1)“13t {([x®]°}y >0 (=0,...,N),

where x'(t) = p(x) and ¢ > 0. To prove (7), it is shown in [1 ;
Lemmas 2.1 and 2.2] that its left-hand- side is a homogeneous form

(1) (n)

in p(o)(x), p (x),...,p '(x), each of whose terms is positive, the
positivity following from (6). The weaker condition (2) will, in general,
only imply non-negativity of these terms. However, (7) still follows
because, for each n, the homogeneous form mentioned includes the

positive term (—1)n[p(0)(x)]g[p(1)(x)]n, as an easy induction shows.
The final sentence of the theorem follows on making obvious
modifications in the above proof.

3. Applications. (i) When Ia’ > 1/2, the Cauchy-Euler
equation

(8) y"+(a2/x2)y = 0, 0< X< w,

has linearly independent solutions
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yi(x) = x1/2cos(s log x), YZ(X) = x1/zsin(s log x), (s =\/ a2 -1/4 )

on the interval 0< x< . Thus p(x) = x, and so our theore_m1
(modified as in its last sentence) shows that if {xi, Xyp e .1 {x1,x2,. .o}

are increasing sequences of consecutive positive zeros of nontrivial
solutions y(x), y(x) of (8), and x, >x,, then we have, for k=1,2,...

1 1

(9) Aan>0 (n=0,1,...),
n - -—

(10) A(xk-xk)>0 (n=0,1,...).

A direct proof of (9) may be given as follows. A nontrivial
solution of (8) must have the form

Axi/zsin(s log x +b) (A% 0).

y(x)

Thus we get, for k=1,2,...,

X ‘ Y
M, = ’A[xf k+1 X)\/Z |sin(s log x + b)| dx

*x

t

k+1 A (A+2)t

= o [F i t] N exp BERLE g
¢ 2s
k
where c(> 0) is independent of k, and tqu = tk + w. Thus we get

2
(cf. [1, p.60} ), for n=0,1,...,

t

AnM = ¢ fk+1ls

l)\ n ()\'I‘Z) t
t P

in t d
in A-rr [ex o ] at

k

cT

t
. +2)(t+6
0 fk+1 l81n t'xD(n) [exp()\——)(——'—mﬂ] dt
tk t 28

1. We apply the theorem to an interval €< x <o (¢> 0), containing
the zeros in question.

2. Asusual, A F(t) = F(t+w) - F(t) and
™

APF@) = A A" Ew), n=23, ...
™ m ™
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where 0< 0< 1, the last equality following from a mean value
theorem for higher derivatives and differences {3, p.55, No. 98].
Since the successive derivatives of the quantity in square brackets are
positive we get (9). A similar argument may be used to prove (10).

The Cauchy-Euler equation (8) is {except for linear changes

(n)

in the variable x) the only one for which p~ '(x)> 0 (n =0,1) and

p(n)(x) =0 (n=2,3,...). This follows from [4, Theorem 3, Remark 1],
where it is shown that if p(x) (therc called z(x)) is a polynomial of

3
degree < 2, then {(x) = d/[p(x)]z, where d 1is a constant.

(ii) We consider the cquation

2 -2v-2 2 2
(11) y DT L 0T /(e = o,
-1)/2 -
where v> 0. Tt has linearly independent solutions vy (x) = x(‘H 1)/ 2sin(x V)
i
+1)/2 - 1
YZ(X) = x(v )/ cos(x V) on 0< x< w so that p(x) = xv+ '

Thus if v is a positive integer, p(x) satisfies (2}, with (—1_)n
deleted, for N = «. We note, however, that cach sequence of
consecutive positive zeros of a solution y of (11) terminates. We
apply thetheorem to an interval (a,b), a> 0, containing a sequence
of such zeros. The theorem is, of course, valid for finite sequences,
provided we restrict attention to those higher differences which have
meaning for the sequence in question. Thus we find thatif v is a

is a sequence of successive

iti int g d if D
positive integer and i {x1 %, xK}

positive zeros of a nontrivial solution y of (11), then

(12) Aan>O (k=1,...,Ken-1;n =0, ..., K-2).

A corresponding suitably modified analogue of (5) also holds.

A direct proof of (12) is possible. In fact, the direct proof
shows that the restriction that v be a positive integeris not
necessary. The direct proof is similar to the direct proof of (9). Each

(vH1)/ 2

nontrivial solution of (11) has the form y = ax sjn(x—v-I»b), where

a # 0. Thus we get for k =1,...,K-1,

2 2
3. In the special case where p(x) = ag + a;% a, + a, > 0, we get

-

2 12 - . .
d = W + Zaﬂ , W being the (constant) Wronskian of Yy and Yy
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x
M, = lalx fxt-H x(V+1))\/2|sin(x-v+b)[)\ dx

n

t ,
—c ftkH [ sin(t +b)[>\ ¢ FDOF2)/(20)

k
where c(> 0) is independent of k, tk+1 = tk -m(k=1,...,K-1) and
= e - - - - -
tK—xK > 0. Hence, for k=1,...,K-n-4, n=0,...,N-2,
t
+ -
Aan = c(-1)nfk n |sin(t+b)|>‘ A:[t ("H)(HZ)/(Z")] dt

+n+1

t
C(-i)n'rrn ftk+n Isin(t+b) |>\ Din)[(ti— Onrr)—(v+1)()\ +2)/(2v)] dt
k+n+1

where 0« 6< 1, by a mean value theorem for higher derivatives and

n (n)t— (v+1)(N+2)/(2v) S

differences [3, p.55, No.98]. Now, since (-1) Dt 0

(t > 0), we find that (12) holds, for solutions of (11) where v is any
positive number.
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